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ABSTRACT

We propose a new method for Magnetic Resonance
Imaging (MRI) restoration. Because MR magnitude
images are corrupted by Rician distributed noise, these
images suffer from a contrast-reducing signal-dependent
bias. Also the noise is often assumed to be white, how-
ever a widely used acquisition technique to decrease the
acquisition time gives rise to correlated noise. In this
paper, we propose and motivate a two-step denoising
procedure, where bias is removed from the squared mag-
nitude image and denoising itself is then performed on
the square root of this image in the wavelet domain.
This denoising step takes into account noise correla-
tion when distinguishing significant wavelet coefficients
from insignificant ones. The estimated statistics of these
two classes of wavelet coeflicients are employed within a
Bayesian estimator. The results show that the proposed
technique is more efficient at removing correlated noise
than existing MRI denoising techniques. The presented
bias removal technique is shown to visibly improve con-
trast as well as to provide a large increase in PSNR.

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) has evolved signif-
icantly over the last few decades. With the rise of fast
acquisition techniques, as used in e.g. functional MRI,
ever increasing demands are being made of MRI tech-
nology. In practice, MRI signals are acquired in the K-
space, which is the multi-dimensional frequency-space
transformation of the ordinary Euclidian R-space. Re-
construction of the signal in spatial coordinates involves
a discrete Fourier transform (DFT). The phase encod-
ing procedure [1] does not result in complex conjugates
for the corresponding positive and negative frequency
values in the K-space. The reasons are noise and tech-
nical limitations in the system itself [2]. Therefore, R-
space signal will be present in both orthogonal channels.
To visualize this complex signal, many commercial MRI
scanners show the magnitude image. Since the DFT is a
unitary transform, the white Gaussian noise on the mea-
sured quadrature signals is converted into white Gaus-
sian noise on the two orthogonal R-space signals. The
magnitude of this complex signal corrupted by Gaussian
noise then exhibits Rician distributed noise [2]. Hence,
it is generally well accepted to model noise on magni-
tude MR images as white and Rician distributed [3, 4, 5].
There exist some techniques that are adapted to Rician
noise [4, 6]. It has been shown that Rician noise is ap-
proximated very well by Gaussian noise in the case of
high SNR (bright regions). Because of this, it should

not surprise that some techniques perform well on mag-
nitude MR images without taking the Rician nature into
account [7]. However, in low SNR regions, the Rician
noise distribution deviates significantly from the Gaus-
sian one, also by introducing a bias with respect to the
signal level. In [4], a method was proposed to remove
this bias, while processing the squared magnitude image.
We will present some drawbacks to this approach and
propose a two-step denoising procedure in which these
drawbacks are eliminated. Some authors suggest denois-
ing complex data [8] as this circumvenes problems with
Rician noise completely. However, complex data is not
readily, if at all, available for postprocessing in practice.

This paper contributes by presenting a method for
restoring MR magnitude images, that consists of a bias
removal step on the squared magnitude image and a
wavelet-based denoising step on the magnitude image.
As we will show, the Rician noise becomes correlated be-
cause of a widely used technique to decrease acquisition
time. Therefore, we measure the noise Power Spectral
Density (PSD) and take it into account in our denoising
algorithm. This leads to improvements both visually
as in PSNR compared to existing MRI denoising tech-
niques.

The remainder of this paper is organised as follows:
In Section 2 we discuss the causes of noise correlations
in MRI. In Section 3, we present our method for bias
removal and noise suppression. Results and discussion
are given in Section 4. Finally, Section 5 concludes this

paper.
2. CORRELATIONS IN MRI NOISE

Most existing MRI denoising methods assume uncor-
related noise, which is justified for some MRI modali-
ties. Figure 1(a) shows slice detail from a 3 Dimensional
Time Of Flight (TOF) Magnetic Resonance Angiogra-
phy (MRA) sequence. This type of sequence is typically
used for imaging flowing blood inside arteries and veins
of the body. To speed up the aquisition process for this
sequence, the K-space is subsampled by reducing the
number of phase encoding steps. Higher frequency in-
formation in K-space is not sampled (set to zero) before
the inverse Fourier transform, so the technique comes
down to sinc-interpolation of an image of lower resolu-
tion in the phase encoding direction. The operator is
free to choose the subsampling factor which causes the
aquisition time to be divided by this factor. The effect
on the magnitude image is that the noise power spectral
density (PSD) is cut off in the horizontal high frequen-
cies. This is evident by the noise behaving as short
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Figure 1: (a) Detail of a real MR magnitude image. (b)
corresponding Noise Power Spectral Density averaged
over all slices.

horizontal stripes. Furthermore, it is observed that this
cutoff is not perfect in actual MRI. This makes it dif-
ficult to establish the exact cutoff frequency. Hence, it
is not straightforward to reduce the MR image in res-
olution so that the noise becomes ideally white. We
therefore develop a new denoising algorithm for corre-
lated noise that operates on the original acquired image.
The mentioned phase subsampling technique is not lim-
ited to 3D TOF MRA, but is available for most MRI
sequences. This means that one can not always assume
that the noise in magnitude MR images is white.

3. PROPOSED METHOD
3.1 Bias Removal
We will use the following noise model:
Y=A+N

where Y is the Rician distributed signal, A is the noise-
less voxel value and N is the Rician noise. We can write
the mean and variance of the Rician distributed signal

Y as [3]:
ElY] = (-t oA
A 27 952
2 1 A2
V] = A242:2 -T2 (21, -2
Var[Y] + 20 5 5L =53

where M (-, -, -) is the confluent hypergeometric function
[9]. From this, we see that Y is indeed biased with

respect to A and, to worsen the situation, the bias is
signal-dependent: large for low SNR (dark regions) and
small for high SNR (bright regions). As such, the bias
reduces contrast between bright and dark areas, which
is directly related to difference in tissue. Hence, contrast
to noise (CNR) ratio is a very important factor in MRI
systems, which motivates us to take a closer look at the
introduced bias.

It can be verified that M(—1,1, A ) quickly ap-

T 202

proaches 2\}4;;? as the SNR becomes large [9], which

removes the bias and sets the variance to o2. This
agrees with the observation that the Rician distribution
approaches a Gaussian one for high SNR. A chi-square
test with significance of 0.01 shows that the Gaussian
approximation is valid for é > 4, which is true for most
of the useful signal. In low SNR parts of the image,
another approach is necessary, as the bias cannot be
disregarded. In [4], a method is proposed to remove
the bias, making use of the properties of the squared
magnitude image, which is distributed according to a
chi-square distribution with two degrees of freedom:

A? +20° (1)
4o (fj + 1> (2)

It is important to realize that (1) has a fixed, signal-
independent bias. This property can be exploited to
remove this bias, thus we can increase the image con-
trast, by substracting the bias from each pixel in the
squared magnitude image:

E[Y?] =

Var [YQ] =

V2 =y? - 252 (3)

Note however, that this does not remove the bias on the
magnitude image completely, as the necessary square
root operation introduces a new bias [3]. Nevertheless,
there is a clear contrast enhancement from this simple
operation.

We notice that the main disadvantage of denoising
the squared magnitude image is that the noise variance
(2) now becomes signal-dependent (see figure 2). Apart
from that, assuming that the Gaussian approximation is
valid, we can compare the SNR in the magnitude image
with that in the squared magnitude image:

A2

SNRmag = —
g

A4

SNRpugr = — o
i 40t (25 4 1)

%

1
TSN Runag

which means a 6dB decrease in SNR when working with
the squared magnitude images compared to the magni-
tude image. Therefore, we propose a two-step denosing
method, where we first remove the bias from the squared
magnitude image using (3) and then apply denoising to
the magnitude MRI image.
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Figure 2: (a) Noiseless artificial signal consisting of a
dark (low signal) area on a bright (high signal) back-
ground. (b) Noisy magnitude image. (c¢) Squared
noisy magnitude image. (d) Difference between noisy
and noiseless magnitude image. (e) Difference between
squared noisy and squared noiseless magnitude image,
note the signal-dependent noise variance.

3.2 Noise Removal
3.2.1 Empirical ProbShrink for white noise

In [10], a full-blind denoising algorithm was derived for
different types of uncorrelated noise. This algorithm
performs non-linear shrinkage on wavelet coefficients
representing the signal. The noise model for a wavelet
coefficient p at orientation o and scale s is:

yo,s(p) = l‘o,s(p) + no,s(p)

For compactness we drop the suffix o and index p. The
idea behind the method is to divide the wavelet coeffi-
cients into two categories: wavelet coefficients that con-
tain a signal of interest (hypothesis H;i) and wavelet
coefficients that do not contain a signal of interest (hy-
pothesis Hp). We will then approximate the MMSE
estimate for xz,

Ty = E(l‘5|ys, Hl)P(H1|ys) =+ E(xs|ys,H0)P(H0|ys)7

making use of the assumptions:

1. E(zslys, Hy) =~ 0 as we expect no signal if there is
no signal of interest present

2. E(xslys, H1) =~ ys as we expect the signal of interest
to be much higher than the noise level

This comes down to the estimator [10, 11]:
&y = P(H1lys)ys

After rewriting this as a generalized likelihood ratio, we
get

P
T Tye”
v (el P(H)
_ Py (Us|to _ 0
nlys) = pyu (ys|H1) ‘= P(Hy) @)

These likelihood ratios (4) are then estimated empiri-
cally. The ratio £ can be estimated from the significance
map as the ratio of the amount of significant coefficients
to the amount of insignificant coefficients:

N -0 S (ys(p)
S S (5s(p))

where S(-) is the significance label (see Section 3.2.2).
S (y) = 1 means y is significant, and S (y) = 0 means
y is insignificant. In [10], these significance labels were
estimated by comparing interscale products to a thresh-
old. Once the significance labels are established, the
densities from (4) are estimated empirically. Due to in-
stabilities in the tails, the likelihood ratio is evaluated
by a piece-wise linear fit to its logarithm:

~ a1 + b1y,
log 1(ys) ~ {al +blz
2 2Ys

n(ys) <1
77(?;3) >1 (5)

Now we propose an extension of this method.

3.2.2 Extension for correlated noise

Since we want to remove correlated noise, we need to
include noise correlation in the significance label. We
propose:

_1 _1
S(ys>:{o Gt lIC v, <7
L3 Gt LI By > 7

where y represents a N x N neighborhood of wavelet
coefficients, around the coefficient y, converted to a
1 x N? vector and 0711/ % is the symmetric square root
of C,,. The measure combines the whitening proper-
ties of the noise covariance matrix C, 12 on a vec-
tor of neighboring wavelet coefficients y, surrounding
the coefficient y, [12], with multiscale edge propagation
[10, 7] to detect significant wavelet coefficients. Fig-
ure 3 shows the power of the vector-based significance
measure; most of the correlated noise that was incor-
rectly labeled as significant signal, by a measure that
works on individual wavelet coefficients, is now labeled
as insignificant. For this significance measure, we need
an estimate of the noise covariance matrix C,, in every
subband. This is done by estimating the noise power

= vaﬂ) in the pixel domain, in a re-

spectrum P(e "~ ,e N
gion outside the signal. Then, we apply the wavelet
j2nk j2ml

filters in the Fourier domain H, s(e™~ ,e"~ ), with s
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Figure 3: comparison between: (a) a significance mea-
sure that works on individual coefficients from [10] and
(b) our vector-based significance measure.

being the scale and o the orientation. To obtain the
noise autocorrelation in each wavelet subband, we use
the Wiener-Khinchin theorem:

j2nk  j2ml j2rk  j2ml

Ro.s(m,n) = IDFT (P (e Sl )‘H (e ¥ R

N—

Following the definition of the autocorrelation, elements
of the noise covariance matrix C,, can be easily found.

4. RESULTS

In this Section, we compare the performance of the pro-
posed algorithm with other existing techniques. We
used a non-decimated wavelet transform with the two
vanishing moments Daubechies wavelet. We used 5 x 5
windows and a threshold value T of 4 for the signif-
icance measure, note that the desired amount of noise
suppression can be controlled very easily by varying this
parameter T'. Figure 4 show a clear visual improvement
by the proposed algorithm over existing MRI denois-
ing techiques [4, 10], as those are not designed for cor-
related noise. We also compared to BLS_.GSM [13], a
more general denoising algorithm that can handle cor-
related Gaussian noise. For the BLS_GSM algorithm’s
input parameters, we used the empirically estimated

noise power spectrum and 6 = /5% Zf\; M? [5] as

estimate for the approximated Gaussian distribution’s
noise standard deviation. Figure 4(d) shows the pre-
sented method. The difference is clear with figure 4(b):
the versatile method from [10] leaves much of the noise
untouched as it incorrectly detects too many significant
wavelet coefficients which leads to too conservate shrink-
age factors. Figure 4(c) (BLS_.GSM from [13]) on the
other hand, shows problems with oversmoothing. It also
leaves the Rician bias untouched. As a consequence, the
darkest parts of the image appear somewhat less dark
and the tissue contrast is reduced.

We also compared these techniques on an image with
artificial Rician correlated noise. Results can be checked
visually on figure 5, table 1 shows the resulting PSNR.
Table 1 shows a decrease in PSNR for the unaltered

Figure 4: Visual denoising results for cropped parts of a
real TOF-MRI dataset for different denoising methods:
(a) noisy MRI magnitude image (b) versatile wavelet-
based MRI denoising method from [10] (c¢) wavelet-
based denoising method BLS_GSM from [13] (d) Pro-
posed method.

BLS_GSM method. This is because the bias in the
signal-less regions is not removed and accumulates into
a very bad PSNR value. We therefore introduced the
bias correction explained in Section 3.1 to this algo-
rithm. The resulting increase in PSNR is indicative for
the power of the simple bias correction technique. We
also notice the oversmoothing on the image processed
by BLS_GSM (figure 5(d)). Visual improvement can be
achieved by heuristically scaling down the noise stan-
dard deviation parameter (figure 5(e)).

5. CONCLUSION

This paper presented a technique for removal of corre-
lated Rician noise in MRI. Centered around a new signif-
icance measure to detect wavelet coefficients containing
signal, the technique shows an advantage over existing
white noise MRI denoising methods. We also presented
a simple, yet highly effective way to suppress the signal-
dependent bias introduced by Rician noise in low SNR
regions. Due to the similarity of Rician noise to Gaus-
sian noise in areas with high SNR, it should not sur-
prise that the bias supression technique improves denois-
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ing performance considerably, when combined with de-
noising algorithms for Gaussian noise. We also showed
that, although bias supression is easier, operating on
the squared magnitude MRI image is not desirable for
denoising purposes as it decreases SNR considerably as
well as introducing a signal-dependent noise variance.

(d) (e) (f)

Figure 5: Visual denoising result for different methods:
(a) MRI magnitude image with artificial correlated noise
(b) wavelet-based MRI denoising method from [4] (c)
versatile wavelet-based MRI denoising method from [10]
(d) wavelet-based denoising method BLS_GSM from [13]
with the bias correction from Section 3.1 (e) BLS_GSM
with heuristically scaled down o parameter (f) Proposed
method.

Table 1: PSNR comparison for images in figure 5

Algorithm PSNR
original noisy image 18.6dB
Nowak MRI 19.1dB
Versatile MRI 19.2dB
BLS_GSM 17.8dB
BLS_GSM with bias correction | 25.2dB
proposed method 27.5dB
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