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ABSTRACT 
The idea of applying blind source separation (BSS) algo-
rithms has recently been introduced for noise separation in 
integrated circuits. Until now, the introduced methods were 
based on multi-channel BSS. But in many real applications 
only one mixture is available. Therefore, multi-channel BSS 
methods are not helpful. In this paper, we propose a new 
approach to separate individual noise and source signals 
from an observed mixture in analog integrated circuits. This 
method is based on one-channel BSS and includes empirical 
mode decomposition (EMD), principle component analysis 
(PCA) and independent component analysis (ICA). By using 
this method, we are able to separate noise and estimate de-
sired source signals from only a single observed mixture. 
Experimental results substantiate the strong potential of the 
proposed method for noise separation in analog integrated 
circuits. 

1. INTRODUCTION 

Noise limits the minimum signal level that a circuit can 
process with acceptable quality. Integrated circuits are be-
coming increasingly vulnerable to different types of noise 
sources, such as, capacitive and inductive crosstalk, charge 
sharing, leakages, power supply noise, substrate coupling, 
ground bounce etc. Compared with digital integrated cir-
cuits, analog devices are inherently much more susceptible 
to noise disturbance.  
The idea of applying blind source separation (BSS) algo-
rithms for noise suppression in integrated circuits is a new 
concept introduced in [1]. In that paper, a digital signal 
processing algorithm known as blind source separation 
(BSS) technique is utilized to separate individual noise 
sources from a compound noise measurement in digital in-
tegrated circuits. In [2] similar technique has been proposed 
to address compound noise separation problem in analog 
integrated circuits using FastICA algorithm. FastICA [3] is 
well-known algorithm that is based on independent compo-
nent analysis (ICA). Independent component analysis is a 
powerful tool giving good separation under the hypotheses 
of linear mixture, statistical independence of the sources and 
number of observed mixtures being no less than that of con-
tributing sources. The application of ICA to separate indi-
vidual noise sources from a compound noise can be helpful 
in selected problems when the departure from the above 
hypotheses is moderate. In fact methods which employ only 

ICA algorithm in separation process can not be applicable in 
one-channel source separation e.g. in real integrated circuits 
where only one mixture is available.  
Recently some one-channel methods [4, 5, 6] for signal de-
noising scheme are introduced that are based on empirical 
mode decomposition (EMD) [7]. In these methods, noisy 
signal is decomposed adaptively into intrinsic oscillatory 
components called intrinsic mode functions (IMFs). The 
basic principle of them is to reconstruct the signal with 
IMFs previously filtered or thresholded and in some meth-
ods this reconstruction is partial and in some other it is 
complete. 
In this paper, we propose a new approach to separate indi-
vidual noise and source signals of analog integrated circuits 
from a single observed mixture.  This approach utilizes 
EMD but it is not based on reconstruction of filtered or 
thresholded IMFs as done in [4, 5, 6]. Our method consists 
of three stages. In the first stage we use EMD to decompose 
the observed mixed signal into a collection of IMFs. EMD 
can be applied to any nonlinear and non-stationary signal. 
Furthermore, it uses only a single mixture to extract IMF 
components. We consider these components as mixture ob-
servations. In the second stage, principal component analy-
sis (PCA) [8] is applied to these observations to produce 
some uncorrelated and dominant basis components. The 
basis components obtained by PCA are only uncorrelated 
but not statistically independent. To derive the independent 
basis components a further procedure called independent 
component analysis must be carried out. Therefore, in the 
third stage, we apply FastICA. The most important advan-
tages of our separation method are:  1) It is not necessary 
that the circuit components be purely linear. 2) A single mix-
ture is only necessary.  

2. EMPIRICAL MODE DECOMPOSITION  

The empirical mode decomposition [7] is a signal process-
ing technique to decompose any non-stationary and nonlin-
ear signal into oscillating components with some basic 
properties. The key benefit of using EMD is that it is auto-
matic and fully data adaptive. 
EMD decomposes a time series )(tx  into a sum of band-
limited functions )(tfm  by empirically identifying the 
physical time scales intrinsic to the data. Each extracted 
mode )(tfm  named intrinsic mode function (IMF) contains 
two basic conditions. First, in the whole data set, the number 
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of extrema (maxima and minima) and the number of zero 
crossings must be the same or differ at most by one. Second, 
at any point, the mean value of the envelope defined by the 
local maxima and the envelope defined by the local minima 
is zero. The first condition is similar to the narrow-band 
requirement for a stationary Gaussian process, and the sec-
ond condition is a local requirement induced from the global 
one and, is necessary to ensure that the instantaneous fre-
quency will not have redundant fluctuations as induced by 
asymmetric waveforms. There exist many approaches for 
computing EMD. The following algorithm follows the pro-
cedure given in [9]. 
1. Identification of all maxima and minima of the time series 

).(tx  
2. Generate the upper and lower envelopes )(tu  and ),(tl  
respectively, by connecting the maxima and minima sepa-
rately with cubic spline interpolation. 
3. Determine the local mean as .2/)]()([)(1 tltut +=μ  
4. IMF should have zero local mean thus we subtract )(1 tμ  
from the original signal )(tx  as ).()()( 11 ttxte μ−=  
5. Check whether )(1 te  is an IMF or not by checking the 
two basic conditions as described above. 
6. Repeat steps 1–5 and stop when an IMF )(1 te  is obtained. 
Once the first IMF is obtained, define ),()( 11 tetf =  which 
is the smallest temporal scale in ).(tx  To find the rest of the 
IMFs, generate the residue )(1 tr  of the data by subtracting 

)(1 te  from the signal )(tx  as ).()()( 11 tftxtr −=  
The sifting process will be continued until the final residue 
is a constant, a monotonic function, or a function with only 
one maxima and one minima from which no more IMF can 
be obtained. 
The subsequent IMFs and the residues are computed as:  

)()()()...()()( 1221 trtftrtrtftr MMM =−=− −                          (1) 

where )(trM  is the final residue. At the end of the decompo-
sition, the signal )(tx  is represented as  

∑
=

+=
M

m
MM trtftx

1
)()()(                                                           (2)  

where M  is the number of IMFs, and )(trM  is the final 
residue. 
The IMFs are the foundations for representing the time se-
ries data. Being data adaptive, the basis usually offers          
a physically meaningful representation of the underlying 
processes. There is no need of considering the signal as a 
stack of harmonics and, therefore, EMD is ideal for analy-   
zing non-stationary and nonlinear data [10]. EMD uses only 
a single mixture (obtained from one sensor) to extract IMFs.  

 
 
 
 
 
 
 

In this paper we use the EMD method to extract IMFs from a 
single mixed signal which is a combination of a source signal 
and compound noises.   

3. PROPOSED SEPARATION METHOD  

In our proposed method we use a separation model of three 
stages shown in figure 1. 
Stage 1: in this stage we apply EMD algorithm to the mixed 
signal )(tX  and obtain R  IMF components. The IMFs are 
vectors of size L×1  where L  is length of data. Then we 
form an observation matrix LRY ×  as: 

[ ]TRLR IMFIMFIMFY K21=×                                           (3) 
where R  is number of IMFs and T  stands here as transpose 
operator. 
Stage 2: in this stage, in order to find uncorrelated dominant 
basis components, PCA algorithm is used. PCA is            
implemented by employing SVD. The SVD of 

RLY × )( T
LRRL YY ×× =  is a factorization of the form 

T
RRRLLLRL VDUY ×××× =  where U  and V  are orthogonal ma-

trices (with orthogonal columns) and D  is a matrix of R  
singular values ,rrr ×= σσ  where .0...21 ≥≥≥≥ Rσσσ  
Matrix U  is referred to as a row basis representing the prin-
cipal components of  RLY × . The singular values represent 
the standard deviations proportional to the amount of infor-
mation contained in the corresponding principal compo-
nents. A reduced set of P basis vectors are selected from 
U (i.e. PLU × ) using P first singular values.  
Stage 3: after applying PCA, we obtain uncorrelated basis 
vectors. These basis vectors are not statistically independent. 
To derive the independent basis vectors a further procedure 
i.e. ICA must be carried out. The ICA expresses the observa-
tion vector T

PLLP UU ×× =  as the product of mixing matrix 
A  and the statistically independent vector S : 

LPPPLP SAU ××× =                                                                (4)                     
FastICA algorithm is used here to estimate the demixing 
matrix W  such that  

LPPPLP UWS ××× =
)

                                                            (5) 

where T
LPLL sssS ],...,,[ 21 ×××= ))))

 is the collection of inde-
pendents vectors that form our estimated sources and W  is 
the demixing matrix.  
In the next section we use our separation model to separate 
individual noise and source signals from only a single ob-
served mixed signal (a combination of noise signals and the 
original source signal) in two analog integrated circuits. 

4. EXPERIMENTAL RESULTS 

In this section, the proposed method is applied to the ob-
served mixture of noise and source signals as simulated in 
analog integrated circuits. The simulations are performed by 
Hspice and Matlab softwares. The first example is differen-
tial cascode topology (figure 2(a)). Differential cascode to-
pologies also called “Telescopic” cascode op-amps. Tele-
scopic cascode op-amps can be used to achieve a high gain 
(in our simulation gain is around 1000) [11]. This circuit is 
not composed of linear components because transistors M1-

EMD
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IMFR 

PCA
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Figure 1 – Proposed model for noise separation. 
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M8 work in saturation region and we assume that only one 
output is available. The input of the simulated circuit is a 
sine wave and a compound noise, including power supply 
noise and ground noise. These signals are shown in figure 3. 
The measured mixed signal at the output node is depicted in 
figure 3(d). The mixed signal is a nonlinear combination of 
the input signal and the power supply and ground noises. At 
the first stage of the separation process we apply the EMD 
algorithm on the measured mixture at the output node of the 
Telescopic op-amp. As a result we obtained 8 IMFs and a 
residue (as shown in figure 4). To obtain uncorrelated basis 
components, we apply the principle component analysis on 
the obtained IMF components to obtain three basis vectors 
shown in figure 5. These vectors are uncorrelated but not 
independent. In the last stage we apply FastICA algorithm. 
The estimated sources are shown in figure 6. Since we have 
employed EMD algorithm in our separation process the es-
timated signals are symmetric with respect to the horizontal 
axis with DC value equal to zero. Notice that we assume 
nothing about the original sources in order to estimate them. 
Generally ICA has two ambiguities [5]:  First, the variances 
of the independent component can not be determined (i.e. 
scaling ambiguity) and second, they can appear at the out-
put of the source-estimating network in any order (i.e. per-
mutation ambiguity).  In order to eliminate scaling ambigu-
ity, we must multiply the separated output signals by scal-
ing coefficients to ensure equality between separated and 
original signals. In order to obtain these coefficients, we 
need to solve an over determined linear system of equations 
in the simple case of an instantaneous mixture such as ours: 

bcA =.                                                                               (6) 
In the above equation c  is a m -by-1  vector that indicates 
unknown coefficients, b  is a L -by-1  vector ( L  is the 
length of data) and consists of the single observed mixture 
and A  is a L -by- m  matrix comprising m  separated signals 
( mL >  i.e. an over determined system). The least square 
solution to this matrix equation is vector c  that minimizes 
the Euclidean norm of the residual .Acbr −=  We can util-
ize MATLAB built-in functions for this solution which can 
be computed using the following command bApinvc *)(= . 
Here pinv  stands for the pseudoinverse matrix. After find-
ing the multiplying coefficients and applying them to the 
appropriate separated output signals, it is observed that the 
scaling ambiguity is eliminated.  
If we compare the estimated source signal and separated 
noise signals of figure 6 with the original input source and 
noise signals of figure 3, it can be observed that the esti-
mated results are acceptable and it is noticeable that by ap-
plying the above proposed procedure, original and separated 
signals are approximately in the same scale.  
In the second example, we used “Crossed-Coupled Oscilla-
tor”. The schematic of this circuit is shown in figure 2(b). 
This configuration does not latch up because its low-         
frequency gain is very small. Furthermore, at resonance, the 
total phase shift around the loop is zero because each state 
contributes zero frequency-dependent phase shifts. That is if 

121 ≥pmpm RgRg  then the loop oscillates [11]. The circuit 

generates a feedback sine wave and this time, a compound 
noise including power supply noise, ground noise and cou-
pling noise (shown in figure 7) is injected in the circuit. 
Coupling noise is injected in node A. We measure again the 
mixed signal at output node and the same separation process 
is used. The measured mixed signal is given in figure 7(e). 
The estimated source signal and the separated noise signals 
are shown in figure 8. From this example we can see that the 
algorithm works adequately efficient in the compound noise 
environment. In order to measure the distortion between the 
original and the estimated sources we use the improvement 
of signal-to-noise ratio (ISNR) as the quantitative measure 
of separation performance [12].  
The ISNR is the difference between input and output SNRs. 
The input SNR )( ISNR  is defined as 

∑

∑

−
=

t

t
I

tstx

ts
SNR 2

2

)()(

)(
log10                                              (7)                     

where )(tx is the observed mixture and )(ts is the original 
input signal. If )(tS

)
 is the estimated source signal then the 

output SNR )( OSNR is defined as: 

.
)()(

)(
log10 2

2

∑

∑

−
=

t

t
O

tsts

ts
SNR )                                            (8)                     

We consider IO SNRSNRdBISNR −=)(  as the performance 
measure. Table.1 shows the ISNR obtained for the previous 
two examples. The ISNR represents the degree of suppres-
sion of the interfering signals. It is noticeable that although 
only two or three mixed sources of analog circuits are used 
here the proposed method is general. 
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Figure 2 – Analog circuits: a) Telescopic op-amp. b) Cross-Coupled 
oscillator. 
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Figure 3- The original signals: (a) Original input signal; (b) Ground 

noise; (c) Supply noise; (d) Observed mixed signal that is output 
signal of Telescopic op-amp circuit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4- EMD of a single mixture (output node of Telescopic 
op-amp) showing 8 IMF components and residue.  

Figure 7 - The original signals: (a) Feedback signal; (b) Ground noise; 
(c) Supply noise; (d) Coupling noise (e) Observed mixed signal that is 

the output signal of Cross-Coupled oscillator circuit. 

Figure 5 - The uncorrelated and dominant basis components. 
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Figure 6 - The estimated signals: (a) Estimated input signal;              
(b) Separated ground noise; (c) Separated supply noise. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1 - The experimental separation results (in terms of ISNR) of 

the proposed method. 

Mixed signal 
 

ISNR(dB) 
 

Mix1                       
(output of Telescopic op-amp) 11.01 

 
Mix2 

(Cross-Coupled oscillator)       9.86 

5. CONCLUSION 

In this paper, we proposed a new approach to separate noise 
and source signals from a single observed mixture in the ana-

log integrated circuits. Our method is based on one-channel 
blind source separation (BSS) and consists of three stages. In 
the first stage we used EMD to decompose the observed mix-
ture as a collection of some oscillatory basis components 
termed IMFs. At the second stage, PCA is applied to these 
IMFs to produce uncorrelated and dominant basis compo-
nents. The components obtained by PCA not statistically 
independent thus in the third stage, we applied ICA. The 
most important advantages of our method are 1) It is not nec-
essary that the components in the circuit to be linear. 2) Sepa-
ration process can be performed using only a single mixture.  
In this paper we employed the proposed separating model to 
separate individual noise and source signals in analog inte-
grated circuits. Experimental results confirmed the strong 
potential of the proposed method for noise separation in ana-
log integrated circuits. 
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Figure 8 - The estimated signals: (a) Estimated feedback signal;    
(b) Separated ground noise; (c) Separated supply noise;              

(d) Separated coupling noise. 
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