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ABSTRACT

This paper presents two approaches to the problem of ex-
tracting the parameters of the LF source model directly from
the speech waveform. The first approach relies on the glot-
tal formant estimated from the anticausal contribution of
speech. Indeed the ZZT technique has recently shown its
ability to deconvolve speech into its causal and anticausal
components. The second method is based on the glottal open
phase obtained by inverse filtering. The notion of unanalyz-
able frames and the way to detect and correct them are also
presented. Once source parameters are extracted, the coef-
ficients of the ARX speech production model are estimated
by spectral division. Decomposition on both synthetic and
natural speech, as well as an analysis-synthesis test confirm
the accuracy of methods exposed.

1. INTRODUCTION

Using a high quality parametric representation of the speech
signal has become a major issue for model-based speech
synthesis (notably using HMMs), as well as for pathological
voice analysis. In the first case an efficient vocoder can
reduce the “buzziness” of the produced speech, which is the
main drawback of statistical parameter synthesizers [1]. In
the second one, analyzing the evolution of glottal parameters
could allow us to detect, or even identify speech pathologies.
Furthermore expressive voice synthesis or voice conversion
applications can easily take advantage of this modeling by
tuning parameters in a suitable way.

Most analysis methods consider speech as produced by
a linear time-varying filter excited by a source signal. The
goal of this paper is to address the problem of deconvolving
these two contributions, i.e to extract the vocal tract and
glottal components. Among the techniques described in
litterature, some use iteratively the inverse filtering method
[2] so as to remove the vocal tract contribution from the
speech signal, while others apply Linear Prediction (LP)
analysis only during the closing phase of the glottal signal
in order to minimize the voice source effect on vocal tract
estimation [3]. Other approaches use the Auto-Regressive
with eXogenous input (ARX) model proposed in [4] in order
to jointly estimate glottal source and vocal tract parameters
[5, 6]. Finally a new model of speech (the mixed-phase
model) using the Zeros of the Z-Transform (ZZT) represen-
tation is proposed in [7]. This technique decomposes speech
into its causal and anticausal components, where the latter
contribution corresponds to the glottal source open phase.

The paper is structured as follows. In Section 2, models
of speech production are briefly presented and the decompo-
sition technique based on ZZT representation is also intro-
duced. In Section 3, we give more details on the methods
we have developed. Glottal source parameters are first es-
timated using two error measures. The first one relies on a
Spectral Fitting on the Glottal Formant (SFGF). As for the
second one, it is based on a Temporal Fitting on the Open
Phase (TFOP). For some voiced frames however, decompo-
sition may be erroneous. By inspecting the detected glot-
tal formant evolution, such frames are easily detected, and
corrected. Once the source parameters are extracted, filter
coefficients are estimated. Section 4 describes experimental
and implementation details. Section 5 presents the results
we obtained on synthetic and natural connected speech. Fi-
nally Section 6 concludes the paper and proposes possible
perspectives.

2. BACKGROUND

In this Section, we first introduce the speech production mod-
els we adopted. The concept of speech deconvolution using
ZZT is presented afterwards.

2.1 ARX speech modeling
In this paper speech is considered as produced by an Auto-
Regressive with eXogenous input (ARX) model and ex-
pressed as a time-varying IIR system [4]:

p

∑
i=0

ai(n)s(n− i) =
q

∑
j=0

b j(n)u(n− j)+ ε(n), (1)

where s(n) and u(n) respectively denote the speech wave-
form and the glottal source. In the above equation, ai(n) and
b j(n) are the time-varying filter coefficients and ε(n) is the
prediction error. From now on we will restrict ourselves to
an all-poles and non-zeros filter (q = 0). In the Z-domain,
the ARX model becomes:

S(z) =
b0U(z)

A(z)
+

E(z)
A(z)

. (2)

Notice that, as all other source-filter models, ARX ne-
glects non-linear interactions between the source signal and
the vocal tract.

2.2 LF glottal source modeling
Recurrence equation 1 explicitly involves the source com-
ponent. For voiced speech, the glottal flow derivative
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consists of two phases. During the open phase, vocal folds
are progressively displaced from their initial state because
of the increasing subglottal pressure. When the elastic
displacement limit is reached, they suddenly return to this
position during the so called closing phase.

In [8], Liljencrants and Fant proposed to model the glot-
tal signal by a four-parameter representation illustrated in
Figures 1 and 2 for both time and frequency domains. Un-
der its normalized form, a LF wave is entirely characterized
by the open quotient Oq = Tc/T0, the asymmetry coefficient
αm = Tz/Tc and the cut-off frequency Fc. Oq and αm govern
the open phase, determining the glottal formant frequency
(Fg) and bandwidth [9]. Fc has an impact on the return phase
and imposes the spectral tilt.

Figure 1: Temporal evolution of the LF glottal flow derivative

Figure 2: Asymptotic amplitude spectrum of the LF glottal
flow derivative

2.3 ZZT-based decomposition of speech
For a series of N samples (x(0),x(1), ...x(N−1)) taken from
a discrete signal x(n), the ZZT representation is defined as
the set of roots (zeros) (Z1,Z2, ...ZN−1) of the corresponding
Z-Transform X(z):

X(z) =
N−1

∑
n=0

x(n)z−n = x(0)z−N+1
N−1

∏
m=1

(z−Zm) (3)

In order to decompose speech into its causal and anti-
causal contributions [7], ZZT are computed on frames cen-

tered on each Glottal Closure Instant (GCI) and whose length
is twice the fundamental period at the considered GCI. The
spectrum of the glottal source open phase is then computed
from zeros out of the unit circle (anticausal component)
while zeros with modulus lower than 1 give the vocal tract
transmittance modulated by the source spectral tilt (causal
component).

3. OUR PROPOSED METHODS

In this Section, techniques we developed are explained. For
voiced segments, glottal source parameters are first estimated
using the LF model. For this purpose two approaches, SFGF
and TFOP, are proposed (3.1). Frames for which decomposi-
tion may be irrelevant are then detected and corrected (3.2).
Finally a method based on spectral division extracts the ARX
filter coefficients (3.3). A flow chart summarizing the overall
scheme is presented in Figure 3.

Figure 3: Flow chart for voiced speech frames centered on
the current GCI

3.1 Estimation of LF parameters
We hereby present two methods estimating the open quo-
tient Oq and the asymmetry coefficient αm directly from the
speech waveform. For a given voiced frame, both techniques
compute a fitting error for each couple (Oq,αm). As a fitting
criterion, the Mean Square Error between a reference and the
generated LF wave is considered. Decisions can then pos-
sibly be merged from both measures. In the following, an
abrupt return phase is considered (Fc → ∞), assuming that
the spectral tilt will be taken into account during the ARX
estimation (see Section 3.3).

3.1.1 Spectral Fitting on the Glottal Formant (SFGF)

As previously mentioned (Section 2.2), the glottal formant
is entirely characterized by Oq and αm. The key idea of the
first technique is to generate the best LF wave which spec-
trally fits on the glottal formant. For this purpose, ZZT is
first computed on the speech frame, and its anticausal part
(corresponding to the open phase of the glottal source) is
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isolated. Unfortunately, this signal is not generally tempo-
rally exploitable because it contains a high-frequency para-
sitic noise [7, 10]. Nevertheless the glottal formant is most
of the time well-defined and can consequently be used as ref-
erence for the fitting. An example of SFGF is illustrated on
Figure 4. Glottal formant similarity with the target spectrum
is almost perfect. A major advantage of the SFGF method
is that it should guarantee a good decomposition even when
the glottal formant frequency is greater than the first speech
formant (Fg > F1).

Figure 4: Example of SFGF for a given voiced speech frame

3.1.2 Temporal Fitting on the Open Phase (TFOP)

The extraction of (Oq,αm) can also be based on the glottal
source waveform during the open phase. As discussed in the
previous Section, the anticausal component of speech can not
serve as a reference due to the presence of a parasitic de-
composition noise. However a good estimation of the glottal
signal can be obtained by inverse filtering.

For this, a first approximation of the vocal tract response
is obtained by dividing an “average” (i.e realistic) LF wave
and the speech frame spectra. Vocal tract formants are gener-
ally well modeled, so that a reliable estimation of the source
open phase is reached by inverse filtering. In Figure 5, this
signal is compared with the anticausal component filtered in
[0-2kHz]. This low-pass filtering is required to minimize de-
composition noise effects and is not restrictive since the open
phase characteristics only concern frequencies below 1kHz.

3.1.3 Decision fusion

The two previous techniques act independently. This means
that we can take advantage of their possible complementary
information by merging their decision, as a function of their
reliability. Although complex decision fusion algorithms ex-
ist, error measures from both SFGF and TFOP techniques
were simply multiplied in this work.

3.2 Unanalyzable frames detection and correction

For some voiced frames, decomposition may be uncorrect.
This is generally due to an inaccurate Glottal Closure Instant
(GCI) localization or to a large amount of noise in speech.
For such frames, glottal formant tracking is erroneous. By in-
specting the ratio between detected Fg and the fundamental

Figure 5: Example of TFOP and comparison between open
phases obtained by inverse filtering and by the anticausal part
of the speech frame

frequency F0 , such frames are easily highlighted (see Fig-
ure 6) and considered as being unanalyzable. Their source
parameters are thereby corrected by linear interpolation be-
tween neighbouring analyzable frames. However this linear
interpolation does not make much sense when several suc-
cessive frames are unanalyzable (e.g see frames 51 to 56 in
Figure 6). Solving this issue is currently the object of ongo-
ing research (possibly using a Kalman filtering).

Figure 6: Unanalyzable frame detection for a voiced segment
using the Fg,detected/F0 ratio

3.3 Estimation of ARX parameters

Once source parameters are estimated, the ARX filter coeffi-
cients can be extracted. In [6], they are computed by solving
a linear system. Unfortunately some cases lead to a lack of
high frequencies in the estimation. To overcome this prob-
lem, we propose the following approach. First, source signal
and speech frame are windowed by a Hanning function and
their Power Spectral Density (PSD) is computed from the
FFT. The autocorrelation function of the vocal tract is then
obtained by IFFT of the division between the two previous
PSDs. Finally, ARX filter coefficients are achieved by run-
ning the Durbin-Levinson algorithm (which is a fast imple-
mentation of LP analysis) directly from the autocorrelation
function.
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4. EXPERIMENT DETAILS

Our methods were first validated on synthetic signals and
then tested on natural connected speech. Utterances of both
male and female speakers were used with a sampling fre-
quency varying from 16 kHz to 44.1 kHz. For voiced seg-
ments, analysis was conducted on 2T0-long speech frames
centered on current GCI. GCIs were localized using the
Snack pitch extraction algorithm [11] and the Center Of
Gravity (COG) method derived from [12]. During unvoiced
regions, LPC was performed on 25 ms long and 10 ms inter-
spaced frames. For the source parameter estimation, speech
frames were windowed by a Blackman function as suggested
in [7]. To verify the accuracy of parameters extracted on
natural speech, an analysis-synthesis application was carried
out. Synthesis was performed by a Pitch Synchronous Over-
lap Add (PSOLA) technique.

5. RESULTS AND DISCUSSION

Two experiments were conducted in order to assess the effi-
ciency of our system. The first experiment acted on synthetic
signals so as to confirm the validity of our method, while the
second one was run on natural speech. Results for both tests
are exposed hereafter.

5.1 Validation on synthetic signals
Synthetic signals were obtained by passing a train of LF
waves with known parameters through an auto-regressive fil-
ter. In all cases, our method converged towards the expected
(Oq,αm) couples. As shown in Figure 7, source parameters
are easily discriminated. The illustrated error is the logarithm
of the product between both SFGF and TFOP error measures
in order to take both time and frequency domains into ac-
count. This combined error measure was used through all
our experiments.

Figure 7: Combined SFGF and TFOP error measure in
(Oq,αm) space for a given synthetic signal frame

5.2 Analysis-Synthesis on natural connected speech
First of all, our system was applied to sustained vowels so as
to test its “stability”, i.e the consistency of extracted param-
eters. Indeed, glottal characteristics are almost constant dur-
ing such pronunciations. We then applied our method to two

phonetically balanced datasets. Both contain French natural
speech, while speaker gender and sampling frequency differ.
Keeping in mind our analysis-synthesis application, and our
goal of incorporating them into a HMM-based synthesis sys-
tem, parameters generally need to be smoothed. For this, a
Poisson-windowed average centered on the current time was
computed for each frame. In Figure 8, the evolution of the
glottal open quotient and asymmetry coefficient is illustrated
for the utterance “Samedi soir”.

Figure 8: Glottal source parameters evolution for the French
utterance “Samedi soir”

A way to evaluate the decomposition accuracy is to
resynthesize speech directly from the extracted coefficients.
This was done by overlapping two period-long Hanning-
windowed reconstructed speech frames. An example of
waveforms for a pronunciation of phoneme /a/ is presented
in Figure 9. A strong similarity is observed. This is also no-
ticed in the spectral domain on Figure 10 for phoneme /l/,
where a good concordance till 6 kHz is noted. These consid-
erations were also reported on a perceptual point of view (ex-
amples can be found in [13]). Speaker’s prosody and timber
are well conserved although high frequencies (beyond 6 kHz)
could be better modeled. A Mean Opinion Score (MOS)
test assessing the subjective quality of analysis-synthesis was
also submitted to 15 persons among whom 6 audio experts.
Results are presented in Figure 11.

Figure 9: Comparison between original and resynthesized
speech waveforms for a pronunciation of phoneme /a/
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Figure 10: Comparison between original and resynthesized
spectra for a speech frame of phoneme /l/

Figure 11: Results of the MOS test

6. CONCLUSIONS AND FUTURE WORK

This paper focused on the decomposition of speech into its
glottal source and vocal tract components. For estimating the
voice source parameters, we proposed two novel approaches
which basically act as follows:

• SFGF first computes the ZZT on windowed speech
frames in order to isolate the anticausal contribution of
speech. LF coefficients are then extracted by fitting the
glottal formant.

• In TFOP technique, a first approximation of the ARX fil-
ter is obtained by spectral division. LF parameters are
then estimated by fitting the inverse filtering open phase.

For some voiced frames, deconvolution can not be effi-
ciently carried out due to ZZT decomposition noise. These
frames were detected and corrected by inspecting the evolu-
tion of the tracked glottal formant. Once the source is as-
sumed to be known, the vocal tract autocorrelation function
is estimated by spectral division. ARX filter coefficients are
finally obtained by LP analysis. The validity and consistency
of our methods were confirmed on synthetic signals. An ap-
plication of Analysis-Synthesis on natural connected speech
also showed good formal and perceptual results.

Finally, let us suggest some possible improvements we
plan to make:

• As a technique for smoothing the source parameters, a
Viterbi algorithm could be implemented to find best pa-
rameter trajectories over utterances.

• Since our method only considers voiced or unvoiced
sounds, only the harmonic component of semi-vowels
is modeled, which means that their high-frequency com-
plexity is lost. To overcome this problem, a mixed exci-
tation modeling the noisy residual could be integrated.

• A more complex decision fusion method considering
the reliability of each LF parameter extraction technique
(based on its error measure) could be carried out.
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