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ABSTRACT
In this paper, a flame detection system based on a pyroelec-
tric (or passive) infrared (PIR) sensor is described. The flame
detection system can be used for fire detection in large rooms.
The flame flicker process of an uncontrolled fire and ordinary
activity of human beings and other objects are modeled using
a set of Hidden Markov Models (HMM), which are trained
using the wavelet transform of the PIR sensor signal. When-
ever there is an activity within the viewing range of the PIR
sensor system, the sensor signal is analyzed in the wavelet
domain and the wavelet signals are fed to a set of HMMs. A
fire or no fire decision is made according to the HMM pro-
ducing the highest probability.

1. INTRODUCTION

Conventional point smoke and fire detectors typically detect
the presence of certain particles generated by smoke and fire
by ionization or photometry. An important weakness of point
detectors is that the smoke has to reach the sensor. This
may take significant amount of time to produce an alarm
and therefore it is not possible to use them in open spaces or
large rooms. The main advantage of Passive Infrared Sensors
(PIR) (or Pyroelectric Infra Red) based sensor system for fire
detection over the conventional smoke detectors is the abil-
ity to monitor large rooms and spaces because they analyze
the infrared light reflected from hot objects or fire flames to
reach a decision.

It is reported that turbulent flames of an uncontrolled fire
flicker with a frequency of around 10Hz [1, 2]. Recently
developed video based fire detection schemes also take ad-
vantage of this fact by detecting periodic high-frequency be-
havior in flame colored moving pixels [3] - [5]. Actually,
instantaneous flame flicker frequency is not constant and it
varies in time. Flame flicker behaviour is a wide-band activ-
ity covering 1 Hz to 13 Hz. Therefore, a Markov model based
modeling of flame flicker process produces more robust per-
formance compared to frequency domain based methods.
Markov models are extensively used in speech recognition
systems and in computer vision applications [6] - [9]. In
[14], several experiments on the relationship between burner
size and flame flicker frequency are presented. Recent re-
search on pyro-IR based combustion monitoring includes
[15] where monitoring system using an array of PIR detec-
tors is realized.

A regular camera or typical IR flame sensors have a fire
detection range of 30 meters. The detection range of a PIR
sensor based system is 5 meters but this is enough to cover
most rooms with high ceilings. Therefore, PIR based sys-
tems provide a cost-effective solution to the fire detection
problem in relatively large rooms as the unit cost of a camera

based system or a regular IR sensor based system is in the
order of one thousand dollars.

In this approach, wavelet domain signal processing is
used which provides robustness against sensor signal drift
due to temperature variations in the observed area. Regu-
lar temperature changes are slow variations compared to the
moving objects and flames. Since wavelet signals are high-
pass and band-pass signals they do not get affected by the
slow variations.

There are two different classes of events defined in this
approach. The first class represents fire events whereas the
second class represents non-fire events. The main application
of PIR sensors is hot body motion detection. Therefore, we
include regular human motion events like walking or running
in the non-fire event class.

In Section 2, we will present the circuit diagram of a typi-
cal PIR sensor system and how it is modified for flame detec-
tion. In Section 3, the wavelet domain signal processing and
the HMM based modeling of the flames and human motion
are described. In Section 4, simulation results are presented.

2. PIR SENSOR SYSTEM AND DATA ACQUISITION

Commercially available PIR sensor read-out circuits produce
binary outputs. However, it is possible to capture a continu-
ous time analog signal indicating the strength of the received
signal in time. The corresponding circuit for capturing an
analog signal output is shown in Fig 1.

The circuit consists of 4 operational amplifiers (op amps),
IC1A, IC1B, IC1C and IC1D. IC1A and B constitute a two
stage amplifier circuit whereas IC1C and D couple behaves
as a comparator. The very-low amplitude raw output at the
2nd pin of the PIR sensor is amplified through the two stage
amplifier circuit. The amplified signal at the output of IC1B
is fed into the comparator structure which outputs a binary
signal, either 0 V or 5 V. Instead of using binary output in
the original version of the PIR sensor read-out circuit, we
directly measure the analog output signal at the output of the
2nd op amp, IC1B.

In order to capture the flame flicker process the analog
signal is sampled with a sampling frequency of fs = 50Hz
because the highest flame flicker frequency is 13Hz [2] and
fs = 50Hz is well above 2×13Hz. In Figure 2, a frequency
distribution plot corresponding to a flickering flame of an un-
controlled fire is shown. It is clear that the sampling fre-
quency of 50Hz is sufficient. Typical sampled signal for no
activity case using 8 bit quantization is shown in Fig 3. Other
typical received signals from a moving person and flickering
fire are presented in Fig. 4.

The strength of the received signal from a PIR sensor in-
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Figure 1: The circuit diagram for capturing an analog signal output from a PIR sensor.

creases when there is motion due to a hot body within its
viewing range. In fact, this is due to the fact that pyroelectric
sensors give an electric response to a rate of change of tem-
perature rather than temperature itself. On the other hand, the
motion may be due to human motion taking place in front of
the sensors or flickering flame. In this paper the PIR sensor
data is used to distinguish the flame flicker from the motion
of a human being like running or walking. Typically the PIR
signal frequency of oscillation for a flickering flame is higher
than that of PIR signals caused by a moving hot body. In
order to keep the computational cost of the detection mech-
anism low, we decided to use Lagrange filters for obtaining
the wavelet transform coefficients as features instead of using
a direct frequency approach, such as FFT based methods.

3. SENSOR DATA PROCESSING AND HMMS

There is a bias in the PIR sensor output signal which changes
according to the room temperature. Wavelet transform of the
PIR signal removes this bias. Let x[n] be a sampled version
of the signal coming out of a PIR sensor. Wavelet coeffi-
cients obtained after a single stage subband decomposition,
w[k], corresponding to [12.5 Hz, 25 Hz] frequency band in-
formation of the original sensor output signal x[n] are evalu-
ated with an integer arithmetic high-pass filter corresponding
to Lagrange wavelets [13] followed by decimation. The fil-
ter bank of a biorthogonal wavelet transform is used in the
analysis. The lowpass filter has the transfer function:

Hl(z) =
1
2

+
1
4
(z−1 + z1) (1)

and the corresponding high-pass filter has the transfer
function

Hh(z) =
1
2
− 1

4
(z−1 + z1) (2)

An HMM based classification is carried out for fire de-
tection. Two three-state Markov models are used to represent

fire and non-fire events (cf. Fig. 5). In these Markov mod-
els, state S1 corresponds to no activity within the viewing
range of the PIR sensor. The system remains in state S1 as
long as there is not any significant activity, which means that
the absolute value of the current wavelet coefficient, |w[k]|,
is below a non-negative threshold T 1. A second threshold
T 2 is also defined in wavelet domain which determines the
state transitions between S2 and S3. If T 1 < |w[k]| < T 2,
then state S2 is attained. In case of |w[k]| > T 2, state S3 is
acquired.

The first step of the HMM based analysis consists of
dividing the wavelet coefficient sequences in windows of
25 samples. For each window, a corresponding state tran-
sition sequence is determined. An example state transition
sequence of size 5 may look like

C = (S2,S1,S3,S2,S1) (3)

Since the wavelet signal captures the high frequency in-
formation in the signal, we expect that there will be more
transitions occurring between states when monitoring fire
compared to human motion.

3.1 Estimation of thresholds T1 and T2 for state transi-
tions

The thresholds T 1 and T 2 in the wavelet domain determine
the state transition probabilities, given a signal. In the train-
ing step, the task is to find optimal values for T 1 and T 2.
Given (T 1,T 2) and ground-truth fire and non-fire wavelet
training sequences, it is possible to calculate the transition
probabilities for each class. Let ai j denote the transition
probabilities for the ’fire’ class and bi j denote the transition
probabilities for the ’non-fire’ class.

The decision about the class affiliation of a state transi-
tion sequence C of size L is done by calculating the two joint
probabilities Pa(C) and Pb(C) corresponding to fire and non-
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fire classes, respectively:

Pa(C) = ∏
i

pa(Ci+1|Ci) = ∏
i

aCi,Ci+1 (4)

and
Pb(C) = ∏

i
pb(Ci+1|Ci) = ∏

i
bCi,Ci+1 (5)

where pa(Ci+1|Ci) = aCi,Ci+1 , and pb(Ci+1|Ci) = ∏i bCi,Ci+1 ,
and i = 1, ...,L .

In case of Pa(C) > Pb(C) the class affiliation of state tran-
sition sequence C will be declared as ’fire’, otherwise it is
declared as ’non-fire’.

Given Na training sequences A1, ...,ANa from ’fire’ class
and Nb training sequences B1, ...,BNb from ’non-fire’ class,
the task of the training step is to find the tuple (T1, T2)
which maximizes the dissimilarity D = (Sa − Sb)2, where
Sa = ∑i Pa(Bi) and Sb = ∑i Pb(Ai).

This means, for each given tuple (T 1,T 2), there is a spe-
cific value of the dissimilarity D, so that D is a function of
(T 1,T 2)

D = D(T 1,T 2) (6)

Figure 6 shows a typical plot of the dissimilarity function
D(T 1,T 2). It can be seen from this figure that D is multi-
modal and and non-differentiable. Therefore, we solve this
maximization problem using a Genetic Algorithm (GA) hav-
ing the objective function D(T 1,T 2).
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Figure 2: Flame flicker spectrum distribution. PIR signal is
sampled with 50 Hz.

For the training of the HMMs, the state transition proba-
bilities for human motion and flame are estimated from 250
consecutive wavelet coefficients covering a time frame of 10
seconds.

During the classification phase a state history signal con-
sisting of 50 consecutive wavelet coefficients are computed
from the received sensor signal. This state sequence is fed
to fire and non-fire models in running windows. The model
yielding highest probability is determined as the result of the
analysis of PIR sensor data.

For flame sequences, the transition probabilities a′s
should be high and close to each other due to random nature
of uncontrolled fire. On the other hand, transition probabil-
ities should be small in constant temperature moving bod-
ies like a walking person because there is no change or little

Figure 3: A typical PIR sensor output sampled at 50 Hz with
8 bit quantization when there is no activity within its viewing
range.

change in pixel values. Hence we expect a higher probabil-
ity for b00 than any other b value in the non-fire model which
corresponds to higher probability of being in S1. The state S2
provides hysteresis and it prevents sudden transitions from
S1 to S3 or vice versa.

4. EXPERIMENTAL RESULTS

The analog output signal is sampled with a sampling fre-
quency of 50 Hz and quantized at 8 bits. Real-time analysis
and classification methods are implemented with C++ run-
ning on a PC. Digitized output signal is fed to the PC via
RS-232 serial port.

In our experiments we record fire and non-fire sequences
at a distance of 5m to the sensor. For fire sequences, we burn
paper and alcohol, and record the output signals. For the
non-fire sequences, we record walking and running person
sequences. The person within the viewing range of the PIR
sensor walks or runs on a straight line which is tangent to the
circle with a radius of 5m and the sensor being at the center.

The training set consists of 90 fire and 90 non-fire record-
ings with durations varying between three to four seconds.
The test set for fire class is 198 and that of non-fire set is
558. Our method successfully detects fire for 195 of the se-
quences in the fire test set. It does not trigger fire alarm for
any of the sequences in the non-fire test set. This is presented
in Table-1.

The false negative alarms, 3 out of 198 fire test se-
quences, are issued for the recordings where a man was also
within the viewing range of the sensor along with a fire close
to diminish inside a waste-bin. The test setting for which
false alarms are issued is presented in Fig. 7.

5. CONCLUSION

In this paper, a method for flame detection using PIR sensors
is proposed. Analog signal from a PIR sensor is sampled
with a sampling frequency of 50 Hz and quantized with 8
bits. Single level wavelet coefficients of the output signal are
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Table 1: Results with 198 fire, 588 non-fire test sequences. The system triggers an alarm when fire is detected within the
viewing range of the PIR sensor.

Number of Sequences Number of False Alarms Number of Alarms
Fire Test Sequences 198 3 195

Non-Fire Test Sequences 588 0 0

(a) person

(b) flame

Figure 4: PIR sensor output signals recorded at a distance of
5m for a (a) walking person, and (b) flame.

Figure 5: Two three-state Markov models are used to repre-
sent (a) ’fire’ and (b) ’non-fire’ classes, respectively.
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Figure 6: A typical plot of the dissimilarity function
D(T1,T2)x10−4. It is multi-modal and non-differentiable.
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Figure 7: The PIR sensor is encircled. The fire is close to die
out completely. A man is also within the viewing range of
the sensor.

used as feature vectors for flame detection. PIR sensor out-
put recordings containing various human motions and flames
of paper and alcohol fire at a range of 5m are used for train-
ing the HMMs corresponding to different events. Thresh-
olds for defining the states of HMMs are estimated using
an evolutionary algorithm, since the underlying cost func-
tion to be minimized has proved to be multi-modal and non-
differentiable. Flame detection results of the proposed algo-
rithm are promising.
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