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ABSTRACT

In this paper, the problem of estimating the cyclic autocor-
relation function of a continuous-time generalized almost-
cyclostationary (GACS) process is addressed. GACS pro-
cesses in the wide sense have autocorrelation function
almost-periodic in time whose generalized Fourier series ex-
pansion has both frequencies and coefficients that depend on
the lag shifts. Almost-cyclostationary (ACS) processes are
obtained as a special case when the frequencies do not de-
pend on the lag shifts. ACS processes filtered by Doppler
channels and communications signals with time-varying pa-
rameters are further examples. The discrete-time cyclic cor-
relogram of the discrete-time process obtained by uniformly
sampling a GACS process is considered as estimator of sam-
ples of the continuous-time cyclic autocorrelation function.
The asymptotic performance analysis is carried out by re-
sorting to the hybrid cyclic correlogram which is partially
continuous-time and partially discrete-time. It is shown that
its asymptotic properties are coincident with those of the
continuous-time cyclic correlogram. Hence, discrete-time
estimation does not give rise to any loose in asymptotic per-
formance with respect to continuous-time estimation.

1. INTRODUCTION

Almost-cyclostationary (ACS) processes are an appropriate
model for almost all modulated signals adopted in com-
munications, radar, and telemetry. Almost-cyclostationarity
properties have been exploited in signal-selective detection
and parameter-estimation algorithms, blind-channel identifi-
cation and synchronization techniques, and so on [2], [3], [4],
(51, [13].

Second-order ACS processes in the wide-sense exhibit
the autocorrelation function which is an almost-periodic
function of time whose generalized Fourier series expansion
has coefficients (the cyclic autocorrelation functions) depen-
dent on the lag parameter and frequencies (the cycle fre-
quencies) not dependent on the lag parameter. In [6], the
generalized almost-cyclostationary (GACS) processes are in-
troduced. This class of processes extends that of the ACS
processes since the autocorrelation function is an almost-
periodic function of time whose generalized Fourier series
expansion has both coefficients (the generalized cyclic au-
tocorrelation functions) and frequencies (the lag-dependent
cycle frequencies) which depend on the lag parameter. Thus,
the ACS processes are obtained as a special case of GACS
processes when the lag-dependent cycle frequencies are con-
stant with respect to the lag parameter. In [7] and [8], it is
shown that GACS processes are generated by the Doppler

channel due to relative motion between transmitter and re-
ceiver in the case of constant relative radial acceleration and
transmitted ACS signal and are an appropriate model to de-
scribe chirp signals and several angle-modulated and time-
warped communication signals.

The problem of second-order statistical function estima-
tion of GACS processes has recently been addressed in [10],
[11].

In [10], under mild assumptions on the regularity of the
generalized Fourier series expansions and on the memory
of the GACS process, the continuous-time cyclic correlo-
gram is shown to be a mean-square consistent and asymp-
totically Normal estimator of the cyclic autocorrelation func-
tion. These results, generalize to a wider class of processes,
namely the class of the GACS processes, well known results
for ACS processes [2], [3], [4].

In [9], it is shown that uniformly sampling a continuous-
time GACS process gives rise to a discrete-time ACS pro-
cess. Thus, a discrete-time counterpart of the continuous-
time GACS processes does not exist and the GACS or ACS
nature of an underlying continuous-time process can only be
conjectured starting form the analysis of the discrete-time
ACS process. In addition, since GACS processes cannot
be strictly band limited [6], [10], unlike the case of ACS
or stationary processes, a minimum value of the sampling
frequency to completely avoid aliasing in the discrete-time
cyclic statistics does not exist. This constitutes a complica-
tion for the estimation of the cyclic autocorrelation function
of a GACS process starting from the discrete-time process of
its samples. Consequently, the discrete-time counterparts of
the asymptotic results of [10] are not straightforward.

In [11], the discrete-time cyclic correlogram of the
discrete-time process obtained by uniformly sampling a
continuous-time GACS process is shown to be a mean-square
consistent estimator of samples of the aliased continuous-
time cyclic autocorrelation function of the GACS process as
the number of data-samples approaches infinity.

In this paper, the asymptotic statistical analysis of the
discrete-time cyclic correlogram of the ACS process ob-
tained by uniformly sampling a continuous-time GACS pro-
cess is carried out when the number of data samples ap-
proaches infinity (to get consistency) and the sampling pe-
riod approaches zero (to counteract aliasing). It is pointed
out that the discrete-time cyclic correlogram has the draw-
back that, when the sampling period approaches zero, the
unnormalized lag parameter approaches zero and the unnor-
malized cycle frequency approaches infinity. A general pro-
cedure to carry out the asymptotic analysis as the number
of data-samples approaches infinity and the sampling period
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approaches zero is proposed in the paper by resorting to the
hybrid cyclic correlogram. It is called “hybrid” since some
parameters are continuous-time and others are discrete-time.
In the paper, it is shown that the hybrid cyclic correlogram
is a mean-square consistent and asymptotically Normal esti-
mator of the cyclic autocorrelation function when the num-
ber of samples approaches infinity and the sampling period
approaches zero in such a way that the overall data-record
length approaches infinity. Thus, it is shown that the mean-
square error between the discrete-time cyclic correlogram
and samples of the continuous-time cyclic autocorrelation
can be made arbitrarily small provided that the number of
data samples is sufficiently large and the sampling period is
sufficiently small. Moreover, it is shown that the asymptotic
bias, covariance and distribution of the hybrid cyclic correlo-
gram are coincident with those of the continuous-time cyclic
correlogram. Finally, it is pointed that the proposed asymp-
totic analysis can be applied also to the case of non strictly
band limited ACS and stationary processes.

2. GENERALIZED ALMOST-CYCLOSTATIONARY
PROCESSES

Let superscript () denote an optional complex conjugation.
A finite-power complex-valued continuous-time stochastic
process x(t), t € R, is said to be second-order GACS in the
wide sense [10] if for both conjugation configurations

Rio(17) 2 B{x(e+7)x)(1)} (1)

is an almost-periodic function of time. If (x) is present,
R+ (2,7) is the autocorrelation function, if (x) is absent,
R (,7) is the conjugate autocorrelation function. Both
second-order moments are necessary for a complete second-
order characterization of complex processes [14]. From
the almost periodicity in ¢ it follows that, for each fixed T,
R 0 (t,7) is the limit of an uniformly convergent sequence
of trigonometric polynomials in # which can be written in the
two following equivalent forms [6], [7]:

Ruo (1) = Y R o (a,1)e>™™ (2a)
acAr

= YR (x)er2moulor (2b)
nel

where coefficients and frequencies in both Fourier series de-

pend on the possible complex conjugation. In (2a), the real
numbers « and the complex-valued functions R ., (¢, 7),
referred to as (conjugate) cycle frequencies and (conjugate)
cyclic autocorrelation functions, are the frequencies and co-
efficients, respectively, of the generalized Fourier series ex-
pansion of R_ ) (¢,7) that is,

1 T/2 —j2rat
R, 1)e dr. (3

Furthermore, in (2a) and (2b),

(4a)
(4b)

A; 2 {deR: R (a,7) #0}
= J{aeR: a=o0,(1)}

nel

is a countable set, I is also countable, the real-valued func-
tions a,(7) are referred to as (conjugate) lag-dependent cy-

cle frequencies and the complex-valued functions R,(;()*) (1),
referred to as (conjugate) generalized cyclic autocorrelation

functions, are defined as

(02 Ry @)y o ©

for all values of 7 such that two different lag-dependent cycle
frequencies do not intersect [7], [10]. It can be shown that

(61, [7]

R(”)

()

R (0,7) = Y RY) (%) 84— q e ©6)
nel
where 0, denotes Kronecker delta, that is, 8, = 1 for y =
0 and 8y = 0 for y # 0. That is, the lag-dependent cycle-
frequency curves o = a,(7), n € I, describe the support of
the (conjugate) cyclic autocorrelation function R ) (@, 7).
The second-order wide-sense ACS processes are ob-
tained as a special case of GACS processes when the lag-
dependent cycle frequencies are constant with respect to T
and, hence, are coincident with the cycle frequencies [6]. In
such a case,

fox(*) (t’ T) = ZR;?(*) (T) ej27T(X,,t . %)

nel

Moreover, R . (a,T) = R™ (1) for & = a, € A, and
XX
R . (a,7) =0 otherwise, with A = {0, } ,c1 countable.
The GACS model turns out to be appropriate in mobile
communications systems when the channel cannot be mod-
eled as almost-periodically time-variant [7], [8]. For exam-
ple, the output complex envelope y(¢) of the Doppler chan-
nel existing between a stationary transmitter and a moving
receiver with constant relative radial acceleration is GACS
when the input complex envelope x(¢) is ACS. In such a
case, the transmitted signal experiences a quadratically time-
variant delay. Under the “narrow-band” approximation [15],
the time-varying component of the delay in the complex en-
velope x(-) can be neglected obtaining the chirp-modulated
signal

y(t) = ax(t — dy) e/**" eImer? (8)
where a is the complex gain, dy the constant delay, v the
frequency shift, and ¢ the chirp rate. If x(r) is ACS (with au-
tocorrelation function (7)), then y(z) is GACS [10] with lag-
dependent cycle frequencies oy, + {7 and generalized cyclic
autocorrelation functions

R(") (‘L‘) — |a|2 Rg?* (‘L‘) ej27tv1 ejn{‘r2 e—j27ta,,d0 ) 9)

y*

Further examples of GACS processes are angle modu-
lated signals and communications signals with slowly time-
varying parameters such as baud rate and carrier frequency

[6].

3. CONTINUOUS- AND DISCRETE-TIME
ESTIMATORS OF THE CYCLIC
AUTOCORRELATION FUNCTION

In [10], the (conjugate) continuous-time cyclic correlogram

R (0, Tit0,T) 2 / Wit —10) x(t 4+ 7)x) (1) e =727 s
R
(10)
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where wr(¢) is a unit-area data-tapering window, is shown
to be a mean-square consistent and asymptotically Normal
estimator of the (conjugate) cyclic autocorrelation function.

Let
xa(n) £ x(1)|1=n1, (11)

be the discrete-time sequences obtained by uniformly sam-
pling with period Ty = 1/ f; the continuous-time zero-mean
GACS processes x(¢). In [11], it is shown that the ( conjugate)
discrete-time cyclic correlogram at cycle frequency o

N _
NEY vN(n—no)xd(n—Fm)x((i*) (n) e J2mon

n=—N
(12)
where vy(n) is a data-tapering window, is a mean-square
consistent estimator of the discrete-time (conjugate) cyclic
autocorrelation function

R (0, m;no,

XdXy

Rde((i*) (OC,m)
2 lim L y E{xd(n—l—m)x(*)(n)}e*ﬂ”&”(l:%a)
N—w=2N+1 d

[
(P
=

w0 (@ + p) fo,mTy) (13b)

p=—o0

which is an aliased version of samples of the continuous-
time (conjugate) cyclic autocorrelation function.

The mean-square consistency results in [10] and [11] are
based on assumptions on the almost-periodic structure of the
second- and fourth-order cumulants of the continuous-time
process x(¢), on the regularity of the generalized Fourier se-
ries expansions of such almost-periodic functions, and on the
finite or practically finite memory of the process expressed in
terms of summability of its second- and fourth-order cumu-
lants (Assumption 1). In addition, regularity properties of the
data-tapering window need to be assumed (Assumption 2).
Finally, asymptotic Normality is proved for the continuous-
time estimator in [10] under further regularity assumptions
on higher-order statistics of x(r) (Assumption 3).

Assumption 1 For any choice of z; and z; in {x,x*}, it re-
sults a)

2mad") (1)
e 212

E{zi(t+7)220)} = YRV, (7) (14)

2 (s)’ ds < oo

with ZHRZ1zz||°°<°° and Z/ R\
o /R
and b)

cum{x(t + 71 ),x*(t + 1), 21 (t + 73),22(2) }

Zcxz*mzz T, T, 73) oJ27Bn(71, 72, T (15)

with ZH xx*z'zz|\oo<oo

and Z/}R‘ngmz(s—l—‘cl,s,’cz)’ds<oo V1, € R.

In addition, the process x(¢) has uniformly bounded fourth-
order absolute moment.

Assumption 2 The continuous-time data-tapering window
wr(t) is nonzero in [—7/2,T2] and can be expressed as
wr(t) = a(t/T)/T, with a(t) € L' (R) N L*(R), continuous
a.e., and with unit area. The discrete-time data-tapering win-
dow vy (n) is nonzero in {—N,...,N} and can be expressed
asvy(n) =a(n/(2N+1))/(2N+1).

Assumption 3 Let z;(t) 2 [x(t + ) x5O ()i = 1,... &,
with [*]; optional complex conjugation. For every inte-
ger k, the magnitude of the kth-order cumulant function
cum{zx(t),zi(t +si), i=1,...,k— 1} is uniformly bounded
by a positive Riemann-integrable function of s, ...,s;_1. In
addition, for every integer , the processes z;(¢) have bounded
absolute kth-order cross-moments.

The discrete-time (conjugate) cyclic correlogram pro-
vides a reliable estimator of samples of the continuous-time
(conjugate) cyclic autocorrelation function, provided that the
aliasing effect in (13b) due to replicas with p # 0 is negligi-
ble. This is assured by the following assumption.

Assumption 4 For every a and m there exists a
sequence {Mp},cz of positive numbers such that

R o ((@+ p) fy,mTy)| < My and ¥} M, < oo,

Assumption 4 is verified, for example, by GACS pro-
cess with a finite number of lag-dependent cycle frequen-
cies (see, e.g., the chirp-modulated PAM signal with Nyquist
pulse [10]). In such a case we have that the aliasing terms
(p # 0) in (13b) can be made arbitrarily small by taking the
sampling period 7 sufficiently small. In addition, in [11], the
following result is proved.

p=—o0

Theorem 1 Under Assumptions 1, 2, and 4 it results that

2

}-o
(16)
where the order of the two limits cannot be interchanged. [J

lim i E{ﬁ (@, mzng, N
Jim, lim () (&, m;no, N)

XdXy

— R (0, T)|a=ay,

T=mTy

4. ASYMPTOTIC ANALYSIS BY THE HYBRID
CYCLIC CORRELOGRAM

From Theorem 1 it follows that the mean-square error be-
tween the discrete-time cyclic correlogram and samples of
the (continuous-time) cyclic autocorrelation function can be
made arbitrarily small, provided that the number of data
samples is sufficiently large and the sampling period is suf-
ficiently small. However, such asymptotic result has the
drawback that, for fixed @ and m, when T, — O it follows
o = O,fs — oo and T = mTy — 0. Thus, this analysis turns out
to be unuseful if the asymptotic (as N — o and T; — 0) bias
and covariance are needed and asymptotic Normality needs
to be proved. Note that such a drawback is also present if the
discrete-time cyclic correlogram is adopted to estimate sam-
ples of the continuous-time cyclic autocorrelation function
of a non band-limited ACS process. Furthermore, the same
problem is encountered with the discrete-time correlogram
estimate (& = 0 in (12)) of the autocorrelation function of a
non band-limited wide-sense stationary process. This prob-
lem does not arise if continuous- and discrete-time estimation
are treated separately, and the aliasing problem arising from
sampling is not addressed [1].
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In this section, an asymptotic analysis not suffering of
such drawback is carried out by the hybrid cyclic correlo-
gram at cycle frequency o € R and lag 7 € R defined as

Pt (0 Tino, N, T5)

N
£ ZNVN (n—ng) xqc(n) xg*) (n) o J2manT;

A7)

where

Xar(n) £ x(t + 7=y,  TER, (18)

It is referred to as “hybrid” since data samples are discrete-
time, but the lag parameter and the cycle frequency are not
normalized to the sampling period 7 and the sampling fre-
quency f;, respectively, and are the same as those of the
continuous-time cyclic correlogram. In (17), the delay of
the continuous-time process does not need to be an integer
multiple of the sampling period 7;. Consequently, it can be
retained constant when 7y — 0 avoiding the drawback 7 — 0
as Ty — 0 as in Theorem 1. Analogous considerations hold
for the cycle frequency.

Note that the hybrid cyclic correlogram turns out to be
useful just to analytically carry out the asymptotic analysis,
whereas, in practice, the discrete-time cyclic correlogram is
implemented.

For finite N and Tj, the expected value and the covariance
of the hybrid cyclic correlogram can be obtained by those of
the discrete-time cyclic correlogram reported in [11, Theo-
rem 1] and [11, Theorem 2], respectively, with the replace-
ments T = mTy and @ = O f; in (21) of [11]. Furthermore,
the asymptotic results as N — oo for the hybrid cyclic cor-
relogram are obtained, with minor changes, as those for the
discrete-time cyclic correlogram. In particular, the asymp-
totic expected value of the hybrid cyclic correlogram is given
in [11, Theorem 3] with the replacements 7 = mT; and o0 =
O f; in (23) of [11] and the asymptotic covariance is given in
[11, Theorem 4] with the replacements 7| = m; Ty, 0t = 0y f5,
T =myT;, and 0 = azfq.

In the following, asymptotic results as N — oo and 7y — 0
are provided. Condition N — oo needs to get consistency
for the discrete-time estimator, whereas condition 7y — 0O as-
sures lack of aliasing. Note that, in order to have asymp-
totically an infinitely long data-record length, condition 7 =
(2N 4+ 1)T; — oo needs to be verified. Consequently, in the
following asymptotic results, we have that first N — oo and
then T; — 0, that is, the order of the two limits as N — o and
Ty — 0 cannot be interchanged.

In order to establish the rate of convergence to zero of
the bias of the hybrid cyclic correlogram and its asymptotic
Normality, as N — oo and Ty — 0, a further assumption on
the lack of cluster of cycle frequencies is needed. For this
purpose, let us define the set

Ag

(1>

+oo
{BeR: ¥ Ry(B+pfio)#0} (19

oo
{BER:ﬁ:amodfs, ocEAT}

(19b)

= A;mod f; (19¢)

Assumption 5 For every T, the cycle-frequency set A; does
not contain any cluster of cycle frequencies. That is, let

Jasn 2 {kel: ap(r) = amod f;, RY), (1) £0} (20)

then, for every k & Jq r,1,, no curve 04 (7) is such that the
value o (7) mod f; can be arbitrarily close to the cycle fre-
quency . Thus, for every ¢ and 7 it results

harr, ék inf |[a—oy(7)] Ty mod 1| >0.

LANN

1)

This assumption means that there is no cluster of lag-
dependent cycle-frequency curves, where cycle frequencies
are considered modulo f;. Thus, it is stronger than [10, As-
sumption 4.4] made to state the rate of convergence of the
bias of the continuous-time cyclic correlogram. A sufficient
condition assuring that Assumption 5 is satisfied is that the
set I is finite.

Let A(f) be the Fourier transform of a(¢). It can be
shown that, under Assumption 2, there exists ¥ > 0 such that
A(f) = O(|f"") as | f| — . Starting from the expression
of the asymptotic expected value as N — oo, the following
result can be proved [12], where the made assumptions al-
low to interchange the order of limit, sum, and expectation
operations.

Theorem 2 Under Assumptions 1a and 2, assuming that the
number of lag-dependent cycle frequencies is finite (so that
also Assumptions 4 and 5 are verified), and provided that
v > 1 (or y=1 in the special case of a(r) = rect(t)), it results

lim lim [(2N+1)T;]"

Ty—0N—co

E{pxdxg*>(a7r;n0,N,]})} _Rxx(*)(a71‘-) = O(l) (22)

where the order of the two limits cannot be interchanged. [J

By expressing the covariance of the

Xac(n) xfi*>(n) in terms of second-order moments and a
fourth-order cumulant, the following result can be proved
[12], where the made assumptions allow to interchange the
order of limit, sum, and expectation operations and the order

of multiple-index sum operations.

product

Theorem 3 Under Assumptions 1 and 2, the asymptotic
(N — oo and Ty — 0 with NT; — oo) covariance of the hy-
brid cyclic correlogram is coincident with the asymptotic
(T — oo) covariance of the continuous-time cyclic correlo-
gram given in [10, egs. (70)-(73)]. [l

As an easy corollary of Theorem 2 we have that the hy-
brid cyclic correlogram is an asymptotically (N — o and
T; — 0 with NT; — o) unbiased estimator of the continuous-
time cyclic autocorrelation function. Moreover, from The-
orem 3 it follows that the hybrid cyclic correlogram has
asymptotically vanishing variance. Therefore, the hybrid
cyclic correlogram is a mean-square consistent estimator of
the continuous-time cyclic autocorrelation function.

The proof of the zero-mean joint complex asymptotic
Normality of the random variables

vV 2 JONT T [p () (04, T30, N, Ty) =Ry (0, T1) ]

YdaXq
(23)
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is made in Theorem 4 showing that asymptotically (N — oo
and Ty — 0 with NT; — o0)
1) cum{Vi(N’T‘V)} = E{Vi(N’T“)} =0
2a) the covariance cov{Vi(N'TS) , Vj(N'TS)
2b) the conjugate covariance cov{Vi(
nite;
3) cum{V, Jik} = 0 for k > 3.

with superscript [];, denoting optional complex conjugation.
Condition 1) follows from Theorem 2 on the rate of decay
to zero of the bias of the hybrid cyclic correlogram. Con-
dition 2a) is a consequence of Theorem 3 on the asymptotic
covariance of the hybrid cyclic correlogram. Condition 2b)
follows from an analogous result that can be proved for the
asymptotic conjugate covariance. Finally, Condition 3) fol-
lows from Lemma 1 on the rate of decay to zero of the joint
cumulant of the hybrid cyclic correlograms.

} is finite;
NT) (NI
Vi }is fi-

N3 [+], y W

PR ik

Lemma 1 Under Assumptions 2 and 3, for every k > 2 and
€ > 0 it results that

lim lim [(2N + 1)T,]F !¢

—0N—o0

cum{ (e, %o, N, T), 1= 1, k) =0 (24)

YaXq
where the order of the two limits cannot be interchanged. [J

Theorem 4 Under Assumptions 1, 2, and 3 on the
continuous-time process and under Assumptions 4 and 5,
and provided that ¥ > 1 (or Y =1 in the special case of

a(t) = rect(t)), the random variables Vl-(N’T‘Y) defined in (23)
are asymptotically (as N — o and Ty — 0 with NT; — oo)
zero-mean jointly complex Normal with asymptotic covari-
ance matrix with entries

Ty = Jim lim cov{Vi(N'TS),Vj(N'TS)} (25)

which can be shown to be coincident with those given in [10,
egs. (70)-(73)] and asymptotic conjugate covariance matrix
with entries

Z(? = lim lim COV{K(N’TQ),VKN’T‘Y)*} (26)
i Ty—0 N—oo J

which can be shown to be coincident with those given in [10,
egs. (D6)-(D9)].

Theorems 2, 3, and 4 show that the hybrid cyclic correlo-
gram has the same asymptotic bias, covariance, and distribu-
tion of the continuous-time cyclic correlogram. Thus, there is
non lose in asymptotic performance by carrying out discrete-
time estimation instead of continuous-time estimation of the
cyclic autocorrelation function.

5. CONCLUSIONS

Continuous-time GACS processes are an appropriate model
to describe the output signal of some Doppler channels ex-
cited by ACS signals. The discrete-time cyclic correlo-
gram of the ACS sequence obtained by uniformly sampling
a continuous-time GACS process is proposed as an estima-
tor of the continuous-time cyclic autocorrelation function

and the hybrid cyclic correlogram is adopted to analyze its
asymptotic performance as the number of data samples ap-
proaches infinity and the sampling period approaches zero,
provided that the overall data-record length approaches in-
finity. The hybrid cyclic correlogram has been shown to be a
mean-square consistent and asymptotically Normal estima-
tor of the continuous-time cyclic autocorrelation function.
Moreover, it has been shown that its asymptotic performance
is the same as that of the continuous-time cyclic correlogram.
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