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ABSTRACT
We propose an image restoration approach based on fusing
visually similar image blocks located in a single or in multi-
ple image frames of the same scene. The proposed approach
copes with misalignment between frames, as well as with
the presence of outliers represented by moving objects in the
scene. The main application targeted by the proposed ap-
proach is multi-frame image stabilization, which reduces the
effect of unwanted camera motion during the image integra-
tion time by fusing multiple short exposed image frames of
the scene. Due to their short exposure, the individual frames
are noisy, but they are less corrupted by motion blur than it
would be a single long exposed frame. The proposed ap-
proach is demonstrated through a series of experiments and
comparisons. The results reveal the ability of the proposed
method to improve the image quality by reducing noise and
simulating longer exposure times.

1. INTRODUCTION

Multi-frame image processing solutions can be utilized to
improve the visual quality provided by small cameras em-
bedded in mobile devices, by exploiting the variability in
image degradation captured in multiple images of the same
scene. One typical application of multi-frame image process-
ing is image stabilization.

The objective of image stabilization is to reduce the vi-
sual effect of any unwanted camera and object motion during
the image integration (exposure) time. Any such motion may
result in an image degradation known as motion blur. The
need for robust and efficient image stabilization solutions in
mobile devices is driven by two main factors. On one hand,
due to the miniaturization and resolution increase, the small
cameras embedded in mobile devices have a limited ability to
collect light requiring longer integration times. On the other
hand, it is the difficulty in avoiding unwanted motion dur-
ing the integration time when using high zoom, and/or small
hand-held devices.

Image stabilization solutions are either aiming to correct
or to prevent the motion blur degradation. Correcting the mo-
tion blur degradation form an input image requires knowl-
edge about the motion that took place during the exposure
time. In the absence of such knowledge the only chance is to
adopt a blind de-convolution approach [1, 2]. Unfortunately,
most of these methods rely on rather simple motion models,
e.g. linear constant speed motion, and hence their potential
use in consumer products is rather limited. Measurements
of the camera motion during the exposure time could help in
estimating the motion blur PSF and eventually to restore the
original image of the scene. Such an approach have been in-
troduced in [3], where a secondary video camera is used for
estimating the motion during the exposure time of the princi-

pal camera. Another way to estimate the PSF has been pro-
posed in [4, 5], where a second image of the scene is taken
with a short exposure. Although noisy, the secondary image
is unaffected by the motion blur and it can be used as a refer-
ence for estimating the motion blur PSF which degraded the
principal image.

The second category of image stabilization solutions are
aiming to prevent the motion blur for happening in the first
place. In this category are included all optical image stabi-
lization (OIS) solutions adopted nowadays by many camera
manufactures. These solutions are utilizing inertial senors
(gyroscopes) in order to measure the camera motion, follow-
ing then to cancel the effect of this motion by moving either
the image sensor [6], or some optical element [7] in the op-
posite direction. Due to the fact the inertial sensors are less
sensitive to low frequency motions, the OIS solutions are ef-
fective only for relatively small exposure times. As the ex-
posure time increases the mechanism may drift, producing
motion blurred images. A different method, based on spe-
cially designed high-speed CMOS sensors has been proposed
in [8]. The method utilizes the possibility to independently
control the exposure time of each image pixel. In order to
prevent motion blur the integration is stopped selectively in
those pixels where motion is detected.

Multi-frame image stabilization, is another approach to
prevent motion blur, and it relies on dividing a long expo-
sure time in shorter intervals following to capture multiple
short exposed image frames of the same scene. Due to their
short exposure, the individual frames are corrupted by sen-
sor noises [9], but fortunately they are less affected by mo-
tion blur. Consequently, a long exposed and motion blur free
picture could be synthesized by registering and fusing the
available short exposed image frames. In this paper we in-
troduce a novel and efficient approach to multi-frame image
fusion for image stabilization. The method extends our pre-
vious work [10], by allowing multiple correspondences for
each image block in both spatial and temporal dimensions.
One input frame is selected as the reference following then
to be improved based on visual information present in itself
as well as in all other image frames captured from the same
scene.

2. THE PROPOSED ALGORITHM

We assume the following model for the K observed irradi-
ance images:

gk(x) = fk(x)+nk(x), (1)

where where x = [x y]T denotes the spatial position of an im-
age pixel, gk is the k-th observed image frame, nk denotes a
zero mean additive noise, and fk denotes the latent image of
the scene at the moment the k-th input frame was captured.
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We emphasize the fact that the scene may change between
the moments when different input frames are captured. Such
changes could be caused by unwanted motion of the camera
and/or by the motion of different objects in the scene. Con-
sequently, the algorithm can provide a number of K different
estimates of the latent scene image each of them correspond-
ing to a different reference moment.

In the following, we assume that gr, (r ∈ {1, . . . ,K}) is
the reference observation, and hence the objective of the al-
gorithm is to recover an estimate of the latent scene image at
moment r, i.e. f = fr.

The restoration process is carried out based on a spa-
tiotemporal block processing. Assuming a division of gr in
non-overlapping blocks of size B×B pixels, the restored ver-
sion of each block is obtained as a weighted average of all
blocks located in a specific search range, inside all observed
images.

Let XB
x denote the sub-set of spatial locations included

into a block of B×B pixels centered in the pixel x, i.e.:

XB
x =

{
y ∈Ω | [−B −B]T < 2(y−x)≤ [B B]T

}
, (2)

where the inequalities are componentwise, and Ω stands for
the image support. Also, let g(XB

x) denote the B2×1 column
vector comprising the values of all pixels from an image g
that are located inside the block XB

x.
The restored image is calculated block by block as fol-

lows

f̂ (XB
x) =

1
Z

K

∑
k=1

∑
y∈XS

x

wk (x,y)gk(XB
y), for all XB

x, (3)

where Z = ∑K
k=1 ∑y∈XS

x
wk (x,y), is a normalization value,

XS
x denotes the spatial search range of size S×S centered in

x, and wk (x,y) is a scalar weight value assigned to an input
block XB

y from image gk. The weigh values are emphasiz-
ing the input blocks that are more similar with the reference
block. At the limit, using only the most similar block from
each input image, we obtain the solution proposed in [10].

We use exponential like weighted functions in the form

wk (x,y) = exp

[
− α(x)

Q2σ2
r,k

dist
(
gk(XQ

y),gr(XQ
x)

)
]

, (4)

where σ2
r,k is the sum of noise variances in the reference and

the k-th observed image, and XQ
x is a block of size Q×Q,

(Q ≥ B), called here outer-block, that includes the actual
B×B image block in the center (Fig. 1). Thus, in accor-
dance to (4), the similarity between blocks can be calculated
based on matching larger neighborhoods (i.e. outer-blocks)
that include the actual image blocks in the middle.

The parameter α(x) determines the filtering strength for
the reference block XB

x. In order to avoid over-smoothing the
edges, α(x) is defined as an increasing function of the mean
absolute gradient value inside the block.

The vectorial distance function ”dist”, used in (4) is de-
fined as

dist(a,b) = ∑
t

ρ (at −bt) , (5)

where a, b are vectors of the same length, and ρ(u) is equal
with u2 if |u|> σr,k, and zero otherwise.

The proposed process of spatiotemporal block based im-
age stabilization is illustrated in Fig. 1, where image blocks
are shown with gray in the center of their corresponding
outer-blocks.

Figure 1: The proposed block based processing.

At this point we can summarize the proposed stabiliza-
tion algorithm in the following steps:

1. Convert the input images to a linear color space by com-
pensating for camera response function non-linearity. In
our work we used inverse gamma correction with γ = 2.2.

2. Estimate the additive noise variance in each input image
gk, (k∈{1, . . . ,K}). Instead using a global variance value
for the entire image, in our experiments we employed a
linear model for the noise variance with respect to the
intensity level in order to emulate the Poisson process of
photon counting in each sensor pixel.

3. Select a reference image gr either manually or automati-
cally. Manual selection can be based on preferred scene
content at the moment the image frame was captured,
whereas automatic selection could be trivial (i.e. select-
ing the first frame), or image quality based (i.e. selecting
the higher quality frame based on a quality criteria). In
our work we select the reference image frame as the one
that is the least affected by blur. To do this we employ a
sharpness measure, that consists of the average energy of
the image in the middle frequency band, calculated in the
FFT domain.

4. Restore each block of the reference image in accordance
to (3).

5. Convert the resulted image f̂ , back to the non-linear do-
main by gamma correction.
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3. EXPERIMENTS

A comparison between the proposed method and different
other methods applied on public domain test images is shown
in Table 1. In these simulations we used a single input frame
for the proposed method and the values of different parame-
ters were as follows: S = 9, and B = Q = 4. Also, α(x) = 1
for each reference image block where the mean absolute
gradient value inside the block is bellow a threshold, and
α(x) = 2 otherwise. The threshold is calculated as the mean
absolute gradient value in the entire reference image.

The proposed method is compared against:
M1 the method proposed in our previous work [10].
M2 Matlab’s spatial local Wiener filtering,
M3 hard thresholding of wavelet coefficients [11],
M4 hard thresholding of curvelet coefficients [12].

Noise standard deviation
10 15 20 25

Lenna
Proposed 34.40 32.58 31.22 30.06
(M1) 31.87 30.02 28.77 27.69
(M2) 33.70 31.22 29.09 27.27
(M3) 30.73 28.99 27.79 26.89
(M4) 33.68 32.35 31.33 30.42
Noisy Input 28.12 24.59 22.10 20.15

Barbara
Proposed 32.45 30.27 28.84 27.62
(M1) 30.08 27.23 25.45 24.32
(M2) 29.81 28.24 26.80 25.46
(M3) 27.28 25.01 23.68 22.90
(M4) 29.17 26.60 25.35 24.70
Noisy Input 28.14 24.62 22.10 20.19

Cameraman
Proposed 32.56 30.30 28.89 27.83
(M1) 31.38 28.94 27.19 25.87
(M2) 30.89 29.31 27.76 26.43
(M3) 28.29 26.00 24.62 23.55
(M4) 29.49 27.59 26.40 25.60
Noisy Input 28.16 24.60 22.07 20.16

Table 1: PSNR results in decibels achieved with different
approaches.

The results in Table 1 reveal that the proposed method
overcomes the other approaches in almost all cases except.
Two exceptions are encounter for Lenna image when the
method M4 achieves slightly better PSNR than the proposed
method. A visual comparison of the results for one of these
two cases is shown in Fig. 4. The figure reveals that in spite
of achieving better PSNR the method M4 has the tendency
to introduce image artifacts visible in smooth image areas.

Two real example using images captured with a mobile
phone camera are shown in Fig. 3 and Fig. 4. In both
cases the algorithm was applied onto the Bayer RAW image
data before image pipeline operations. A simple linear model
for the noise variance with respect to the intensity level was
assumed in order to emulate the Poisson process of photon
counting in each sensor pixel [9], for each color channel.

Fig. 3(a), shows an image obtained without stabilization
using the mobile device set on automatic exposure. Due to
unwanted camera motion the resulted image is rather blurry.

(a) (b)

(c) (d)

Figure 2: Visual comparison on a fragment from Lenna
image: (a) noisy input (noise standard deviation 20), (b)
method (M2) Wiener filter (PSNR 29.09 dB), (c) method
(M4) curvelet de-noising (PSNR 31.33 dB), and (d) the pro-
posed method (PSNR 31.22 dB).

For comparison, Fig. 3(b), shows the image obtained with
our proposed stabilization algorithm by fusing several short
exposed images of the same scene. An example when the
proposed algorithm is applied onto a single input image is
shown in Fig. 4. In this case the algorithm acts as a noise
filtering method delivering the image Fig. 3(b), by reducing
the noise present in the input image Fig. 3(a).

4. CONCLUSIONS

In this paper we introduced a novel approach to multi-frame
image stabilization. In order to avoid motion blur the out-
put image is synthesized from multiple short exposed input
frames of the same scene, by identifying and fusing visually
similar image blocks. The proposed method tolerates some
degree of misalignment between the input frames and hence
it does not require an accurate global registration of the input
image frames. The method has been demonstrated through a
series of numerical simulations and experiments on artificial
and real image examples.
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(a) (b)

Figure 3: Real imaging examples: (a) auto-exposed image taken with a camera phone (exposure time: 1.8 sec), (b) stabilized
image by fusing four frames with exposure time of 0.3 sec each.

(a) (b)

Figure 4: Applying the proposed algorithm onto a single input image (a), delivers a noise filtered version (b), of the input
image.
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