
GENERATION OF DUAL N-CHANNEL FILTERBANKS WITH
HILBERT-TRANSFORMED MOTHER WAVELETS

Peter Steffen and Wolfgang Brandhuber

Chair of Multimedia Communications and Signal Processing
University of Erlangen-Nuremberg, Cauerstrasse 7, 91058 Erlangen, Germany

phone: +(49) 9131 85 27102, fax: +(49) 9131 85 28849, email: {steffen, brandh}@lnt.de
web: www.lnt.de

ABSTRACT
We reconsider the problem of generating a dual filterbank to a given
one with N channels such that its N−1 mother wavelets will be re-
lated to those of the original one by the Hilbert-transform. Known
solutions treat the case of unitary filterbanks [1, 2], while [3, 4]
treats the biorthogonal case and [5] the overcomplete case. We
present a solution which is valid for arbitrary filterbanks and obtain
identical results. This fact indicates that the proposition of unitarity
is not necessary at all. Moreover, the phase condition is obtained in
a constructive way and is given by a closed form expression.

1. INTRODUCTION

1.1 Notation
We consider a set of N wavelets uν (t) given by the following equa-
tions

uν (t) = N ·∑
k

hν (k) ·u0(Nt− kT ), ν = 0...N−1, (1.1)

with N ∈ N, N ≥ 2, being the scaling factor. For ν = 0 we obtain
the scaling function and for ν = 1...N − 1 the respective mother
wavelets. The sets of coefficients {hν (k),k ∈ Z} can be finite or
infinite according to the desired application.

For the following investigations we assume, that the sets of co-
efficients {hν (k)} are known and that their discrete time Fourier
transforms exist, i.e.

H∗,ν (ω) = ∑
k

hν (k) · e− jkωT , ω ∈ R,ν = 0...N−1. (1.2a)

The subscript “∗” indicates a periodic function of the frequency ω .
In the Fourier domain we can write equation (1.1) as

Uν (ω) = H∗,ν
(ω

N

)
·U0

(ω
N

)
, ν = 0...N−1 (1.2b)

or equivalently after rescaling

Uν (Nω) = H∗,ν (ω) ·U0(ω), ν = 0...N−1. (1.2c)

The mother wavelet spectra Uν (ω) result from spectral forming of
the scaling function spectrum U0

( ω
N

)
with the periodic spectrum

H∗,ν
( ω

N
)
.

We explicitly note that all H∗,ν (ω) are periodic with ωa = 2π
T .

Therefore we can write

H∗,ν (ω +λωa) = H∗,ν (ω), λ ∈ Z. (1.2d)

By iterating (1.2b) we get

Uν (ω) = U0(0) ·H∗,ν
(ω

N

)
·H∞,0

(ω
N

)
(1.3a)

with the non-periodic function

H∞,0(ω) =
∞

∏
i=1

H∗,0
(

ω ·N−i
)

. (1.3b)

In particular the spectrum of the scaling function is

U0(ω) = U0(0) ·H∞,0(ω). (1.3c)

All statements so far hold for arbitrary sets of wavelets as long
as the functions H∗,ν (ω) in equation (1.2a) exist.

1.2 The Problem
In addition to the N wavelets uν (t) we are now introduc-
ing a second filter bank leading to a dual set of wavelets
{v0(t),v1(t), . . . ,vN−1(t)}. For this we assume a similar set of
equations as proposed in (1.1) - (1.3c).

vν (t) = N ·∑
k

gν (k) · v0(Nt− kT ), ν = 0...N−1. (1.4a)

As before v0(t) is a scaling function and vν (t) are mother wavelets
for ν = 1...N−1. The spectra of these wavelets are

Vν (ω) = G∗,ν
(ω

N

)
·V0

(ω
N

)
(1.4b)

Vν (Nω) = G∗,ν (ω) ·V0 (ω) (1.4c)

with the periodic functions G∗,ν (ω),

G∗,ν (ω) = ∑
k

gν (k) · e− jkωT (1.4d)

G∗,ν (ω) = G∗,ν (ω +λωa) , λ ∈ Z. (1.4e)

Iterating equation (1.4b) the spectra of the wavelets become

Vν (ω) = V0(0) ·G∗,ν
(ω

N

)
·G∞,0

(ω
N

)
(1.4f)

with the non-periodic function G∞,0(ω)

G∞,0(ω) =
∞

∏
i=1

G∗,0
(

ω ·N−i
)

. (1.4g)

These two filterbanks have to be interlinked in a way that the mother
wavelets of the first filterbank u1, . . . ,uN−1 are Hilbert transforms
to the mother wavelets v1, . . . ,vN−1 of the second:

vν (t) = H{uν (t)}=
1
π
·
∫

uν (t ′) · 1
t− t ′

dt ′, ν = 1...N−1.

(1.5a)
In the Fourier domain this convolution becomes

Vν (ω) = HH(ω) ·Uν (ω) (1.5b)
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with the Hilbert transformer

HH(ω) =− j · sign(ω) = e− jβH (ω), (1.5c)

and the phase
βH(ω) =

π
2
· sign(ω). (1.5d)

For later purposes we remark that the Hilbert transformer is
practically scale invariant. With the similarity theorem of the
Fourier transform,

F−1 {F(aω)}=
1
|a| · f

( t
a

)
, a 6= 0, (1.5e)

we get
F−1 {HH(aω)}= sign(a) ·hH(t). (1.5f)

The problem is to propose a relation between V0(ω) and U0(ω)
so that the equations (1.5a) and (1.5b) are met.

I. Selesnick gives a solution to this problem for N = 2 in [1], and
for N > 2 a solution is given by C. Chaux et alea in [2]. Both ap-
proaches use the fact, that the filterbanks to be coordinated are uni-
tary. It will turn out that this proposition can be dropped and iden-
tical results hold for arbitrary, not necessarily unitary filterbanks as
well. The second point is that we prove the phase condition directly
in a constructive way and obtain closed form expressions.

2. RELATIONS BETWEEN THE WAVELET SYSTEMS

2.1 Wavelet Spectra
From equation (1.5b) and (1.5c) we immediately get the spectra of
the mother wavelets as

Vν (ω) = e− jβH (ω) ·Uν (ω), ν = 1...N−1, (2.1a)

and hence
|Vν (ω)|= |Uν (ω)| , (2.1b)

respectively.

According to their construction the spectra of the mother
wavelets differ only in the additional phase of the Hilbert trans-
former. From that we get an important fact for all mother wavelets:

If the functions u1, . . . ,uN−1 have compact support this no
longer holds for v1, . . . ,vN−1.

For later purposes we assume the normalization

U0(0) = V0(0). (2.2)

2.2 Interlinking the scaling function
For reasons of presentation we do not assume a relation between
U0(ω) and V0(ω), but choose a more indirect relation of the peri-
odic spectra

G∗,0(ω) = H∗,0(ω) ·B∗,0(ω) (2.3a)

with B∗,0(ω) also having to be periodic with ωa. B∗,0(ω) is a dis-
crete all pass function and can be written as

B∗,0(ω) = e− jβ∗,0(ω). (2.3b)

Apparently β∗,0(ω) is periodic with ωa,

β∗,0 (ω +λωa) = β∗,0(ω), λ ∈ Z. (2.3c)

This fact will be very important later.

If H∗,0(ω) and G∗,0(ω) satisfy equations (2.3a) and (2.3b), we
can deduce a relation between V0(ω) and U0(ω) for any given phase

β∗,0(ω) of the discrete allpass B∗,0(ω) in (2.3a). To do so we take
a look at equations (1.3c) and (1.4f):

U0(ω) = U0(0) ·H∞,0(ω) , (2.4a)
V0(ω) = V0(0) ·G∞,0(ω) . (2.4b)

With equations (2.2) and (2.3b) G∞,0(ω) in (2.4b) can be rewritten
as

G∞,0(ω) = H∞,0(ω) · e− jβ∞,0(ω) (2.5a)

with

β∞,0(ω) =
∞

∑
i=1

β∗,0
(

ω ·N−i
)

. (2.5b)

Apparently β∞,0(ω) is not a periodic function. It exists if β∗,0(ω)
is an odd function and is Lipschitz continuous in a vicinity of zero.
In this case limω→0 β∗,0(ω) = 0 and the convergence in (2.5b) is
geometric.

Inserting (2.5a) and (2.5b) into (2.4b) we get with (2.4a)

V0(ω) = B∞,0(ω) ·U0(ω), (2.6a)

whereas
B∞,0(ω) = e− jβ∞,0(ω) (2.6b)

generally is a non-periodic all pass function.

We emphasize, that we did not determine the periodic phase
β∗,0(ω) in (2.3b). Therefore the continuous phase β∞,0(ω) is also
not determined. In choosing anything for β∗,0(ω) we also get a
unique expression for β∞,0(ω).

2.3 Interlinking the band pass filters
In (2.1b) and (1.5b) the relation between the mother wavelets is
given by the Hilbert transform. Using the equations (2.3) for the low
pass filters, relations for the band pass filters can also be obtained.
We take the equations (1.3a) and (2.1a) and rewrite them as

Uν (Nω) = U0(0) ·H∗,ν (ω) ·H∞,0(ω) (2.7a)
Vν (Nω) = V0(0) ·G∗,ν (ω) ·G∞,0(ω). (2.7b)

With the relations (2.5a) and (2.5b) we can write (2.7b) as

Vν (Nω) = U0(0) ·G∗,ν (ω) ·H∞,0(ω) · e− jβ∞,0(ω).

Writing down equation (1.5b) in this form

Vν (Nω) = HH(Nω) ·Uν (Nω), (2.8a)

and using the relation (see equation (1.5f))

HH(Nω) = HH(ω) (2.8b)

we get

H∗,ν (ω) ·HH(ω) ·Uν (Nω) = G∗,ν (ω) ·Uν (Nω) · e− jβ∞,0(ω)

and with that

H∗,ν (ω) ·HH(ω) = G∗,ν (ω) · e− jβ∞,0(ω).

Finally we get

G∗,ν (ω) = e− jp∗,ν (ω) ·H∗,ν (ω) (2.8c)

with the necessarily periodic phase function p∗,ν (ω)

p∗,ν (ω) = βH(ω)−β∞,0(ω)

= p∗,ν (ω +λωa), λ ∈ Z.

}
(2.8d)
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We remark that we do not care about possible jumps of the phase
by multiples of 2π! If desired this can be done straightforwardly!

These phase functions are identical for the indices ν = 1...N−
1. Therefore we can write instead

p∗(ω) = βH(ω)−β∞,0(ω) (2.8e)
= p∗(ω +λωa), λ ∈ Z.

The task now is to determine the interlinking phase β∗,0(ω) in
equation (2.3b) so that p∗(ω) in (2.8e) becomes a periodic function.
This we will do in the next section using the results of [1] and [2].

3. SOLUTIONS FOR THE INTERLINKING PHASE

3.1 Solution for N = 2 according to I. Selesnick
According to I. Selesnick the interlinking phase β∗,0(ω) is given by

β∗,0(ω) =





ωT
2

, 0≤ ω <
π
T

ωT
2
−π,

π
T

< ω ≤ 2π
T

(3.1a)

with
β∗,0(ω +λωa) = β∗,0(ω). (3.1b)

Figure 3.1: Interlinking phase β∗,0(ω) for N = 2

First of all we have to calculate the sum in equation (2.5b) giv-
ing the phase β∞,0(ω). To calculate it straightforward seems diffi-
cult, so we represent β∗,0(ω) by

β∗,0(ω) = λ (ω)−σ(ω) (3.2a)

with the non-periodic linear function

λ (ω) =
ωT
2

, ω ∈ R, (3.2b)

and the step function σ(ω), also non-periodic, defined by

σ(ω) = π ·
∞

∑
m=0

δ−1(ω−ωm) , ω ≥ 0, (3.2c)

with
ωm = (2m+1) · ωa

2
, m ∈ Z, (3.2d)

and
σ(−ω) =−σ(ω) , ω ∈ R. (3.2e)

δ−1(t) denotes the step function according to

δ−1(t) =
{

1, t ≥ 0
0, t < 0

(3.2f)

Hence the phase β∞,0(ω) can be written as

β∞,0(ω) = `(ω)− s(ω) , (3.3a)

with

`(ω) =
∞

∑
i=1

λ
(

ω ·2−i
)

=
ωT
2

(3.3b)

and

s(ω) =
∞

∑
i=1

σ
(

ω ·2−i
)

. (3.3c)

Obviously s(ω) is also an odd function

s(−ω) =−s(ω) , ω ∈ R, (3.4a)

satisfying the functional equation

s(ω)− s
(ω

2

)
= σ

(ω
2

)
(3.4b)

Direct analysis of this relation for ω ≥ 0 leads to the assumption

s(ω) = π
∞

∑
m=1

δ−1(ω−m ·ωa) , ω ≥ 0,

s(−ω) = −s(ω) , ω ∈ R.

(3.4c)

Inserting the soltuion into the functional equation (3.4b) verifies its
correctness.

The phase β∞,0(ω) now is given by

β∞,0(ω) =
ωT
2
− s(ω) , ω ≥ 0, (3.5a)

=
ωT
2
−mπ , (3.5b)

for
ω ∈ [mωa,(m+1)ωa[ , m ∈ N0 (3.5c)

and the symmetry condition

β∞,0(−ω) =−β∞,0(ω) , ω ∈ R. (3.5d)

Figure 3.2: Sum phase β∞,0(ω) for N = 2

The difference phase p∗(ω) in (2.8e) now becomes

p∗(ω) = βH(ω)−β∞,0(ω)

=
π
2
· sign(ω)− ωT

2
+m ·π , (3.6a)

with ω as in (3.5c). For ω ≥ 0 we can also write

p∗(ω) = (2m+1)
π
2
− ωT

2
(3.6b)

again with ω as in (3.5c).
This function p∗(ω) is periodic with ωa and therefore

p∗(ω) =
π
2
− ωT

2
, 0≤ ω < ωa

p∗(ω +λ ·ωa) = p∗(ω) , ω ∈ R ,λ ∈ Z.



 (3.6c)

We notice that the solution we presented for the difference
phase p∗(ω) is the very same I. Selesnick presented in [1]. The
important difference is that we get the solution without postulating
orthogonality!
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Figure 3.3: Difference phase p∗(ω) for N = 2

3.2 Solution for N ≥ 2

In this section we derive the result for the interlinking phase
β∗,0(ω) for the case N ≥ 2.

Defining the frequencies ∆N,m or ∆m for short as equidistant
partitions of a period

∆m = ∆N,m = m · ωa

N
, N ∈ N ,m ∈ Z, (3.7a)

the interlinking phase can be written as

β∗,0(ω) = λ (ω)−m ·π , (3.7b)

with
∆m ≤ ω ≤ ∆m+1, m = 0...N−1, (3.7c)

λ (ω) =
N−1

2
·ωT , ω ∈ R, (3.7d)

β∗,0 (ω + µωa) = β∗,0(ω) , ω ∈ R , µ ∈ Z. (3.7e)

Apparently an interlinking phase of this kind is odd and contin-
uous at zero:

β∗,0(0) = 0 (3.7f)
β∗,0(−ω) = −β∗,0(ω). (3.7g)

For m = 1...N−1 there are steps at ∆m with a height of −π:

lim
δ→0+

{
β∗,0(∆m +δ )−β∗,0(∆m−δ )

}
=−π , (3.8a)

β∗,0(m ·ωa) = 0 , m ∈ Z. (3.8b)

The limits on the left and right side of these steps are

β∗,0(∆m−) =
N−m

N
·π ,

β∗,0(∆m+) = −m
N
·π , m = 1...N−1. (3.8c)

Figure 3.4 shows the interlinking phase β∗,0(ω) for N = 2, 3 and 4.

Similar to the equationts (3.2) for N = 2 we can also separate
the linear terms for the cases N ≥ 2:

β∗,0(ω) = λ (ω)−σ1(ω)+σN(ω), (3.9a)

σ1(ω) = π ·
∞

∑
µ=1

σ−1(ω−∆µ ) , ω ≥ 0

σ1(−ω) = −σ1(ω) , ω ∈ R,



 (3.9b)

σN(ω) = π ·
∞

∑
µ=1

σ−1(ω−µωa) , ω ≥ 0

σN(−ω) = −σN(ω) , ω ∈ R.



 (3.9c)

Figure 3.4: Interlinking phase β∗,0(ω) for N = 2,3,4

This piecewise linear function is periodic and attains the values pos-
tulated in (3.8b) and (3.8c)!
For further invertigations we also note the useful relation

σN(Nω) = σ1(ω). (3.9d)

Figure 3.5 shows the construction of the periodic phase β∗,0(ω)
with non-periodic components for N = 3.

In the next step we write the sum phase β∞,0(ω) as

β∞,0(ω) =
∞

∑
i=1

β∗,0
(

ω ·N−i
)

= `(ω)− s1(ω)+ sN(ω) (3.10a)

with

`(ω) =
∞

∑
i=1

λ
(

ω ·N−i
)

=
ωT
2

, ω ∈ R, (3.10b)

and

s1(ω) =
∞

∑
i=1

σ1

(
ω ·N−i

)
, ω ∈ R, (3.10c)

sN(ω) =
∞

∑
i=1

σN

(
ω ·N−i

)
, ω ∈ R. (3.10d)

With (3.9d) we note the relation between these two by

sN(Nω) = s1(ω). (3.10e)

Moreover the following two equations always hold

sN(Nω) = sN(ω)+σN(ω) (3.10f)
s1(Nω) = s1(ω)+σ1(ω). (3.10g)
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Figure 3.5: Construction of β∗,0(ω) according to (3.9) for N = 3

Combining (3.10e) and (3.10f) we get

s1(ω)− sN(ω) = σN(ω). (3.10h)

With that we can already explicitly write the sum phase β∞,0(ω)
in (3.10a) as

β∞,0(ω) = `(ω)−σN(ω)

=
ωT
2
−σN(ω) , ω ≥ 0,

β∞,0(−ω) = −β∞,0(ω) , ω ∈ R.





(3.11a)

Analyzing σN(ω) we get the relations

β∞,0(ω) =
ωT
2
−m ·π , (3.11b)

m ·ωa < ω < (m+1) ·ωa , m ∈ N0

β∞,0(ω) = −β∞,0(ω) , ω ∈ R. (3.11c)

Apparently the phase β∞,0(ω) is independent of N! It is identical
to the phase for N = 2 in figure 3.2.

The phase p∗(ω) in (2.8e)

p∗(ω) = βH(ω)−β∞,0(ω) (3.12a)

is also independent of N.

p∗(ω) =
π
2
− ωT

2
, 0 < ω < ωa,

p∗(ω + µωa) = p∗(ω) , ω ∈ R , µ ∈ Z



 (3.12b)

At the discontinuities we get:

p∗(µωa−) = −π
2

,

p∗(µωa+) =
π
2

, µ ∈ Z.
(3.12c)

4. CONCLUSIONS

In this paper we have shown that it is possible to construct dual N-
channel filterbank pairs with Hilbert transformed mother wavelets
without postulating unitarity. Beyond that we have given a closed
form to construct the interlinking phase by means of simple non-
periodic functions.
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