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ABSTRACT

We present a new structure for the IIR filter design composed of
three allpass filters, i.e., one real-valued and two complex-valued
allpass filters. In particular, applying the inverse discrete Fourier
transform to the allpass filters, we get three real doubly complemen-
tary IIR filters. We also provide the procedure to design a lowpass
filter with a desired characteristic using a complex-valued allpass
filter with pre-determined characteristics. The proposed structure
is used for three different lowpass filter designs, that is, eigenfilter,
equiripple, and maximally flat filter design. Closed form equations
for the computation of the maximally flat filter coefficients are also
provided. The design techniques are illustrated by means of exam-
ples.

1. INTRODUCTION

Traditional design of lowpass IIR filters is based on the design of
analog filters and a transformation from the analog domain to the
digital domain. This design is usually applied for Butterworth,
Chebyshev, and elliptic filters [1]. Furthermore, it is well known
that the resulting IIR filters can be implemented using a parallel
connection of two allpass filters [2, 3]. Since the IIR filter imple-
mentation is structurally passive [1], the passband magnitude re-
sponse has low sensitivity to the filter quantization and a low noise
level [2, 3]. Moreover, using the allpass structure, we can obtain
a complementary highpass filter. This means that the lowpass and
highpass transfer functions satisfy the doubly complementary prop-
erty. To be specific, they are allpass complementary as well as
power complementary [2, 3].

Consequently, different direct design methods for IIR filters,
based on two allpass filters, have been proposed in the literature
[4–7]. A direct design of IIR filters, which is based on complex all-
pass filters, is introduced in [4]. The technique applies Remez-like
algorithm to design the corresponding allpass filters. A another ap-
proach is given in [5] where the technique is reduced to the design
of one real-valued allpass filter, which can be unstable; however,
the desired IIR filter is always stable. In this method, Remez algo-
rithm is used to compute the allpass filter coefficients. In a similar
way, the method given in [6] designs IIR filters with flat magnitude
responses. A direct design of Butterworth filters based on real- and
complex-valued allpass filters is discussed in [7].

An interesting method to design M-band lowpass IIR filters
based on M real-valued allpass filters is given in [8]. However, the
main disadvantage of this method is that for M > 2 there are fre-
quency regions where the stop attenuation cannot be controlled, i.e.,
the regions in the vicinity of 3π/M, 5π/M, 7π/M, etc. The authors
called those regions don’t care bands because the final application is
the design of multistage decimators and interpolators [9]. Addition-
ally the passband edge frequency ωp is restricted to 0 < ωp < π/M.

In this paper we address the magnitude approximation of real-
valued lowpass filters based on a new parallel connection of three
allpass filters, that is, the proposed structure is composed by one
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real- and two complex-valued allpass filters. By applying 3-point
inverse discrete Fourier transform (IDFT) to the designed allpass
filters, we can obtain three transfer functions, which satisfy the dou-
bly complementary property. Moreover, the IIR filter implementa-
tion is structurally passive. The design problem of lowpass filter is
reduced further to design one complex-valued allpass filter with de-
sired characteristics. We present three different designs to approxi-
mate the desired phase response of the allpass filters, i.e., eigenfilter
design, equiripple design, and maximally flat design. Examples are
provided in order to illustrate the proposed lowpass filter design.

The rest of the paper is organized as follows. The proposed IIR
filter based on real- and complex-valued allpass filters is introduced
in Section 2. Section 3 presents the design of allpass filters with
desired phase responses and complex coefficients based on eigen-
filter, equiripple, and maximally flat approaches. Design examples
are also given in Section 3.

2. PROPOSED IIR FILTER STRUCTURE

This section introduces the proposed structure to design real-valued
and stable IIR filters. Additionally, some properties of the proposed
filters are given.

Suppose that the lowpass IIR filter can be expressed by H(z) =
[A0(z)+A1(z)+A2(z)]/3, where A0(z), A1(z), and A2(z) are stable
allpass filters. If the coefficients of the allpass filters are real, then

it can be shown that the minimum value of |H(e jω )| at ω = π is
1/3. So we consider the case where two allpass filters, e.g., A1(z)
and A2(z), have complex coefficients. Due that the desired IIR filter
H(z) should have real coefficients, the allpass filters must be related

as A2(z) = Ã1(z
−1), where Ã1(z) is the paraconjugate of A1(z), that

is, it is obtained by conjugating the filter coefficients and by replac-

ing z by z−1. In this way, the proposed IIR filter is given by

H(z) =
1

3

[
A0(z)+A1(z)+ Ã1(z

−1)
]
. (1)

The allpass filters A0(z) and A1(z) must be stable in order that the
filter H(z) be stable.

2.1 Doubly complementary property

Now, we show how the proposed filter H(z) along with two other
filters satisfy the doubly complementary property.

By applying 3-point IDFT to the allpass filters A0(z), A1(z),

and Ã1(z
−1), respectively, we can obtain three real-valued filters,

namely H(z), G(z), and F(z), which are shown in Fig. 1. The
filters F(z) and G(z) have highpass and bandpass characteristics,
respectively.

It can be shown that the resulting transfer functions satisfy the
power complementary property, that is,

|F(e jω )|2 + |G(e jω )|2 + |H(e jω )|2 = 1. (2)

Moreover, if we apply 3-point discrete Fourier transform (DFT) to
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Figure 1: Filters H(z), G(z), and F(z) obtained by applying 3-point

IDFT to A0(z), A1(z), and Ã1(z
−1).

H(z), G(z), and F(z), we arrive at

A0(z) = H(z)+G(z)+F(z), (3)

A1(z) = H(z)+e j2π/3G(z)+e−j2π/3F(z). (4)

Consequently, from (2)–(4), we can say that the transfer func-
tions H(z), G(z), and F(z) satisfy the doubly complementary prop-
erty.

2.2 Structural passivity

Some efficient implementation structures for the stable allpass fil-
ters A0(z) and A1(z) can be found in [1]. Using those structures,
each multiplier coefficient |mi| in the structure is in the range [0,1].
Furthermore, from (2), we see that the magnitude response of H(z)

is bounded by the unity, i.e., |H(e jω )| ≤ 1.
Therefore, the implementation is structurally passive. This

means that the magnitude response has low sensitivity to the filter
quantization.

2.3 Auxiliary complex-valued allpass filter

In this subsection we show that the problem of designing lowpass
and stable IIR filter is reduced to designing a complex-valued all-
pass filter with desired characteristics.

At first, notice that (1) can be rewritten as

H(z) =
A0(z)

3

[
1+A(z)+ Ã(z−1)

]
, (5)

where A(z) = A1(z)/A0(z) is a complex-valued allpass filter, which
can have poles outside the unit circle due to the zeros of A0(z).

As a consequence, the problem of designing IIR filters is re-
duced to designing an auxiliary allpass filter with complex coeffi-
cients and desired characteristics. The design of such kind of filters
is discussed in Section 3.

In the following, some characteristics of A(z) are described.
From (5), the corresponding magnitude response of H(z) is

|H(e jω )| = 1

3

∣∣∣1+e jφA(ω) +e−jφA(−ω)
∣∣∣ , (6)

where φA(ω) is the phase response of A(z).

In order to have the values of |H(e jω )| in the passband and stop-
band be 1 and 0, respectively (ideal case), the condition φA(ω) =
φA(−ω) must be satisfied, that is, the phase response is an even
function of ω .

Using this property, it follows that A(z) = A(z−1). Conse-

quently, the magnitude response |H(e jω )| becomes

|H(e jω )| = 1

3
|1+2cos (φA(ω))| , (7)

and the ideal phase response φA(ω) is expressed as

φA(ω) =

{
0, ω ≤ ωp;

± 2π
3 , ωs ≤ ω ≤ π.

(8)

Here, we consider a complex-valued allpass filter of order N
given by [10],

A(z) =
a∗N +a∗N−1z−1 + · · ·+a∗0z−N

a0 +a1z−1 + · · ·+aNz−N

= α
b∗N +b∗N−1z−1 + · · ·+ z−N

1+b1z−1 + · · ·+bNz−N
,

(9)

where α = a∗0/a0, bn = an/a0, and an, n = 0, . . . ,N, are complex
coefficients, i.e., an = aRn + jaIn, where aRn and aIn are the real and
imaginary part of an.

In order to achieve the condition A(z) = A(z−1), the corre-
sponding filter coefficients an, n = 0, . . . ,N, need to satisfy an =
aN−n, i.e., they must be a symmetric sequence. Generally, there are
two cases that should be considered: N odd and N even. However,
one can verify that N odd implies at least one pole of A(z) is on the
unit circle. As a consequence, in our design, we only consider the
case where N is even.

In summary, the allpass filter A(z) possesses the following prop-
erties:

1. The order N must be even.

2. The filter coefficients an, n = 0, . . . ,N, are a symmetric se-
quence, i.e., an = aN−n, which implies that the resulting phase
response φA(ω) is an even function.

3. The ideal phase response is given by (8).

Finally, we wish to find the allpass filters A0(z) and A1(z). First
note that B(z), the z-transform of bn, can be rewritten as B(z) =

z−N/2B0(z
−1)B0(z)/β , where B0(z) is a polynomial with all zeros

inside the unit circle, i.e., B0(z) = 1+b0,1z−1 + · · ·+b0,N/2z−N/2,

and β = b0,N/2.

Accordingly, the corresponding allpass filters are expressed as,

A0(z) = z−N B0(z
−1)B̃0(z)

B̃0(z−1)B0(z)
, A1(z) = z−Nα

β

β ∗
B̃2

0(z)

B2
0(z)

. (10)

3. DESIGN OF COMPLEX-VALUED ALLPASS FILTERS

This section focuses on the design of allpass filters A(z) using three
different optimality criteria, that is, eigenfilter, equiriple, and maxi-
mally flat.

3.1 Eigenfilter method

The eigenfilter method to design allpass filters involves the com-
putation of an eigenvector of a real, symmetric and definite pos-
itive matrix. In our case, such matrix is partitioned into four
(N +1)× (N +1) centrosymmetric submatrices.

The equation, which approximates the ideal phase response of
φA(ω), is a linear combination of the real and imaginary parts of an,
n = 0, . . . ,N [11], i.e.,

DTa≈ 0, (11)

where DT denotes matrix transposition of D and

a = [aR0 aR1 · · · aRN aI0 aI1 · · · aIN ]T, (12)

D = [sin(Φ0) · · · sin(ΦN) −cos(Φ0) · · · −cos(ΦN)]T, (13)

where Φk = (k−N/2)ω −φA(ω)/2.
In [11], the authors consider the minimizing of the mean-

squared error for (11) as

E = aT
∫

R

WDDT dω a = aTRa, (14)

where aTa = 1, W is a weighting constant, R is the region
(−π,−ωs]

⋃
[−ωp,ωp]

⋃
[ωs,π] and R is a real, symmetric and

positive definite matrix of size 2(N + 1) × 2(N + 1). Using the
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Rayleigh’s principle, the minimum value for E equals λmin, where
λmin is the smallest eigenvalue of R.

Using (14), we can rewrite the matrix R as follows

R =

[
A B
B C

]
, (15)

where A, B, and C are centrosymmetric matrices of size (N +1)×
(N + 1), i.e., they satisfy JMJ = M [12–14], where J is the an-
tidiagonal matrix. It is well known that if the eigenvectors of a cen-
trosymmetric matrix are linearly independent, then they are sym-
metric or antisymmetric [12–14]. This means that the coefficients
an can satisfy the Property 2 in Section 2.3.

Considering the weighting constant W in the passband and stop-
band as unity and Ws, respectively, the elements for each matrix are
given in a closed form equations as,

[A]n,m = ωp

(
sinc((n−m)ωp)− sinc((n+m−N)ωp)

)

+Ws · (π −ωs)
(
(−1)n−m sinc((n−m)(π −ωs))

+
1

2
(−1)n+m−N sinc((n+m−N)(π −ωs))

)
, (16)

[B]n,m =

√
3Ws

2
(−1)n+m−N(π −ωs)sinc((n+m−N)(π −ωs)),

(17)

[C]n,m = ωp

(
sinc((n−m)ωp)+ sinc((n+m−N)ωp)

)

+Ws · (π −ωs)
(
(−1)n−m sinc((n−m)(π −ωs))

− 1

2
(−1)n+m−N sinc((n+m−N)(π −ωs))

)
, (18)

where n,m = 0, . . . ,N.
Example 1. We wish to design a lowpass IIR filter based on the

parallel connection of three allpass filters with N = 8, ωp = 0.4π ,
and ωs = 0.5π . Note that this filter cannot be designed using a 3-
band IIR filters described in [8] because ωp is not in [0,π/3]. As
we pointed out before, the design of lowpass filter is reduced to de-
signing a complex-valued allpass filter. By computing the smallest
eigenvalue of R with Ws = 60.9, we obtain the filter coefficients
an, n = 0, . . . ,N, from the corresponding eigenvector (see (12)).
The resulting magnitude response of the designed filter is shown
in Figs. 2(a) and 2(b) in solid line.

3.2 Equiripple method

Now we consider the design of optimal allpass filters in the Cheby-
shev sense. In [15], it is demonstrated that an equiripple phase error
has an optimal solution in the Chebyshev sense. Furthermore, the
authors propose an efficient iterative eigenfilter design method.

The problem is to find the smallest, positive, and real eigenvalue
λ and the corresponding eigenvector a from

Pa = λQa, (19)

where the vector a contains the filter coefficients an (see (12)) and
the matrices P and Q are given by [15]

[P]n,m =

{
We sinΘm(ωn), 0 ≤ m ≤ N;

We cosΘm−N−1(ωn), N < m ≤ 2N +1;
(20)

[Q]n,m =

{
(−1)n+l cosΘm(ωn), 0 ≤ m ≤ N;

(−1)n+l+1 sinΘm−N−1(ωn), N < m ≤ 2N +1;
(21)

where l = 0 or 1 to guarantee λ > 0, We is a weighted constant, and

Θm(ωn) =

{
m−N

2 ωn, |ωn| ≤ ωp;
m−N

2 ωn − π
3 , ωs ≤ |ωn| ≤ π;

(22)

where ωn, n = 0, . . . ,2(N +1), are the extremal frequencies.
To obtain equiripple phase error and the optimal Chebyshev so-

lution as well, we use the iterative procedure introduced in [15].
Example 2. We use the same design parameters as in Ex-

ample 1. Additionally, we select We = 0.052. This ensures that
the stopband attenuation is 60dB. To get the desired property
an = aN−n, the number of extremal frequencies in both passband
and stopband must be the same, i.e., N + 1. Figures 2(a) and 2(b)
illustrate the magnitude characteristic of the lowpass filter in dash-
dotted line.

3.3 Maximally flat method

In the following, we describe the maximally flat design. In [10],
a method to design complex-valued allpass filters with flat group
delay response at any desired set of frequency points is proposed. In
our case we select three points, i.e., the points ω = 0, ω =−ωr, and
ω = ωr. Notice that we can get a Butterworth-like filter if ωr = π .

Applying the method [10] with the number of null derivatives of
the group delay at ω = 0, ω =−ωr, and ω = ωr equal N−2, N/2−
2, and N/2 − 2, respectively (the reason is that this combination
gives the filter coefficients with the property bn = bN−n), we find
that the desired filter coefficients are expressed as

bn = (−1)n

[(
N

n

)
− 4e jφα /2

√
3

(
N/2

n

)
cN,n(ωr)cos (φα/2+π/6)

]
,

(23)
where n = 0, . . . ,N/2, φα is the phase value of α , and the function
cN,n(ωr) for different values of N is given in Table 1. Moreover, we
have cN,0(ωr) = 0.

The allpass filters described here are maximally flat in the fol-
lowing sense. Given the allpass filter order N, the phase and group
delay values at ω = 0, ω = −ωr, and ω = ωr, the coefficients are
chosen so that as many derivatives of the group delay as possible
vanish at ω = 0, ω = −ωr, and ω = ωr.

We now discuss the problem of obtaining the values φα . To do
so we consider the passband edge frequency ωp and the attenuation
in dB at this frequency point Ap. From (7) we define

φp = cos−1

(
3 ·10−Ap/20 −1

2

)
, (24)

which gives the desired phase φA(ω) at ωp.
In order to find the value of φα , we solve [10]

N

∑
n=0

sin
(
(n−N/2)ωp +

(
φα −φp

)
/2
)
bRn

−
N

∑
n=0

cos
(
(n−N/2)ωp +

(
φα −φp

)
/2
)
bIn = 0.

(25)

From (25), it follows that

φα (ωp,Ap,ωr) = 2 ·∠
{

RpA′
p +1+ j

√
3(Rp +1)

}
, (26)

where ∠{x} stands for the angle of x, and

Rp =
−2N−1 sinN

(
ωp

2

)

cN,N/2(ωr)+2CN (ωr,ωp)
, A′

p =

√
1+3 ·10−Ap/20

1−10−Ap/20
,

(27)
where

CN(ωr,ωp)=
N/2−1

∑
n=1

(−1)N/2+n

(
N/2

n

)
cN,n(ωr)cos

(
(N/2−n)ωp

)
.

(28)
In a similar way, we can define the values φα (ωs,As,ωr) and

φα (π,As,ωr), where As is the attenuation at both ω = ωs and ω = π .
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N n cN,n(ωr) N n cN,n(ωr)
2 1 1− cos(ωr)

14

1 1− cos(ωr)

4
1 1− cos(ωr) 2 1− cos(2ωr)
2 1− cos(2ωr) 3 26/5−21/5cos(ωr)− cos(3ωr)

6

1 1− cos(ωr) 4 8−7cos(2ωr)− cos(4ωr)
2 1− cos(2ωr) 5 143/3−35cos(ωr)−35/3cos(3ωr)− cos(5ωr)
3 10−9cos(ωr)− cos(3ωr) 6 127−105cos(2ωr)−21cos(4ωr)− cos(6ωr)

8

1 1− cos(ωr) 7 1761−1225cos(ωr)−441cos(3ωr)−49cos(5ωr)− cos(7ωr)
2 1− cos(2ωr)

16

1 1− cos(ωr)
3 7−6cos(ωr)− cos(3ωr) 2 1− cos(2ωr)
4 17−16cos(2ωr)− cos(4ωr) 3 5−4cos(ωr)− cos(3ωr)

10

1 1− cos(ωr) 4 37/5−32/5cos(2ωr)− cos(4ωr)
2 1− cos(2ωr) 5 39−28cos(ωr)−10cos(3ωr)− cos(5ωr)
3 6−5cos(ωr)− cos(3ωr) 6 87−70cos(2ωr)−16cos(4ωr)− cos(6ωr)
4 11−10cos(2ωr)− cos(4ωr) 7 715−490cos(ωr)−196cos(3ωr)−28cos(5ωr)− cos(7ωr)
5 126−100cos(ωr)−25cos(3ωr)− cos(5ωr) 8 3985−3136cos(2ωr)−784cos(4ωr)−64cos(6ωr)− cos(8ωr)

12

1 1− cos(ωr)
2 1− cos(2ωr)
3 11/2−9/2cos(ωr)− cos(3ωr)
4 9−8cos(2ωr)− cos(4ωr)
5 66−50cos(ωr)−15cos(3ωr)− cos(5ωr)
6 262−225cos(2ωr)−36cos(4ωr)− cos(6ωr)

Table 1: Function cN,n(ωr) for different values of N.

In order to find the value ωr, we solve φα(ωp,Ap,ωr) =
φα(π,As,ωr). Similarly, we can estimate the order of the allpass
filter N by solving φα(ωp,Ap,ωr) = φα (ωs,As,ωr).

Example 3. We consider the design parameters as in Exam-
ples 1 and 2, with Ap = 3.42dB and ωr = 0.788687π . The resulting
magnitude response is shown in Figs. 2(a) and 2(b) in dashed line.
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Figure 2: Magnitude responses of the designed filters.

4. CONCLUDING REMARKS

A novel structure for the design of real-valued, causal, and stable
IIR filters is presented. It is composed of one real-valued and two
complex-valued allpass filters. We show that by applying 3-point
IDFT to the allpass filters, a set of three IIR filters that are doubly
complementary can be obtained. This means that the resulting low-
pass filter has low sensitivity to the filter quantization in the pass-
band region. We also show how the problem of designing a lowpass
filter is reduced to designing a complex-valued allpass filter with de-
sired characteristics. Additionally, three different approaches to de-
sign lowpass filters suitable for the proposed structure are presented,
that is, eigenfilter, equiripple, and maximally flat approaches. Pro-
vided design examples illustrate the techniques.
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