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ABSTRACT

Space time signal processing starts with a system of linear
equations where signals are multiplied by channel gains, and
the standard criteria for the design of space time codes focus
on differences between codewords at the transmitter. The
value of algebraic constructions is to transfer structure (cor-
relation) at the transmitter to structure at the receiver, and
the focus of this paper is the induced channel at the receiver.
We use the Golden code to explore the idea of introducing
structure at the transmitter to enable low complexity decod-
ing at the receiver. This is an important special case, since
the Golden code is incorporated in the IEEE 802.16 standard,
but the value of our approach is not limited to this example.
We describe a cognitive decoder for the Golden code with
complexity O(N?) that comes within 3dB of full MAP/ML
decoding. The decoder is cognitive in that it uses channel
state information to choose between two algorithms in a way
that is independent of the signal-to-noise ratio. The primary
algorithm is interference cancellation which fails to perform
well on a proportion of channels. We identify the channel
conditions for which inteference cancellation fails and show
that for these channels the decoding problem effectively re-
duces to a single receive antenna decoding problem for which
we have developed an efficient zero forcing algorithm. Pre-
vious hybrid approaches based on sphere decoding have cu-
bic worst case complexity and employ decision rules based
on condition number of the posterior covariance matrix. In-
terference cancellation is different in that orientation of the
covariance matters. The cognitive decoder for the Golden
code provides a uniform solution to different wireless envi-
ronments (Rayleigh/Rician) that combine rich scattering and
line of sight components. The gap between cognitive and full
MAP/ML decoding reduces to essentially ML performance
as the line of sight component becomes more dominant.

1. INTRODUCTION

Maximum-Likelihood (ML) decoding of space-time codes
reduces to the problem of finding the least squares solution
to a system of linear equations. The entries of the unknown
vector are typically drawn from a QAM constellation of size
2™ and the coefficients and the entries of the objective vector
are real numbers. The problem of finding the closest lattice
point to a given point is known to be NP hard, but the com-
munications problem is more tractable since the objective
vector is an unknown lattice point that has been perturbed by
an additive noise vector with known statistics. In fact Has-
sibi and Vikalo [1] have obtained a closed form expression
(given certain assumptions about the channel matrix) for the
average complexity of the search algorithm of Fincke and
Pohst [2] by averaging over the noise and the lattice. This

algorithm performs a search over lattice points that lie in a
certain sphere of radius d about an initial estimate.

However, the complexity of sphere decoding is not deter-
mined by the complexity of lattice point search. When the
channel matrix is close to singular, the preprocessing stage
of the sphere decoding algorithm yields a plane of possibil-
ities rather than a single initial estimate. When this occurs,
lattice point search degenerates to an exhaustive search, and
the expected complexity, as shown by Jaldén et al. [3] is ex-
ponential in the constellation size and strongly dependent on
the SNR. Thus sphere decoding is attractive only for some
SNR regimes and for modest constellation size. By contrast,
our worst case decoding complexity for the Golden code is
quadratic (worst case complexity of sphere decoding is at
least cubic) and the algorithm itself is more resilient to near
singularity of the channel matrix.

The Golden Code [4], [5], [6] is a remarkable space-time
code that employs two antennas to transmit four complex
QAM symbols over two time slots while achieving full di-
versity. This tradeoff between rate and reliability is best pos-
sible in terms of the diversity-multiplexing bound derived by
Zheng and Tse [7] and in fact the minimum determinant is
bounded below by a constant that is independent of the size
of the constellation.

This paper describes a cognitive decoder for the Golden
code with complexity O(N?), where N is the number of sym-
bols in the underlying QAM constellation. The receiver uses
channel state information to choose between two algorithms,
each with complexity O(N?), and this choice is independent
of the signal-to-noise ratio. The primary algorithm is inter-
ference cancellation (IC) which fails to perform well on a
proportion of channels and this failure significantly degrades
overall perfomance. We identify the channel conditions for
which IC fails and show that for these channels the decod-
ing problem effectively reduces to a single receive antenna
decoding problem. In this case we apply our fast decoding
algorithm based on Diophantine approximation [8]. Simula-
tion results show the performance of the cognitive decoder
is within 3dB of full MAP/ML perfomance and reduces to
essentially ML performance as the line of sight component
becomes more dominant.

2. THE GOLDEN CODE

The Golden Code is a 2 x 2 block space-time code that en-
codes four complex symbols over two time slots yet achieves
full diversity (see [4], [S] and [6]). Codewords in the Golden
Code take the form
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where

X — ( X1 +x2T

X3 +x4T
, 2
i(x3 +x40) ) ’ @

X1 +x1

with x1,x2,x3,x4 € € C Z[i] the transmitted symbols, and
% is a signal constellation taken to be 2"-QAM with in-
phase and quadrature components equal to =1,43,... and
m bits per symbol. The parameters T and u are the real
roots of the polynomial x> —x — 1, that is, the Golden Ra-
tioT = # and its algebraic conjugate u = —1/7 = 1%5,
which is the negative of the inverse of the Golden Ratio.
The diagonal matrix diag[l + iu, 1+ it] serves to equalize
transmitted signal power across the two transmit antennas.
The entries of Golden space-time codewords are drawn from
Z[i][v/3] € Q(i,V/5). Following [9] we rewrite (2) as

(X1 Xx3 T 0 Xy X4
X_(ix3 x1)+<0 [,L) (ix4 xz)' &)

The set of integer matrices of the form

(,-;C ){), %y € Zlil. @)

is a matrix representation of the cyclotomic ring Z[{g], where
{g is a primitive 8™ root of unity. For details on the algebraic
structure of this code, see [8].

Let (r11,712) and (r21,722) be the two received signal vec-
tors where the components are the signals received over two
consecutive time slots. Let k71, kK21, K12 and k», be the com-
plex channel gains from the two transmit antennas to the two
receive antennas. For convenience, in what follows we will
use the rescaled channel gains

h = (1+i[,L)K11, hy = (1+iT>K‘21 (®)]

_g‘_
N

(1+ig)kp, g=-—710+it)Kkn. (6)
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The received signal vector is given by

hy h
(rll7r12) - (xl7x3) (lh; h?)

h h
+ (x2,Xx4 /L) (lhzl‘lz h21¢>+(n“’n12) @)

(ra1,722) = (x1,%2) (g1 gz)

ig2 &1

+ (2, xa0) (lgg;; ?ﬁ_) + (n21,n22), (8)
where ny1,n12,n21 and nyy are complex Gaussian random
variables with zero mean and covariance 2621.

Given that the channel gains & and g are known at the
receivers and each symbol is transmitted with equal proba-
bility, optimal decoding is provided by the maximum a pos-
teriori MAP/ML estimate.

Setting ry = (l’]l,l’lz), r) = (7’21,7’22), S = (xl,xg), Cc =
(x2,x4), 11 = (n11,n12) and ny = (ny1,n27), we rewrite equa-

tions (7) and (8) as

r; =sh+ch+n ©)]
r, =sg+cg+ny (10)
h
(r1,12) = (s,¢) <h ‘?) +(ny,02) (1
8
r=xA+n (12)

where r = (r1,12), X = (s, c), the meaning of ~ is clear from

(7) and (8), and
_(h g
A<}~Z g)' (13)

The likelihood function of codewords s and ¢ given the re-
ceived signal r is given by

plr|x) o« exp{—ﬁ(x—rAT(AAT)*l)AAT(x—rAT(AAT)*l)T}
(14)
Taking the prior distribution of the symbols s and c to be
uniform on the constellation %,,, we obtain the MAP/ML es-
timate:
(§,¢) = argmax p(r|s,c). (15)
s,c€62

3. INTERFERENCE CANCELLATION

The idea behind interference cancellation is that the compu-
tation of the MAP/ML decoder can be reduced if one of the
codewords, c say, can be “cancelled out” in some way. We
would then only need to search over s € €. This implies that
we should attempt to marginalize the joint posterior probabil-
ity p(s,c|r) with respect to c. This leads to

p(slr)e< Y p(s,clr), (16)

ce¢?
and the MAP/ML decision rule is

§ = argmax p(s|r) (17)
s€6?

It is evident that this does not help as the sum over ¢ can-
not be evaluated analytically, and so the evaluation of (16)
requires just as many likelihood function evaluation as (15).
However, if the sum in (16) were to be replaced by a Gaus-
sian integral the marginalisation could be computed analyt-
ically. Thus, instead of using the fact that c lies in QAM
constellation, we simply assume that

E(c)=0 and E(cc’)=Ey (18)

Consequently, the prior for c is taken to be the maximum en-
tropy distribution satisfying the constraints (18), that is, the
Gaussian distribution with zero mean and variance equal to
the constellation power E4. The new prior for c is perfectly
consistent with our prior knowledge of c, it just doesn’t rep-
resent all that we know. Overall this means we allow some
increase in the probability of error in detecting codewords s
(and c), for reduced computational load.

Consider the full posterior distribution for the symbols
x = (s,c):

p(x|r) e exp{*z%z(xfrf\"' (AAT)"HAAT (x—rA"(4AT) 71T}
19)
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The covariance for x is

1 ( hi' + gg"

el 1 —(hh" +gg")
(4dl)™ = 5v2 \ —(hht + gg") > 20)

hh' + gg*

where V = |hjg2 — hpg1| is the channel volume. The perfor-
mance of the MAP/ML estimate for x is given by

2\ 4
det (262(AAT) 1) = (fgv) 21)

Marginalizing (19) with respect to c, the posterior distribu-
tion for s becomes

pslr) e exp{—(s — )L (s — 1)} (22)

where ~
Us =R, K7L, (23)
Ry = (ExK'K +20°13), (24)
and
¥, = KR, KT (25)
with ~ ~
K=(hg), K=(hg) (26)

A similar result holds for the distribution of ¢ when we
marginalize s, where K and K switch roles. We note that
in the limit E, — oo, corresponding to no prior knowledge
about c (or s), the marginal covariances for s and ¢ become

20% ..
Lo = oz (k' +22"), 27)
and )
20 + i
Te =2z (hh' +gg"). (28)

As we expect 262 < Ey in any practicable SNR regime, we
will often use these expressions for analysis and thresholding
in place of the full expression (25).

To obtain the best performance in IC we marginalize with
respect to whichever of s or ¢ has the smallest det(X). The
MAP estimate of s is

8 = argmin (s — ig)Z; ' (s — ) (29)

SECm

Assuming that the symbol s (or c¢) has been decoded cor-
rectly, the receiver then subtracts the contribution of s (or c¢)
from the received signal vector and estimates c (or s):

& =argmin (r — (8,¢)A)(r — (8,c)A)" (30)

ceC

The performance for decoding s and c is determined by
det(Xs) if we marginalize with respect to s, and by det(X.) if
we marginalize with respect to s.

It is clear that the performance of MAP/ML degrades
when the channel approaches being rank deficient, that is,
as V — 0. In this situation the computational complexity of
sphere decoding increases dramatically since the initial point
becomes a plane and lattice point search resembles exhaus-
tive search.

We are less interested in the absolute performance of IC,
than in its performance relative to MAP/ML. The intuition

Vs s

Figure 1: Geometric representation of IC perfomance.

is represented in Figure 1, where the ellipse represents the
1o ellipsoid of the full posterior covariance. This ellipsoid
becomes progressively more eccentric as the condition num-
ber of the covariance increases. The circle represents the size
of the sphere which contains the same volume total volume
as the posterior distribution ellipsoid. This sphere has radius
202 / \fSV. The covariance of the marginal distributions for
s and c are represented by the projections of the ellipsoid on
to the s and c axes. If both the condition number of the pos-
terior covariance is large and its major axis is approximately
equiangular with the s = 0 and ¢ = 0 planes, then det(Xs)
and det(X.) will both be large, hence IC will perform poorly
compared to MAP/ML. Thus, the performance of IC with
respect to MAP/ML can be captured by the dimensionless
quantity

A = min {det(Zs) /(262 /V/5V)?,det(Z.) /(262 /V/5V)?}
(€29)

We classify channels at the receiver in terms of the ex-
pected performance of IC. Figure 2 shows the relative per-
formance of IC on channels with A < ¥, where 7 is a given
threshold value. We refer to these as good channels. For
the 4-QAM results displayed in Figures 2 and 4, we took
Y =5. The simulations show that there are certain channels,
which we refer to as bad, for which a direct application of
IC performs very poorly. If we remove these channels the
performance of IC improves substantially, as demonstrated
in Figure 2.

If the channel is good we apply IC, and if the channel
is bad we must find some alternative decoding scheme (cf.
Maurer et.al [10] and Artés et.al [11] who ignore orienta-
tion and distinguish good from bad channel based only on
the condition number of the covariance). To this end, we
now analyze the full posterior distribution when the channel
is bad.

Consider the channel matrix A from equation (19). The
matrix A has the singular value decomposition

A=UDW". (32)
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—=4— 1C(good channels)
A —+— IC(all channels)
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Figure 2: Performance of IC under good channels (A < )
and all channels conditions.

The columns of U are the eigenvectors of AAT which occur

in pairs of the form <Z~) where u is a 2 x 2 cyclotomic ma-

trix. The columns of W are the eigenvectors of ATA and
D = diag(A1,A1,42,4;) where A; and A, are the eigenval-
ues of AAT. Both eigenvalues have multiplicity 2. Given

h
H= (fz)’ define

and the corresponding inner product by

|H|2 = hh+ BT, (33)

(H,G):=h'g+h'g. (34)

Then we have
1
M ke = S(HIE+IGI) (14 VI—AR),  G9)

where 5
5v
A= (36)
(IH[z+1GlI?)>
and corresponding eigenvectors

. _(H7G)T P
W) o <H||%—7L,~ ji=1,2. (37)

Substituting (32) into (12), we then obtain
(r1,r2)W = (s,c)UD+ (n1,n2)W (38)

It follows from (35) that for a given SNR, the smaller eigen-
value Ay — 0 as the channel volume V — 0. Retaining only
the larger eigenvalue A; and its corresponding eigenvectors
w| = (W17W2)T and u; = (uhﬁ])T leads to

r’ =suj +ci; +1n’, (39)
where

/ /
r' =riwi+rowy, n =njwi+nows, (40)

and
up I (hwi+gws
= - = — ~ ~ . 41
w (“1) M (hw1 —|-ng> S
Equivalently, (39) can be written in terms of cyclotomic num-

bers: _
¥ =HWs+hc+n (42)

/ /

1 r r

A=) 43)
ryp Iy

H = (hwi +gw2) /A1,

where

and
B = (hwy +gwa) /A1 (44)

As V — 0, the return from the virtual channel corre-
sponding to the smaller of the two eigenvalues contains al-
most no information. Thus, we can drop this channel and
(12) is reduced to (42), which is equivalent to a single re-
ceive antenna system with virtual channel /.

In [8] we give an O(N?) algorithm for decoding the
Golden code with a single receive antenna. Channel state
information is used to select between two zero-forcing equal-
izers inverting i’ or . The selection is made to maximize ef-
fective SNR and the underlying Diophantine geometry guar-
antees that at least one of the choices is good. Simulation
results for the Golden Code show performance within 1 dB
of full MAP/ML decoding.

4. THE COGNITIVE DECODER

We have observed that the poor performance of IC is due to a
small proportion of channels for which the associated covari-
ance matrix AA" is both close to rank deficient and oriented
in such a way that the marginal covariances for s and c are
both large . The performance of IC relative to MAP/ML is
measured by the signal-to-noise ratio independent quantity

A = min {det(Zs)/(26%/V/5V)?, det(Z.)/ (262 /V5V)?}

given in (31).
We propose the following decoding algorithm, where y
is a threshold parameter to be chosen:

1. If A < y apply interference cancellation to the decoding
problem (12).

2. If A > vy apply the single receiver quadratic decoder [8§]
to the virtual single receiver decoding problem (39).

That is, when the channel is good, we apply IC and when
channel is bad we fall back to single antenna decoding (39).

We now consider the choice of threshold value in the al-
gorithm. Figure 3 displays the perfomance of cognitive de-
coding for 4-QAM as a function of the threshold parameter
Y. We observe that the best performance for all the SNR was
achieved at Yy =5, (= 7dB). Thus, both A and the thresh-
old parameter are independent of SNR, and depend only on
the “shape” and “orientation” of the ellipsoid associated with
posterior convariance and not on its size.

We compared the performance of the cognitive decoder
with the MAP/ML decoder in simulation, assuming the chan-
nel is known at the receiver. The SNR at a receive antenna is
defined as

P
SNR(dB) = 10log, <2c’;2> , (45)
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Figure 3: Performance against threshold values.
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Figure 4: Performance comparison between MAP/ML de-
coding, IC and cognitive decoding for two receive antennas.

where P, is the (average) signal power per bit at each receive
antenna which is defined as

Py = Ep(||h|* + IR]> +lIg* + 1) /2. 6)

where E), is the average energy per bit. Figure 4 and 5
show the performance of the cognitive decoder comes within
3dB of full MAP/ML for Rayleigh channel and 1dB of full
MAP/ML for pure line of sight respectively.

S. CONCLUSION

We presented a single cognitive decoder for the Golden
code with complexity O(N*) that comes within 3dB of full
MAP/ML decoding on Rayleigh channels and reduces to
essentially ML performance for pure line of sight chan-
nels. The cognitive decoder uses channel state information
to choose between two algorithms, each with complexity
O(N?), and this choice is independent of the signal-to-noise
ratio.
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