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ABSTRACT
This paper investigates a more general class of M-channel
FIR filter banks (FBs) with arbitrary equal filter lengths
L = KM + β (0 ≤ β < M). The motivation for such FBs
is to develop more general theories, factorizations and de-
signs to overcome the limitations of traditional works with
unnecessary length constraint L = KM, and to achieve a bet-
ter trade-off between the design and computational complex-
ities and the filter length. The existence conditions and lattice
factorizations are developed for both paraunitary and perfect
reconstruction FBs with any number of channels M ≥ 2. Fur-
thermore, it can be shown that the novel derived lattice fac-
torization is complete for any FIR paraunitary FB and for any
order-one perfect reconstruction FB. Finally, a design exam-
ple is presented to validate the proposed lattice structure.

1. INTRODUCTION

The multichannel critically sampled filter bank (FB), a pow-
erful tool in time-frequency signal analysis, has been exten-
sively studied and employed in various signal processing ap-
plications [1, 2]. Fig. 1(a) illustrates a typical M-channel FB
in the regular form, where Hk(z) and Fk(z) (0 ≤ k ≤ M − 1)
are analysis and synthesis filters, respectively, and the corre-
sponding polyphase form is shown in Fig. 1(b), where E(z)
and R(z) are the analysis and synthesis polyphase matrices,
respectively [1]. After the analysis bank, the low rate sub-
band signals can provide a more efficient and compact rep-
resentation than the input signal itself, which is often used
for signal compression and denoising, etc. In addition, M-
band wavelets can be generated by iterating M-channel FBs
with regularity. In the past two decades, there has been per-
sistent interest in the study of theory, factorizations and de-
signs for FIR FBs due to their wide applications in signal
processing. The fundamental theory and factorization results
for M-channel FIR FBs were reported in [3] for paraunitary
(PU) FBs and in [4, 5] for more general perfect reconstruc-
tion (PR) FBs. In addition, they were studied in [6] under the
framework of extended lapped transforms. The relationship
between two-channel FBs and wavelets was further investi-
gated in [7]. For multichannel PUFBs, several more efficient
lattice structures were reported in [8], [9] and [10]. For gen-
eral PRFBs, an important subclass of PRFBs, i.e., causal FIR
FBs with anticausal FIR inverses (CAFACAFI), was intro-
duced in [5] for the characterization of FIR PRFBs. Recently,
[11] and [12] studied such class of PRFBs and PUFBs with
regularity in the dyadic-based form, respectively. In addition,
image coding based on general nonlinear phase FIR FBs was
studied in [11] and [13].

In this paper, we study a more general class of FBs with
arbitrary equal filter lengths L = KM + β (0 ≤ β < M,K ∈
N), in contrast to most previous works with the unnecessary

(a)

(b)

Figure 1: M-channel critically sampled uniform filter bank:
(a) Direct form (b) Polyphase form

length constraint of L = KM. The main motivation for this
work is to further develop more general theories and designs
for FIR FBs to complement previous works. Our work can
also yield more flexible choices on designing FBs for some
desired applications like low bit rate image coding, whereas
traditional works [3]-[13] with unnecessary length constraint
of L = KM, i.e., β = 0, greatly limit the possible designs.
For example, if the length is constrained to be maximum 2M
(lapped transforms) due to the constraint of computational
complexity, there are only two possible choices in conven-
tional designs in contrast to M + 1 possible choices by our
method. The restriction becomes more severe for larger M.

Previous works for the case of β > 0 have only been re-
ported in some restricted forms of FBs. In [14], the cosine-
modulated FBs were studied. Another one is the class of lin-
ear phase PUFBs with even channels [15]. For more efficient
image and video coding with backward compatible with the
existing standards, a class of linear phase PRFBs has also
been studied under the framework of lapped transforms via
pre/post-filtering structure [16, 17]. However, different from
before, we systematically investigate general arbitrary equal-
length PU and PR FBs without any phase constraint in this
paper. First, some existence conditions on filter length L for
such FBs are given, followed by a brief review of the gen-
eral lattice structure. Next, arbitrary equal-length PUFBs are
studied in Sec. 3. The PRFBs are further investigated in Sec.
4. In addition, regular FBs are to be studied in Sec. 5. Fi-
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nally, one design example is shown in Sec. 6 to validate the
proposed design method.

Notations: Bold-faced quantities denote matrices and
vectors. IM denotes the identity matrix with size M, and 0
is a null matrix of appropriate size. UH , UT and U−1 de-
note the conjugated transpose, the transpose and the inverse
of matrix U, respectively. The rank of a matrix U is de-
noted by ρ(U). The diag() denotes a diagonal (or block di-
agonal) matrix with specified diagonal elements (or blocks)
in bracket. The polyphase matrix of FIR FBs can be writ-
ten as E(z) = ∑K−1

i=0 Eiz−i, where EK−1 �= 0, and the maxi-
mum possible filter length L = KM. The tilde operation on
a polyphase matrix is defined by Ẽ(z) = EH(1/z∗), where ∗
denotes complex conjugation for scalars.

2. EXISTENCE CONDITIONS AND GENERAL
LATTICE STRUCTURE

A FB has PR property if R(z)E(z) = IM . The FB is called
PU if Ẽ(z)E(z) = IM . Due to the PR or PU constraints, there
is a necessary condition on the filter length L for such FBs.
It can be shown that filter length L cannot be KM + 1 for
both PR and PU (nontrivial) FBs. The proof is based on
the rank constraint for the highest-order block EK of E(z)
from the PR or PU condition, which is omitted here due to
space limitation. Such existence condition is very useful for
FB designs. It can narrow down the solution space for FB
designer, which is helpful for deriving efficient lattice struc-
tures and avoiding impossible design specifications. It also
helps to explain why only some solutions exist. For example,
there does not exist any two-channel PUFB with odd length
[7], which is just a special case M = 2 of our result.

Then, we present the general lattice structure for FIR
FBs with length L, which is expressed by a factorization of
polyphase matrix E(z) in the following product form,

E(z) = GK−1(z) · · ·G1(z)E0(z) (1)

where E0(z) is a FB with prescribed properties like PU/PR
and length L0 = N0M + β , and each block Gi(z) with or-
der N1 can simultaneously increase filter length by N1M and
propagate those desired properties held in E0(z). In this way,
we can easily construct FBs with desired properties and pre-
scribed length L = [(K − 1)N1 + N0]M + β . The lattice (1)
has a similar modular structure of linear-predictive lattice fil-
ters widely used in speech processing, which means we can
easily obtain the given filter length just by varying the num-
ber of blocks Gi(z). In addition, many desired properties
like PU/PR and filter length L can be structurally enforced
into the lattice structure (1), which means the desired prop-
erties are always held independent of which specific values
are chosen for the lattice parameters. Thus, the FBs can be
designed with exact desired properties and fast convergence
via unconstrained optimization routine, in contrast to some
other methods only capable of approximation.

Next, we present some existing structures for blocks
Gi(z) widely used before [5]. For general (nontrivial) PR
FBs, Gi(z) = IM −UiVH

i + z−1UiVH
i with VH

i Ui to be an
upper-triangular matrix, where Ui and Vi are M × ri ma-
trices (1 ≤ ri < M). For the equal filter length L between
analysis and synthesis filters, we need to further impose an
additional condition VH

i Ui = Iri [5, 9]. For the PUFBs,
we just need to further constrain Vi = Ui. Note that the

above dyadic-form based block Gi(z) can also be rewritten
as Wi(z) = WiΛi(z), where Wi is an M×M invertible ma-
trix for PRFBs or a unitary matrix for PUFBs, and Λi(z) is
a delay matrix in the form of diag(IM−ri ,z

−1Iri). Further-
more, such Wi(z) can be further simplified [9, 10, 13] by
successively removing redundant parameters in the product
of Wi(z) with the remaining lattice structure.

However, the difference between our work on the lattice
factorization (1) and conventional ones lies in the starting
block E0(z). Contrary to [3]-[13], for the general case of β �=
0, E0(z) cannot be made order zero, i.e., a constant matrix,
which is treated as a trivial case because it would impose
multiple of (M−β ) zero filter coefficients at fixed positions.
Thus, E0(z) has at least order one, i.e., N0 ≥ 1.

3. PARAUNITARY FILTER BANKS

Consider an M-channel PUFB with filter length L = KM+β .
Since the general PU propagating block Gi(z) in Sec. 2 has
order one, i.e., N1 = 1, the minimal order of initial block
E0(z) can be made one, i.e., N0 = 1 and length M + β .
Thus, E0(z) can be written in the form E0(z) = [E00 +
z−1E01,E02], where E00 and E01 are both M ×β matrices,
and E02 is an M × (M −β ) matrix. Then, with the PU con-
dition Ẽ0(z)E0(z) = IM , the following matrix equations can
be established.

EH
00E00 +EH

01E01 = Iβ (2)

EH
02E02 = IM−β (3)

EH
02E00 = 0(M−β )×β = EH

02E01, EH
00E01 = 0β (4)

With these equations, a set of rank conditions on the matrices
E00, E01 and E02 can be derived, which is the key to our
lattice factorization.

Lemma 1. For the class of PUFBs and its starting block
E0(z) stated above, the matrix E02 has full column rank M−
β i.e., ρ(E02) = M−β , and ρ(E00)+ρ(E01) = β .

Proof. From (3), it can be seen that matrix E02 has full rank,
thus ρ(E02) = M − β . According to (2), we can obtain
that β = ρ(EH

00E00 +EH
01E01)≤ ρ(EH

00E00)+ρ(EH
01E01) =

ρ(E00) + ρ(E01), thus we know ρ(E00) + ρ(E01) ≥ β .
Define matrix F = [E00,E01,E02], then from (4), we can
see easily that FHF = diag(EH

00E00,EH
01E01,IM−β ). Due

to such diagonal structure, it can be seen ρ(FHF) =
ρ(EH

00E00) + ρ(EH
01E01) + ρ(IM−β ) = ρ(E00) + ρ(E01) +

M − β = ρ(F) ≤ min{M,M + β} = M, which implies
ρ(E00) + ρ(E01) ≤ β . Finally, we obtain ρ(E00) +
ρ(E01) = β by combining the above two inequalities.

These rank constraints derived from the PU conditions
establish the necessary constraints on those matrices E0i.
Without loss of generality, we can assume the rank of matrix
E01 to be α with 0 ≤ α ≤ β and thus ρ(E00) = β −α due to
Theorem 1 (Note that the case of α = 0 or α = β would lead
to the trivial case of the starting block E0(z) with β zero filter
coefficients at either left boundary or right boundary, which
would result in the PUFB E(z) with β zero coefficients at
the boundary. Thus, we only consider 1 ≤ α ≤ β − 1 in the
following). For the lattice factorization of E0(z), we propose
parameterized forms for E00 and E01 according to the above
derived necessary constraints as follows,
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E00 = U00A0, E01 = U01A1, E02 = U02 (5)

where matrices U00, U01 and U02 have sizes of M×(β −α),
M ×α and M × (M −β ), respectively, and matrices A0 and
A1 have sizes of (β −α)×β and α ×β , respectively. Ac-
cording to our assumption on the rank of E01 and the con-
straints stated in Lemma 1, the matrices U0i should be of full
column rank and matrices Ai should be of full row rank. This
can be seen from the reduced singular value decomposition
(SVD) [22] in which the columns of U0i are the left singu-
lar vectors and the rows of Ai are the right singular vectors
scaled by the singular values.

By the parameterized form (5) for matrices E0i, we can
establish the lattice factorization of E0(z) as follows,

E0(z) = [U00A0 + z−1U01A1,U02]

= [U00,z
−1U01,U02]

[ A0 0
A1 0
0 IM−β

]

= [U00,U01,U02] diag(Iβ−α ,z−1Iα ,IM−β )Γ

= E0Λ0(z)Γ (6)

where E0 = [U00,U01,U02] is a square matrix of size M and
Γ = diag(Tβ ,IM−β ) with square matrix Tβ = [AT

0 ,AT
1 ]T of

size β . It can be shown easily that such factorization can
guarantee the PU property of FBs as long as matrices E0 and
Tβ are unitary. Thus, the submatrices U0i of square matrix
E0 must be of full column rank as in our parameterized form
(5). Similar argument is also applicable to matrices Ai.

Combining (1) and (6), we can obtain the overall forward
factorization for E(z) of PUFBs as follows.

E(z) = GK−1(z) · · ·G1(z)E0Λ0(z)Γ (7)

It can be seen easily that the traditional factorization of
PUFBs with length constraint L = KM, i.e., β = 0, is only
a special case of our proposed lattice factorization. Since the
matrices Λ0(z) and Γ will disappear when β is zero, which
leads the factorization (7) to degenerate into the same as be-
fore [1, 8, 9, 10]. In addition, a special case of β = 1 deserves
more attention. In this case, the matrix Tβ becomes a scalar
and we can only have 0 ≤ α ≤ 1. However, either α = 0 or
α = 1 would lead to the zero filter coefficient at the boundary
of E0(z). Moreover, these zeros will be held at the boundary
at every stage of lattice structure (1). Thus, any PUFB with
length KM+1 would always have zero filter coefficient at the
boundary, which is actually a PUFB with shorter length KM
(with possible shifting) since the proposed lattice structure is
complete. This also explains the statement on the existence
conditions for filter lengths in Sec. 2.

It is clear that the proposed lattice structure of (7) can
generate M-channel PUFBs with arbitrary lengths L = KM +
β . Furthermore, a stronger result is that the converse, i.e.,
completeness of the proposed lattice factorization, is also
true, which is stated in the following theorem.

Theorem 1. Any M-channel FIR PUFB can be factorized
into the lattice (7) with appropriate choice of K and β .

Due to the space limitation, the detailed proof is omit-
ted here, which relies on a modified order reduction, i.e.,
length reduction, and the rank constraints shown in Lemma

1. Theorem 1 reveals the theoretical significance of the pro-
posed lattice factorization (7), i.e., it can completely cover
the whole space of FIR PUFBs. To our knowledge, this is
the first complete lattice factorization for the FIR PUFB with
any length, reported in the literature.

Degrees of freedom: Any FIR PUFB is characterized
by the lattice structure (7). For the case of the filter length
L = KM + β , there are K − 1 PU propagating blocks Gi(z)
and two free unitary matrices E0 and Tβ . Recall that the
simplified order-one building blocks derived in [10] and [13]
are equivalent to Gi(z) in Sec. 2. Each simplified block
has 2ri(M − ri) free parameters for the complex coefficient
case and ri(M − ri) for the real coefficient case. The two
general square unitary matrices E0 and Tβ need M2 + β 2

and M(M − 1)/2 + β (β − 1)/2 parameters for the complex
and real coefficient cases, respectively. Thus, the degrees
of freedom are given by DL = M2 + β 2 + ∑K−1

i=1 2ri(M − ri)
for the complex case and DL = M(M−1)/2+β (β −1)/2+
∑K−1

i=1 ri(M− ri) for the case of real-valued coefficients. Note
that there still exist redundant parameters in the above char-
acterization, which will be addressed in future.

4. PERFECT RECONSTRUCTION BANKS

In this section, we further extend the above lattice factoriza-
tion to general M-channel PRFBs with arbitrary equal filter
lengths L = KM+β . Since the general PR propagating block
Gi(z) has order one as seen from Sec. 2, the initial block
E0(z) can still be made order-one and length M + β . Thus,
E0(z) can also be written in the same structural form as in
the PUFB, i.e., E0(z) = [E00 + z−1E01,E02], where matri-
ces E0i have the same sizes as those in Sec. 3. Due to the
class of PRFBs with CAFACAFI, we know that the initial
block R0(z) of the synthesis bank can also be made anti-
causal with order-one and length M +β since the PR propa-
gating block G−1

i (z) for the synthesis bank is order-one an-
ticausal. Thus, we can write R0(z) in the following form
R0(z) = [RT

00 + zRT
01,R

T
02]

T , where R00 and R01 are both
β ×M matrices, and R01 is an (M−β )×M matrix.

Similar to the case of PUFBs, we can employ the PR con-
ditions to obtain a set of matrix equations (omitted due to
space limitation) which consequently lead to the necessary
constraints on the ranks of matrices E0i and R0i, stated for-
mally in the following Lemma.

Lemma 2. For the class of PRFBs and the starting blocks
E0(z) and R0(z) stated above, the matrix E02 has full
column rank M − β i.e., ρ(E02) = M − β , and ρ(E00) +
ρ(E01) = β . Moreover, ρ(R0i) = ρ(E0i) for 0 ≤ i ≤ 2.

The detailed proof is omitted here due to the space lim-
itation. Although the statement looks similar to the case of
PUFBs, its proof cannot be extended straightforwardly from
the proof of Lemma 1 since we no longer have an impor-
tant rank equality ρ(AHA) = ρ(A) [22] for any matrix A.
Moreover, the proof of Lemma 2 brought a novel perspective
of the PR conditions of critically sampled PRFBs. Different
from the case of PUFBs, the PR condition R0(z)E0(z) = IM
alone is not enough to characterize those rank constraints
on E0i and R0i. Another PR condition E0(z)R0(z) = IM
which is usually overlooked, is actually needed in the proof
of Lemma 2 in order to show that the matrices R0i are the re-
flexive generalized inverses [18] of matrices E0i for i = 0,1
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and consequently establishes the rank conditions stated in
Lemma 2.

Without loss of generality, we can assume the rank of the
matrix E01 to be α with 0≤α ≤ β and thus ρ(E00) = β −α .
Similarly, we know that ρ(R01) = α and ρ(R00) = β −α
due to Lemma 2. The parameterized forms of E0i shown
in (5) and the corresponding lattice factorization of E0(z)
shown in (6) are still applicable to PRFBs here, since (5)
and (6) only exploit the rank structures of matrices E0i and
the PRFBs have the same rank structures as those of PUFBs,
as shown in Lemma 1 and 2. Therefore, the overall lattice
factorization of a PRFB E(z) with length L = KM + β has
the same structural form as (7). However, different from
PUFBs, the factorization (6) can ensure the PR property if
and only if the lattice parameters E0 and Tβ are just nonsin-
gular matrices, in contrast to more restrictive unitary matri-
ces for PUFBs. Compared to the conventional factorizations
for PRFBs with filter lengths L = KM [4, 5, 11, 13], the pro-
posed one is more general since it can degenerate into the
traditional one by setting β = 0. Furthermore, we present
the completeness of the proposed lattice factorization for any
order-one PRFBs without length constraint, i.e., L ≤ 2M, in
the following theorem without proof, which generalizes the
previous factorization results (cf. [19, Table I]).

Theorem 2. For the class of PRFBs stated above, the pro-
posed lattice factorization of (7) is complete for any L ≤ 2M.

In addition, as in the case of PUFBs, the matrix Tβ be-
comes a scalar when β = 1. Consequently, the only possible
choices both α = 0 and α = 1 would lead to the zero filter
coefficient at the boundary of E0(z). Thus, there does not ex-
ist any nontrivial PRFB with length M + 1 according to the
completeness of our lattice factorization stated above.

Degrees of freedom: The lattice structure of (7) can gen-
erate PRFBs with length L = KM + β . It needs K − 1 PR
building blocks Gi(z) and two free invertible matrices E0
and Tβ . Recall that the simplified order-one block Gi(z)
[13] has 4ri(M − ri) free parameters for the complex coeffi-
cient case and 2ri(M − ri) for the real coefficient case. The
two square invertible matrices E0 and Tβ need 2(M2 + β 2)
parameters for the complex case and M2 +β 2 parameters for
the real case. Thus, the degrees of freedom for the whole lat-
tice are given by DL = 2(M2 +β 2)+∑K−1

i=1 4ri(M−ri) for the
complex case and DL = M2 + β 2 + ∑K−1

i=1 2ri(M − ri) for the
real case. Note that there are still some redundant parameters
in the above characterization, which will be our future work.

5. REGULAR FILTER BANKS

Another desired property of FB is the regularity which is
closely related to the performance of image coding based on
FBs. In this paper, regularity of FBs is referred to as the num-
ber of multiple zeros at the aliasing frequencies [20, 21]. By
virtue of our derived lattice factorization, we can structurally
impose the regularity by further structural constraints on lat-
tice parameters. In the following, we only present lattice
structure for one degree of regularity due to the space lim-
itation. Such FBs have no DC leakage, which is desirable for
avoiding the artificial checkerboard effect in image coding.
In addition, it also serves as the necessary condition [20, 21]
for M-band wavelets generated by iterating M-channel FBs.

The necessary conditions in terms of polyphase matrices are,

E(zM)d(z)|z=1 = ce0, R̃(zM)JMd(z)|z=1 = de0 (8)

where delay chain vector d(z) = [1,z−1, · · · ,z−(M−1)]T , Eu-
clidean basis vector e0 = [1,0, · · · ,0]T and c, d are nonzero
constants with cd = M.

For general PRFBs factorized in (7), it can be shown that
with additional constraints Tβ1β =1β and T−T

β 1β =1β , the

regularity conditions simplify to E01M = ce0 and E−T
0 1M =

de0, which has been studied in [21, 11, 13]. Such E0 can
be characterized by using the LDU matrix factorization [21]
or Householder transforms [11]. The additional constraints
on Tβ can be enforced structurally if we constrain Tβ to be
an orthogonal or symmetric matrix with sum of each row to
be unity, or more generally a generalized doubly stochastic
matrix [22].

6. DESIGN EXAMPLE

In this section, we show a design example for PRFB with
equal length L = KM + β designed by using the proposed
lattice structures. A good performance Fb can be obtained
through unconstrained nonlinear optimization due to the lat-
tice factorization (7) where the lattice parameters are the free
parameters for optimization. In different applications, var-
ious objective functions could be employed for optimiza-
tion of the filter coefficients. One objective function is min-
imization of the stopband attenuation and/or passband rip-
ple for ideal filter shape, which is a classical one in FB de-
sign and optimization. Another optimization criterion which
measures the energy compaction capability of FBs and is re-
lated to efficient signal compression, is the generalized cod-
ing gain (CG), which for a signal is taken as

CCG = 10log10

[
σ2

x /
(
∏M−1

i=0 σ2
i ‖ fi‖2

)1/M
]

(9)

where σ2
x is the input signal variance, σ2

i is the variance of
the ith subband signal and ‖ fi‖2 is the norm of the ith syn-
thesis filter impulse response fi[n]. We consider the popular
AR(1) process with correlation coefficient ρ = 0.95 as our
source model.

For our design example, the free invertible matrix of the
lattice structure such as E0 is decomposed by SVD [22]
through orthogonal and diagonal matrices, where the orthog-
onal matrix is further decomposed by Givens rotation. Thus,
the lattice parameters for an M × M invertible matrix are
the rotation angles and singular values. The invertibility of
square matrices is ensured as long as the singular values in
the diagonal matrix are nonzero. In addition, the degree pa-
rameter ri for the building block Gi(z) is chosen to be ri = 2
in our design example. Besides the PR property, we further
impose one-degree of regularity, i.e., no DC leakage, for our
designed FB.

We show a design example for arbitrary equal-length odd
channel PRFB with M = 5 and L = 13 (β = 3), optimized for
both ideal filter shape and coding gain in Fig. 2. The uncon-
strained optimization procedure used for this design exam-
ple is the simplex search function fminunc available in MAT-
LAB Optimization Toolbox since the lattice factorization (7)
can structurally enforce the desired PR, regularity property
and filter length L. The magnitude responses of the analysis
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(a) analysis FB (b) synthesis FB

Figure 2: Design example of a five-channel PRFB with
length L = 13

bank and the corresponding synthesis bank are shown in Fig.
2(a) and Fig. 2(b), respectively. At the right of both magni-
tude responses, we show the optimized filter coefficients in
the wavy lines with filled circles for the corresponding anal-
ysis and synthesis filters, respectively. Note that the very
strong attenuation at the zero frequency for all the bandpass
and highpass filters in the magnitude responses of both anal-
ysis and synthesis banks, due to the structural enforcement
of one-degree of regularity.

7. CONCLUSION

We have presented the existence conditions, lattice factor-
izations and designs for a class of M-channel FIR FBs with
arbitrary equal lengths. The desired properties like PR or PU
can be structurally enforced into the proposed lattice struc-
tures. The arbitrary filter length L can be easily achieved by
appropriately choosing parameters β and K. In contrast to
very limited possible designs by most traditional methods,
our design approaches are more general and can consider-
ably expand the designer’s choices. In addition, it can be
shown that the proposed lattice factorization can completely
span the whole space of M-channel FIR PUFBs, and PRFBs
with lengths L ≤ 2M. To our knowledge, these are the most
general lattice factorizations for multichannel FIR PU and
PR filter banks in the literature.
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