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ABSTRACT

This contribution presents a linear off-diagonal MIMO can-
celler (ODMC) that aims at mitigating the upstream self far-
end cross-talk (FEXT) that severely impacts the performance
of very high speed digital subscriber line (VDSL) services at
the central office (CO). The ODMC operates per frequency
and is thus well suited for DMT-based VDSL systems. We in-
troduce a low complexity and low latency adaptive algorithm
that converges towards the optimum ODMC that simultane-
ously maximizes the distributed Shannon capacities of the
upstream links, under mild assumptions for nominal VDSL
systems. The adaptive algorithm does not require any matrix
inversion and is designed to learn and engage the ODMC
seamlessly while operating in data mode. Further, we prove
that the optimum ODMC approximately achieves FEXT-free
capacity. Simulations show that the FEXT-free capacity can
be achieved in roughly 200 iterations.

1. INTRODUCTION

Dynamic spectrum management level 3 (DSM-3) is a cur-
rent initiative that the VDSL standard body [1] has under-
taken to overcome one of the major limitations of VDSL de-
ployment stemming from self far-end cross-talk (FEXT) im-
pairments. The envisioned self-FEXT mitigation devices are
CO-centric and require signal cooperation, also called sig-
nal vectoring [2], at the CO across the different users that
are involved in a DSM-3 session. Pre-coding for mitigat-
ing downstream FEXT from the CO triggers most of the
standardization activity [3], [4], because of the need for an
inter-operable back channel to convey information about the
downstream MIMO-DSL channel. Nevertheless, the mitiga-
tion of the upstream FEXT, which is more of a chip vendor
proprietary technology, has already received a lot of atten-
tion [5]- [8]. Most of the above referred methods rely on
MIMO channel matrix inversion and/or factorization, e.g.,
in [6], the author applies zero-forcing and in [2] a DFE based
receiver is used at the CO. These methodologies, although
capable of achieving near-optimum performance, especially
in the low-to-mid upstream VDSL bands (see [9] for a com-
parative study on the performance of several self-FEXT can-
cellation solutions for upstream vectored VDSL), become
computationally burdensome when pursued for hundred of
tones in VDSL. Hence, the existing literature leaves a lot of
room for the development of almost optimal and yet practical
solutions for upstream FEXT cancellation, which motivates
this work.

This paper proposes an off-diagonal MIMO canceller
(ODMC) based on a low complexity and adaptive cross-
talk mitigation algorithm for upstream VDSL which achieves

near FEXT-free capacity. In [4], the authors have already in-
troduced optimal off-diagonal MIMO pre-coders (ODMP) at
the CO, to pre-compensate for the downstream FEXT. Con-
trary to intuitive expectations, because upstream self-FEXT
mitigation at the CO relies neither on parameters conveyed
via a back channel nor on pre-coding, the extension of the
optimization approaches suggested in [4] to the derivation
of optimum ODMC is not straightforward. Many new prob-
lems arise such as the need to jointly optimize the frequency
domain equalizer (FEQ) at the CO and the ODMC coeffi-
cients. The derivations of the optimum ODMC and its asso-
ciated maximum achievable distributed capacities turn out to
be very different from the methods followed in [4]. There-
fore, the current contribution unveils new theoretical results,
and subsequently, new algorithms that reflect the specifics
of the upstream self-FEXT mitigation problem.The paper
solves the most challenging problem of learning and trigger-
ing the ODMC during the data mode, which eliminates the
need to change the existing standard [1].

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the system model and describes the ODMC
within the VDSL mode of operation. The problem formula-
tion and derivation of the optimal ODMC are detailed in Sec-
tion 3. In Section 4, equivalence between concurrent maxi-
mization of the distributed upstream capacities and the mini-
mization of the upstream error variances, under mild assump-
tions is leveraged using the stochastic gradient paradigm
[10]. Here, we derive a linear recursion that completes the
adaptive learning of the ODMC, thus avoiding any matrix in-
version. Simulation results are given in Section 5, followed
by conclusions in Section 6. In the appendix, we show that
the ODMC approximately achieves the FEXT-free capacity,
which in turn can be proved to be very close to the full MIMO
capacity.

2. SYSTEM MODEL AND ODMC

The motivation of the MIMO FEXT canceller described in
the paper is best understood via the VDSL upstream sys-
tem description given in Fig. 1. Let the number of vectored
VDSL users participating in upstream self-FEXT cancella-
tion be N. The N × 1 received vectored signal in data mode
at the CO on tone q at DMT symbol time instant t is denoted
as y[q, t] (see Fig. 1) and can be written as:

y[q, t] = (Hx+v)[q, t], (1)

where H[q, t] is the upstream N × N MIMO-DSL channel
matrix, x[q, t] is a N × 1 column vector that represents the
upstream transmit signals from the N different CPEs in data
mode, v[q, t] is the N×1 column noise vector experienced at
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the CO receiver. By the central limit theorem, v[q, t] is Gaus-
sian, complex circular with zero mean whose covariance ma-
trix, Γv, is diagonal in the absence of alien cross-talks. The
MIMO channel matrix can be written as

H[q, t] = (Hd(I+C))[q, t] , (2)

where Hd [q, t] is a diagonal matrix that represents the end-
to-end direct line attenuation, and C[q, t] is an N ×N off-
diagonal matrix (all its diagonal entries are zero) whose ele-
ment Ci, j denotes the coupling that reflects the upstream self-
FEXT from user j into user i. The Ci, j are generally of the or-
der of 30 to 40 dB below unity (0 dB). The off-diagonal self-
FEXT channel model and its properties are detailed in [11]
and will be leveraged in some key approximations of gen-
eral derivations. Prior to entering data mode, in the presence
of self-FEXT, and in the absence of an upstream self-FEXT
canceller, a diagonal frequency domain equalization (FEQ)

matrix Fbc[q, t] is learnt 1 (see Fig. 1). In data mode, the ma-
trix Fbc[q, t] is updated at every DMT symbol time instant
t and it compensates for the diagonal entries of the MIMO
channel, i.e. (FbcHd)[q, t] = I . As a consequence, the N×1
equalized received vectored data sample without self-FEXT
canceller, ybc[q, t] , is given as

ybc[q, t] , (Fbcy)[q, t] = ((I+C)x+w)[q, t], (3)

where w = Fbcv = H−1
d v. It is clear from (3) that the equiv-

alent channel response post diagonal equalization is I+C.
This serves as the motivation for introducing a self-FEXT
canceller of the form I−R where R is a N ×N off-diagonal
matrix. Furthermore, the strategy to split the equalization of
the MIMO channel H into the diagonal-matrix component
Fbc and the full-matrix component I−R is tailored to allow
for the engagement of the ODMC in data-mode; equaliza-
tion of the diagonal component of the MIMO channel is in-
deed required before each vectored user can enter data-mode.
Most importantly, as we will show later, enforcing this off-
diagonal structure also leads to an adaptive algorithm without
matrix inversion that converges to the optimal ODMC that si-
multaneously maximizes the distributed Shannon capacities
of all the upstream receivers. The ODMC thus operates on
the current equalized vectored signal ybc[q, t] (see Fig. 1) to
yield an enhanced (denoised) vectored signal z[q, t/t ′] given
as

z[q, t/t ′] , (I−R)[q, t ′]ybc[q, t]. (4)

In (4), the matrix R has been updated at time t ′ < t. Al-
though matrices R and C both have zero diagonal entries,
when multiplied together as suggested by (3) and (4), the re-
sult will, in general, contain diagonal components that need
to be compensated by leveraging a post-canceller (pc) diag-
onal matrix equalizer Fpc (see Fig. 1). The updating and/or
learning of the FEQs after the activation of the self-FEXT
canceller is automatically done using seamless rate adapta-
tion (SRA) [1] operation, as soon as the monitored noise
margin crosses a pre-defined threshold for a sufficiently long
duration. The SRA feature also involves an update of the bit
loading of all the tones that have experienced a sufficiently
long and large margin change, making sure that the BER is
at most 10−7 under new SNR conditions. The post-canceller
diagonal equalizer, Fpc[q, t ′′], can be actually updated at a

1in what follows, the subscript bc means before canceller
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Figure 1: MIMO-VDSL upstream self-FEXT cancellation
using ODMC on tone q at DMT symbol time instant t

different DMT time instant t ′′, than the ODMC (t ′′ < t). The
final soft vectored information zpc[q, t/t ′, t ′′] passed to the
trellis demodulation block used in VDSL [1] is:

zpc[q, t/t ′, t ′′] , Fpc[q, t ′′]z[q, t/t ′]

= Fpc[q, t ′′](I−R)[q, t ′]ybc[q, t]. (5)

Having discussed the VDSL upstream system model, the
main goal is to estimate the ODMC or the optimum ma-
trix R. In our approach, we concurrently maximize the dis-
tributed Shannon capacity of each upstream link. We also
prove that maximizing the above capacity is equivalent to
minimizing the mean-square error in the estimation of the
transmitted symbols. This helps us to take advantage of the
stochastic gradient paradigm and thus we can estimate R by
linear recursion, thereby avoiding the need for matrix inver-
sion, which is required by other previous approaches [5, 6].

As shown in Fig. 1, this adaptive ODMC may be ini-
tialized with a non-zero value via the ‘ODMC initialization’
block; details of this initialization, however, are skipped for
brevity. In addition, we can also show that the achieved ca-
pacity is very close to the MIMO capacity; again, the proof
is omitted due to lack of space.

3. BLOCK OPTIMUM ODMC

3.1 Optimum ODMC based on the Distributed Up-
stream Shannon Capacity

In this section we will derive the explicit form of the optimal
ODMC that simultaneously maximizes the distributed Shan-
non capacities of all the upstream receivers. To this end, we

express the mth component zm, 1 ≤ m ≤ N of z (see (4)) as

zm = (cT
−m −rT

−m − row−m{(RC)nd})x−m

+(1− (RC)m,m)xm +(wm −rT
−mw−m) . (6)

Here, (.)nd stands for the matrix operator that zeroes the
diagonal entries while keeping the off-diagonal terms un-

changed, rT
−m is a (N − 1) length row vector that has all en-

tries of rT
m but the mth(which is 0 as R is an off-diagonal
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ωz,m = log2(1+
|1− (RC)m,m|

2 σ2
x

∣

∣

∣

∣cT
−m −rT

−m − row−m{(RC)nd}
∣

∣

∣

∣

2
σ2

x +σ2
w,m(1−rT

−m)Γw,m

(

1
−r∗−m

) ) (7)

matrix), and where rT
m is the mth row of matrix R. Sim-

ilar definitions holds for cT
−m, row−m{RCnd} and w−m.

The Shannon capacity ωz,m of the mth mitigated channel is
given in (7) and is derived directly from (6), where Γw,m =

1
σ2

w,m
E

[

[

wm|w
T
−m

]H [

wm|w
T
−m

]

]

. Defining

ζpc,m ,
(rT

−m + row−m{(RC)nd}−cT
−m)x−m +(rT

−mw−m −wm)

(1− (RC)m,m)
(8)

and combining (6), (7) and (8) yields the following simpler
expression for ωz,m in the presence of the ODMC:

ωz,m = log2(1+
σ2

x

VAR[ζpc,m]
) . (9)

Maximization of the distributed Shannon capacity may then
be expressed as max

r−m∈CN−1 (ωz,m) , 1 ≤ m ≤ N.

Notations: The notations used in the solution of the above
optimization problem are described in what follows.

gm , colm{C},r
′T

m , [1|−rT
−m],g

′

m ,

[

1

g−m

]

,α2
m ,

σ2
w,m

σ2
x
(10)

1T
m ,

[

0 0 1(mthentry) 0 0
]

(11)

Note that 1
α2

m
is the FEXT-free SNR for the channel m. We

define the (N −1)× (N −1) matrix C−m,−m as that obtained

by removing the mth row and column from the N ×N matrix
C. The following N × (N −1) matrix is also useful:

Cm ,

[

cT
−m

IN−1 +C−m,−m

]

(12)

Property: The components of the mth row of the optimal
ODMC that concurrently maximizes the distributed Shannon
capacities are given by:

[1|−r
o,T
−m] =

[1|gH
−m](CmCH

m +α2
mΓw,m)−1

[1|gH
−m](CmCH

m +α2
mΓw,m)−111

, (13)

and the associated maximum achievable capacities ωo
z,m, 1 ≤

m ≤ N are

ωo
z,m = log2(1+[1|gH

−m](CmCH
m +α2

mΓw,m)−1

[

1
g−m

]

) .

(14)
Proof: Using the above notations and the definition of the
operator row−m{·}, we rewrite the terms in ζpc,m as:

(1− (RC)m,m) = 1−rT
−mg−m , (15)

row−m{(RC)nd} = rT
−m(C−m,−m −g−m1T

−m) (16)

= rT
−mC−m,−m , (17)

where the last equality follows since 1−m = 0. Equations (8),
(15) and (17) lead to the following scalar product representa-
tion of ζpc,m:

ζpc,m = −

[1|−rT
−m]

([

cT
−m

IN−1 +C−m,−m

]

x−m +

[

wm

w−m

])

[1|−rT
−m]

[

1

g−m

] .

(18)

Equations (10), (12), and (18) enable us to write the SNR
after applying the ODMC, σ2

x /VAR[ζpc,m], as the quotient of
two quadratic forms as follows:

σ2
x

VAR[ζpc,m]
=

∣

∣

∣
r
′T

mg
′

m

∣

∣

∣

2

r
′T
m (CmCH

m +α2
mΓw,m)r

′∗
m

. (19)

Defining the Hermitian scalar product 〈·, ·〉 and considering

the normalized vector r̃
′T

m , r
′T

mQ
1/2
m with Qm , (CmCH

m +
α2

mΓw,m) give the following identity that considerably eases

the maximization of σ2
x /VAR[ζpc,m]:

σ2
x

VAR[ζpc,m]
=

∣

∣

∣
〈r

′

m,(Q
−1/2
m g

′

m)∗〉
∣

∣

∣

2

〈r̃
′
m, r̃

′
m〉

. (20)

Indeed, (10) and the above definition of the matrix Qm com-
bined with the Schwartz inequality unveil the maximum
value of the ratio σ2

x /VAR[ζpc,m] as

σ2
x

VAR[ζpc,m]
≤ 〈(Q

−1/2
m g

′

m)∗),(Q
−1/2
m g

′

m)∗)〉

= [1|gH
−m](CmCH

m +α2
mΓw,m)−1

[

1
g−m

]

.(21)

In (21), the maximum value is reached when the vector r̃
′o

m is

proportional to (Q
−1/2
m g

′

m)∗ , i.e.,

r
′o,T
m = ηg

′H
m Q−1

m . (22)

In keeping with (10), the constant η is chosen to ensure

that the first element of the optimum vector r̃′
o

equals unity.
Thus,

η =
1

g
′H
m Q−1

m 11

. (23)

Using (9), (21)), (22), (23) and the definition of Matrix Qm,
the optimal ODMC and their respective capacities are ob-
tained as given in (13) and (14). �

3.2 Optimum ODMC, Error variance, MIMO-Capacity
and FEXT-free performance

In the appendix, we prove that the optimum ODMC capac-
ity in (14) (SNR in (21)) is close to the FEXT-free capac-
ity (SNR). Though, distributed Shannon capacity and not
MIMO Shannon capacity is used as the optimization criteria
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in this paper, due to the relatively small values of the FEXT
coupling coefficients Ci, j, it can be easily shown that FEXT-
free capacity ΩFF (in nats), which the optimum ODMC
achieves, is also close to the MIMO capacity ΩMIMO given by
ΩMIMO ≈ ΩFF + ||C||2F , where ||C||2F is the Frobenius norm

of the coupling matrix C; ||C||2F is generally of the order of

10−3 for frequencies around 10 MHz.
Starting from (6), assuming perfect detection

and post-canceller diagonal equalization2, the er-
ror in receiver m obtained by calculating the differ-
ence between the detected QAM symbol xpc,m[q, t]
and denoised symbol zpc,m[q, t] (Fig. 1), is epc,m =
(rT

−m+row−m{(RC)nd}−c
T
−m)x−m+(rT

−mw−m−wm)
(1−(RC)m,m) = ζpc,m. Hence,

from (9) and the previous expression, it is clear that maxi-
mizing the distributed capacity is equivalent to minimizing
the variance of the error. Therefore, we can use the LMS
based adaptive algorithm and recursively estimate the
ODMC and the post-canceller FEQ, as described next.

4. ADAPTIVE OPTIMUM ODMC

We now present an adaptive algorithm to learn the ODMC
and post-canceller FEQ coefficients Fpc[q, t]. In keeping
with (5), we define the post-canceller vectored error as

epc[q, t/t ′, t ′′] , xpc[q, t]−Fpc[q, t ′′](I−R)[q, t ′]ybc[q, t],
(24)

where xpc[q, t] designates the demapped soft vectored sym-
bol zpc[q, t/t ′, t ′′], defined in (5). From (24), the component
of the vectored error on channel m, 1 ≤ m ≤ N is as follows:

epc,m[q, t/t ′, t ′′] = xpc,m[q, t]− fpc,m[q, t ′′](ybc,m[q, t]

−rT
−m[q, t ′]ybc,−m[q, t]) . (25)

In (25), fpc,m[q, t ′′] denotes the mth diagonal entry of the

N ×N diagonal matrix Fpc[q, t ′′]. Based on the explicit form
of the error in (25), we can derive the adaptive LMS-based
algorithm that converges [10] towards the ODMC that si-
multaneously minimizes the variance of the distributed er-
rors of the upstream receivers at the CO side. As proved
in Section 3, this adaptive algorithm also simultaneously
maximizes the distributed Shannon capacities of the up-
stream links under mild assumptions. The stochastic gradient
paradigm [10] leads to the following equations that define up-
dates to the post-canceller equalizer every DMT symbol and
the self-FEXT canceller coefficients every K DMT symbols:
For 1 ≤ m ≤ N, n ≥ 0, and 1 ≤ i ≤ K

fpc,m[q, tnK+i] = fpc,m[q, tnK+i−1]+ µ [tnK+i](ybc,m[q, tnK+i]

−rT
−m[q, tnK ]ybc,−m[q, tnK+i])e

∗
pc,m[q, tnK+i/tnK , tnK+i−i] , (26)

r−m[q, t(n+1)K ] = r−m[q, tnK ]−µ [t(n+1)K ] fpc,m[q, t(n+1)K ] ·

ybc,−m[q, t(n+1)K ]e∗pc,m[q, t(n+1)K/tnK , t(n+1)K ] . (27)

The ODMC can also be intialized with a starting value Rin

before engaging its adaptive learning to facilitate a faster
convergence. One such intial estimate was discussed in [4],
where Rin was set with an estimate of the coupling matrix C.
Additionally, once the ODMC is engaged, updates to the pre-
canceller diagonal equalizer Fbc may be frozen and only the

2These two assumptions are easily met given that the mandatory BER

value is 10−7 [1] and considering the long FEQ learning MEDLEY se-
quences recommended in VDSL standards [1].
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Figure 2: ODMC Learning for 5 users at 4MHz on a 0.3 km
long loop.

post-canceller equalizer Fpc may be updated, thereby mini-
mizing the additional computing resources that are required.

In Section 5, we provide the performance achieved by
the above algorithm based on Matlab simulations, where we
see that the theoretical maximum capacity is reached by each
upstream link after convergence of the adaptive ODMC. It
is worth noting that the adaptive scheme described in (27)
operates with a per-tone complexity of O

(

N2
)

as compared

to the O
(

N3
)

complexity required by methods employing
matrix inversion such as those based on zero-forcing [6],
while achieving similar (and near-FEXT-free) performance.
Additionally, the proposed adaptive scheme directly tracks
the equalizer rather than the channel, thereby limiting nu-
meric inaccuracies due to error propagation that may be more
prevalent in the latter scenario. Furthermore, the proposed
scheme can also address the seamless addition or removal of
a vectored user, which is not straightforward in the case of
the zero-forcing approach.

5. SIMULATIONS

Fig. 2 displays the SNR of five vectored users on the 4 MHz
tone for a loop of length 0.3 km across the whole learn-
ing phase of the ODMC. Starting with an initial estimate of
Rin = [0], the learning of the ODMC follows the recursive
scheme described in (27) as explained in Section 4. It is seen
in Fig. 2 that the adaptive algorithm completes its conver-
gence within 200 iterations even for the worst affected user,
i.e., the user that experiences the lowest SNR in the absence
of any ODMC. As displayed in Fig. 2, after reaching steady
state, the SNR achieved by all the users is very close to the
FEXT-free SNR obtained if the only disturbance is the back-
ground noise and in the absence of any canceller. We see in
Fig. 2 that the most impacted user (i.e. user # 4) enjoys an
SNR improvement of ∼ 23dB, from ∼ 41dB without ODMC
up to ∼ 64dB after convergence of the adaptive ODMC.

6. CONCLUSIONS

An off-diagonal MIMO canceller (ODMC) that mitigates the
upstream self-FEXT in VDSL systems at the CO has been
introduced. A low complexity and low latency recursive al-
gorithm that converges towards the ODMC that concurrently
maximizes the distributed capacities of the upstream links
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has been derived and evaluated. As shown in the appendix,
this algorithm can theoretically achieve close to FEXT-free
SNR in steady state, while simulations show that conver-
gence towards this FEXT-free SNR is possible within 200
iterations starting with zero as an initial value. The most
FEXT-impaired users enjoy more than 20dB of SNR gain.
Although the paper has only considered the learning of the
ODMC with a fixed channel, the same adaptive scheme can
be used for other crucial phases of upstream self-FEXT mit-
igation such as tracking the channel changes, and supporting
the addition of new users that lead to the abrupt change of
the channel dimensions [4].

7. APPENDIX A: PROOF THAT THE OPTIMAL
ODMC ACHIEVES NEAR FEXT-FREE SNR

Using (10), the FEXT-free SNR is given by 1
α2

m
, while

from (21), the optimum ODMC SNR in the absence of alien
noise (i.e., Γw,m = I) is given by

SNRo =
[

1 gH
−m

]

(CmCH
m +α2

mI)−1

[

1
g−m,

]

. (28)

Let D , (I+C−m,−m)(I+CH
−m,−m). Using (12), we get

(CmCH
m +α2

mI) =

[

||c−m||
2 +α2

m −cT
−m +δ H

c

c∗−m +δc D+α2
mIN−1

]

,

(29)
where δc are second order terms of the coupling coefficients.
Let A = ||c−m||

2 + α2
m, C = cT

−m + δ H
c , B = CH , D = D+

α2
mI and

[

X Y

Z ∆

]

=

[

||c−m||
2 +α2

m −cT
−m +δ H

c

c∗−m +δc D+α2
mIN−1

]−1

.

Noting that A is a positive scalar and using block-wise matrix
inversion we have, X = A−1 + A−1C(D − BA−1C)−1BA−1,

Y =−A−1C(D−BA−1C)−1, Z =−(D−BA−1C)−1BA−1, and

∆ = (D−BA−1C)−1. Therefore from (28) we have,

SNRo =
[

1 gH
−m

]

[

X Y

Z ∆

][

1
g−m

]

= X +gH
−mZ +Yg−m +gH

−m∆g−m (30)

We can also write, X = A−1 + (A−1)BH(AD − BBH)−1B.
Now, using the matrix inversion lemma, we have

BH(AD−BBH)−1B = A−1[BHD−1B−
BHD−1BBHD−1BA−1

−1+BHD−1BA−1
]

=
α

1−α
, where α = A−1BHD−1B.

∴ X = A−1 +A−1 α

1−α
=

A−1

1−α
. (31)

Similarly, Z = −(AD−BBH)−1B, hence

gH
−mZ = −gH

−m[A−1D−1 −
(A−1)2D−1BBHD−1

−1+BHD−1BA−1
]B

= −gH
−mD−1BA−1 1

1−α

Defining gH
−mD−1BA−1 as β , we have :

gH
−mZ = −

β

1−α
, Yg−m = −

β H

1−α
(32)

Now, gH
−m∆g−m = gH

−mA(AD−BBH)−1g−m

gH
−m∆g−m = AgH

−m[A−1D−1 −
(A−1)2D−1BBHD−1

−1+BHD−1BA−1
]g−m

= gH
−mD−1g−m +

Aββ H

(1−α)
(33)

Substituting (31)-(33) in (30), we get

SNRo =
A−1

1−α
−

β

1−α
−

β H

1−α
+

Aββ H

1−α
+gH

−mD−1g−m

= A−1 |1−Aβ |2

1−α
+gH

−mD−1g−m (34)

To proceed further we make following observations:

1. α2
m and ||c−m||

2 are of the order 10−5.

2. D ≈ I+Ω, where Ω is a non-diagonal matrix.

3. Using observation 1, D = D+α2
mI ≈ D.

4. We can neglect higher order terms in the presence of the
lower orders.

5. D−1 ≈ I−Ω, D−1 is a positive definite matrix.

6. B ≈ c−m and Aβ ≈ gH
−mc−m.

7. 1
1−α ≈ 1

1−
||c−m||2 ||−||c−m||2 ||||Ω||

||c−m||2+α2
m

≈ α2
m+||c−m||

2||
α2

m

Using the above observations and substituting A−1 in (34),
we have the approximate ODMC SNR as :

SNRo ≈ SNR f ext f ree|1−gH
−mc−m|

2 ≈ SNR f ext f ree (35)

The above expression proves that the ODMC SNR is indeed
very close to the FEXT-free SNR.
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