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ABSTRACT

Nonlinear GMSK modulations are becoming new modula-
tion standards for Telemetry/Telecommand satellite links.
These new satellite systems will have to co-exist with other
space systems using different modulation schemes. In this
context, modulation recognition using the received commu-
nication signal is useful to identify a possibly perturbing sys-
tem. This paper studies a Bayesian classifier to recognize
BPSK, QPSK, 8PSK and two standardized GMSK modu-
lations in the presence of additive white Gaussian noise.
A modified version of the Baum-Welch (BW) algorithm is
used to compute the posterior probabilities of the received
signal, given each possible model, and to estimate the un-
known model parameters. The posterior probabilities are
then plugged into the optimal Bayes decision rule. The per-
formance of the proposed classifier is assessed through sev-
eral simulation results.

1. INTRODUCTION

Continuous Phase Modulations (CPMs) are non-linear con-
stant amplitude modulations which are very interesting for
satellite transmissions because of their high robustness to
amplifier non-linearities. Moreover, with proper choice of
pulse shape and parameters, CPMs allow one to obtain higher
bandwidth efficiency than that obtained with the traditional
MPSK schemes. These properties have motivated the use of
CPMs in new modulation standards for satellite communi-
cations. For example, a particular CPM modulation, called
GMSK (Gaussian Minimum Shift Keying), is the new mod-
ulation standard for telemetry/telecommand satellite links.
Two different GMSK schemes characterized by two differ-
ent bandwidths have been adopted by the consultative com-
mittee for space data system (CCSDS) for future space mis-
sions [1]. These new schemes will have to co-exist with other
space systems using different modulation schemes. As a con-
sequence, it is important to be able to identify the authorized
and non authorized systems. Equivalently, the problem con-
sists of recognizing the modulation associated to a received
communication signal.
Various strategies have been proposed in the literature for
the classification of linear modulations (the interested reader
is invited to consult [2, 3] and references therein for de-
tails). However, classifying nonlinear modulations has re-
ceived less attention in the literature. Several methods for
classifying full response binary CPMs with rectangular pulse
shape and different modulation indexes have been studied in
[4, 5]. A new methodology for classifying the two non-linear
GMSK modulations recommended by CCSDS was proposed

in [6]. The classifier was based on a state trellis representa-
tion (exploiting the fact that the GMSK modulation is a mod-
ulation with memory) allowing the use of a modified version
of the BW algorithm. The BW algorithm was used to es-
timate the posterior probabilities of the received modulated
signal (conditionally to each class). These posterior proba-
bilities were then plugged into the optimal Bayes decision
rule.
However, the algorithm proposed in [6] assumed that non-
linear modulations were pre-identified from other linear
modulation candidates, which is not always a simple task.
This paper goes a step further and shows that linear modula-
tions used in satellite systems (BPSK, QPSK, 8PSK) as well
as the non-linear standardized GMSK modulation schemes
can be identified using the same recognition process. The
emitted linearly or nonlinearly modulated signals are as-
sumed to be corrupted by an additive Gaussian noise whose
variance is estimated by the BW algorithm. The performance
of the proposed classifier is assessed through several simula-
tion results.
This paper is organized as follows: Section 2 gives some use-
ful information regarding the linear and nonlinear modula-
tions considered in this study. Section 3 presents the model
of received baseband communication signal and its associ-
ated first order hidden Markov model (HMM) (required for
the BW algorithm). Section 4 recalls the main steps of the
BW algorithm allowing one to estimate the posterior proba-
bility of the observation sequence given each possible mod-
ulation and the channel noise variance. Section 5 studies the
performance of the MAP rule based on the posterior proba-
bilities computed by the BW algorithm. Simulation results
and conclusions are reported in Sections 6 and 7.

2. LINEAR AND NON-LINEAR MODULATIONS

The emitted signal s(t) can be written as

s(t) = Re
[
s̃(t)e jωct

]
,

where s̃(t) = I(t,a) + jQ(t,a) is the complex envelope (or
equivalent low-pass (LP) signal) and ωc = 2π fc, where fc

is the carrier frequency. The modulation is called linear
when s̃(t) linearly depends on the independent identically
distributed (i.i.d.) complex symbol sequence a = {ak} to be
transmitted, and nonlinear in the other cases.

2.1 Linear M-PSK modulations

The baseband complex envelope of a linearly modulated
signal can be written as s̃(t) = ∑k akh(t − kT ), where h(t)
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Figure 1: Classical linear modulation constellations.

is the pulse shape and T represents the symbol duration.
The i.i.d. complex symbol sequence a = {ak} to be trans-
mitted takes its values into a set of M complex numbers
{S0,S1, . . . ,SM−1} called constellation representing a partic-
ular modulation. MPSK modulations are defined by

Sm = exp

(
j2π

m−1

M

)
, m = 1, . . . ,M.

For instance, BPSK, QPSK and 8PSK constellations are dis-
played in Figure 1.

2.2 Non-linear GMSK modulations

The GMSK signal is a partial response CPM signal with

modulation index 1
2

and a smooth shape frequency pulse g(t)
of length LT , where L ∈ N. The function g(t) is the global
impulse response of two consecutive filters. The first filter is
rectangular of length T whereas the second one is Gaussian
with a normalized 3dB bandwidth BT :

g(t) =
1

2T

{
Q

(
2πB

t − T
2√

ln2

)
−Q

(
2πB

t + T
2√

ln2

)}
.

where Q(t) =
∫ ∞

t
1√
2π

exp(− τ2

2
)dτ . The complex envelope

of the GMSK signal can be written as s̃(t) = e jΦ(t,a) [7],
where the transmitted i.i.d. symbol sequence a = {ak}
taken from {±1,±3, ...,±(M−1)} is embedded in the time-
varying phase:

Φ(t,a) = π ∑
k

akq(t − kT ),

where q(t) =
∫ t
−∞ g(τ)dτ . For t ∈ [kT,(k + 1)T ], the time-

varying phase can be written Φ(t,a) = θk(t,a)+ φk where

• θk(t,a) = π ∑k
i=k−L+1 aiq(t− iT ) represents the changing

part of the time-varying phase in [kT,(k + 1)T ],

• φk =
[

π
2 ∑k−L

i=−∞ ai

]
mod(2π) is the cumulant phase (where

[x]mod(2π) denotes the angle of x modulo 2π). It rep-
resents the constant part of the time-varying phase in
[kT,(k+1)T ] and can be recursively computed as φk+1 =
φk + πak−L+1.
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Figure 2: Emitted (circles) and received (crosses) GMSK
constellations displayed for the two standardized cases BT =
0.5,L = 2 and BT = 0.25,L = 4.

A state of the GMSK signal is classically defined at t = kT as
the vector sk = {φk,ak−1,ak−2, ...,ak−L+1} and corresponds
to a specific value of the time-varying phase Φ(kT,a). The
number of states is limited, giving a set of possible values for
the complex envelop of the GMSK modulated signal taken at
t = kT . This set can be assimilated to a kind of constellation
as shown in Figure 2.

3. MODEL OF RECEIVED SIGNAL

3.1 Complex envelope

The emitted signal s(t) is assumed to be corrupted by a
white Gaussian noise w(t) with power spectral density N0/2
(AWGN satellite channel). Note that the associated com-
plex baseband Gaussian noise process will be represented by
w̃(t). The received signal r(t) is first down-converted by the
receiver to recover its complex envelope r̃(t). Figure 3 re-
calls the structure of the standard down-convertor used in this
study. After down-conversion, the received baseband signal
r̃(t) can be written as:

r̃(t) = Î(t,a)+ jQ̂(t,a) =
1

2
s̃(t)⊗ f (t)+ z(t), t ∈ R,

where f (t) is the impulse response of the two LP filters,
z(t) = w̃(t)⊗ f (t) is a normalized complex-valued additive

Gaussian noise with variance σ2
z and “⊗ ” denotes convolu-

tion.
Assuming a perfect synchronization between the emitter and
the receiver, the complex envelope of the received modulated
signal, sampled at one sample per symbol (t = kT ), can be
written as:

r̃(k) =
1

2
s̃(k)⊗ f (k)+ z(k), k = 1, ...,Ns, (1)

where Ns is the number of symbols in the observation in-
terval. In absence of noise, the received constellations for
linear modulations are exactly the same as the emitted ones
when the Nyquist criterion is satisfied. The situation is dif-
ferent when the emitted signals are GMSK signals. Figure 2
shows emitted and received constellations associated to the
two standardized GMSK modulations in the case of square
root raised cosine LP filters. Note that these constellations
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Figure 3: Basic quadrature receiver.

have been obtained in absence of noise, with a roll-off factor
α = 0.35 and a cutoff frequency adapted to symbol duration.
Figure 2 indicates that the received signals corresponding to
GMSK modulations and QPSK modulations are very simi-
lar. However, the classification rule proposed in this paper
will allow us to distinguish these modulations.

3.2 Hidden Markov model

The received baseband signal r̃(k) can be modeled as a prob-
abilistic function of an hidden state at time k which is repre-
sented by a first order HMM model whose characteristics are
summarized below:

• The state of the HMM at time instant k is sk = ak for
MPSK modulated signals (memoryless linear modula-
tion) whereas sk = (φk,ak−1,ak−2, ...,ak−L+1) for GMSK
modulated signals (non-linear modulation with memory).
The state vector sk takes its values in a finite alphabet
denoted as {s(1),s(2), ...,s(N)} (s( j) is the jth possible

value of sk). The size of this alphabet is N = 4ML−1 for
GMSK signals and N = M for linear MPSK modulations.

• The state transition probability is defined by di j =
P[sk+1 = s( j)|sk = s(i)] and equals 1/M when all sym-
bols are equally likely.

• The initial state distribution vector π = (π1, ...,πN)T is
defined by πi = P[s1 = s(i)] = 1/N for i = 1, . . . ,N.

• Based on (1), the pdf of the observation r̃(k) conditioned

on state i, denoted as pi(r̃(k)) , p(r̃(k)|s(i)) can be writ-
ten

pi(r̃(k)) =
1

πσ2
z

exp

(
−|r̃(k)−mi|2

σ2
z

)
,

where i = 1, ...,N and mi is the ith constellation point

(ith possible value for 1
2
s̃(k)⊗ f (k)). Note that mi = Si

for MPSKs when the transmitter and receiver filters are
matched. For GMSK signals, mi is approximated by the

ith value of e jΦ(kT,a). We denote as m = [m1, ...,mN ]T the
vector containing all possible constellation points.

4. THE BW ALGORITHM

4.1 The standard BW algorithm

The BW algorithm proposed in [8] for speech recogni-
tion can be used to determine the posterior probability of
the observation sequence P(r̃|m,σ2

z ,λ ), given a model λ ∈
{λ1,λ2, ...,λc} (representing a modulation among the set of

all c possible modulations). The probability of the observa-
tion sequence for a given modulation is classically defined
as a summation covering all possible state sequences. How-
ever, the direct computation of this summation requires high
computational cost. The main idea of the BW algorithm is to
use a forward-backward procedure which ensures a very effi-
cient computation. The forward-backward procedure repeats
the following three steps until convergence.

1. Computation of the normalized forward variable αi(k).
Initialization:

αi(1) = πi pi(y(1)), 1 ≤ i ≤ N,

c(1) =

(
N

∑
i=1

αi(1)

)−1

.

Induction: for k = 1, ...,Ns −1, j = 1, ...,N

α j(k + 1) = c(k)p j(y(k + 1))
N

∑
i=1

αi(k)di j,

c(k + 1) =

(
N

∑
i=1

αi(k + 1)

)−1

.

2. Computation of the normalized backward variable βi(k).
Initialization: βi(Ns) = c(Ns), 1 ≤ i ≤ N,
Induction: for k = Ns −1, ...,1, i = 1, ...,N,

βi(k) = c(k)
N

∑
j=1

di j p j(y(k + 1))β j(k + 1),

3. Estimation of the model parameters

m̂i =
∑

Ns

k=1 γi(k)y(k)

∑
Ns

k=1 γi(k)
,

σ̂2
z =

1

Ns

Ns

∑
n=1

N

∑
i=1

γi(n)|mi − y(n)|2,

where γi(k) = αi(k)βi(k).

In a batch mode implementation, steps 1 to 3 are carried out
iteratively with updated values of p j(y(k)) until convergence.
The posterior probability of the observation sequence given
the model is then computed as follows

P̂(r̃|m,σ2
z ,λ ) =

∑N
i=1 αi(Ns)

∑
Ns
i=1 c(i)

. (2)

Different modifications have been applied to the standard
BW algorithm to improve its performance or reduce com-
putation complexity. One of these modifications is presented
in Section 4.2.

4.2 The adaptive BW algorithm

An adaptive version of the BW algorithm was proposed in
[9] to improve performance in terms of memory and compu-
tation speed. This LMS-type update algorithm is based on
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the following recursions

mi(k) = mi(k−1)+ µmγi(k)ei(k),

σ2
z (k) = (1− µs)σ

2
z (k−1)+ µs

(
N

∑
i=1

γi(k)|ei(k)|2
)

,

where ei(k) = r̃(k)− m̂i(k−1) for i = 1, ...,N. The initializa-
tion and time-induction steps for the forward variable can be
computed as in the standard BW algorithm. The calculation
of the backward variable can be obtained by using the fixed-
lag or sawtooth-lag schemes [10]. In this paper, we have used
the fixed-lag scheme as explained in [11].

5. CLASSIFICATION RULE

The classification rule used in this paper assigns the received
signal r̃ to the class λi if

P̂(r̃|λi)P(λi) ≥ P̂(r̃|λ j)P(λ j),∀ j = 1, ...,c,

where c is the number of possible modulations (or the num-

ber of classes) and P̂(r̃|λi) , P̂(r̃|m,σ2
z ,λi) is obtained from

(2). This strategy is sometimes referred to as plug-in max-
imum a posterior (MAP) rule [12]. It consists of replacing
the class posterior probabilities in the optimal Bayesian clas-
sifier by their estimates. Note that the whole sequence of

length Ns is required to estimate P̂(r̃|λi) even if the online
LMS-type update algorithm has been used for the compu-
tation of m̂i(k) and σ̂2

z (k). Note also that the observation
length Ns required to properly identify the different modula-
tions should be greater than the maximum number of HMM
states in the class dictionary to ensure that every possible
state can be reached by the algorithm. This paper assumes
that the different modulation formats are equally likely re-
sulting in P(λi) = 1/c for i = 1, . . . ,c.

6. SIMULATION RESULTS

Many simulations have been carried out to evaluate the per-
formance of the proposed plug-in MAP classifier. This paper
focuses on the classification of GMSK25, GMSK50, BPSK,
QPSK and 8PSK modulations. All constellations have been
normalized to unit energy. The signal to noise ratio per bit is
defined as Eb/N0 where Eb is the energy per bit at the input
of the receiver. The classification performance is the average
probability of correct classification defined as:

Pcc =
1

c

c

∑
i=1

P [assigning r̃ to λi|r̃ ∈ λi] .

Tables 1-3 present the confusion matrices of the proposed
classifier for different values of Eb/N0 (the number of sam-
ples is Ns = 500 for these examples). It can be observed that
the two GMSK signals as well as the MPSK signals can be
distinguished even at very low values of Eb/N0 (even if the
constellations of GMSK and QPSK signals are very simi-
lar). However, to distinguish among linear modulations, the
required operating Eb/N0 is much higher especially when
8PSK modulations are present in the dictionary.
Figure 4 displays the classification performance as a function
of Eb/N0, for different values of the number of observations
Ns. A good classification performance can be observed espe-
cially for small values of Eb/N0 which are typical for satel-
lite space communications. The effect of roll-of mismatch

on classification performance was also studied. Figure 5 dis-
plays the classification performance for several values of the
roll-off factor α of the square root raised cosine filters used
in the receiver. The proposed classifier seems to be robust to
roll-off mismatch. The last simulations study the effect of a
phase offset obtained by rotating the constellation with an an-
gle φ (this phase offset is due to synchronization errors at the
receiver). Figure 6 shows that the classification performance
seems to be robust to moderate synchronization errors.

7. CONCLUSIONS

This paper addressed the problem of classifying linear and
nonlinear modulations transmitted through AWGN channels.
The classification was achieved according to a MAP rule. An
hidden Markov model was associated to the received base-
band signal, allowing the use of the famous Baum-Welch al-
gorithm to estimate the posterior probabilities of all possible
modulations. Several simulations showed the good perfor-
mance of the proposed classifier.
An interesting perspective is to recognize modulations in
new satellite communication standards such as digital video
broadcasting satellite handheld (DVB-SH). This standard
uses QPSK, 8PSK, 16APSK modulations and orthogonal
frequency division multiplexing (OFDM) whose automatic
recognition is a challenging problem.
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In/Out GMSK25 GMSK50 BPSK QPSK 8PSK

GMSK25 449 51 0 0 0
GMSK50 13 487 0 0 0

BPSK 0 0 500 0 0
QPSK 0 0 0 498 2
8PSK 0 0 0 0 500

Table 1: Confusion matrix for Eb/N0=0dB.

In/Out GMSK25 GMSK50 BPSK QPSK 8PSK

GMSK25 406 94 0 0 0
GMSK50 46 454 0 0 0

QPSK 0 0 500 0 0
4QAM 0 0 0 457 43
8PSK 0 0 0 5 495

Table 2: Confusion matrix for Eb/N0=−2dB.

In/Out GMSK25 GMSK50 BPSK QPSK 8PSK

GMSK25 334 164 1 0 1
GMSK50 123 375 0 1 1

BPSK 0 0 488 4 8
QPSK 0 0 0 313 187
8PSK 0 0 0 81 419

Table 3: Confusion matrix for Eb/N0=−6dB.
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Figure 4: Classification performance versus Eb/N0.
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