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ABSTRACT

Tracking moving acoustic sources in a reverberant environment has
been a challenging research goal for many years. The Bayesian
Filtering approach, in particular the Bootstrap (BS) and the Impor-
tance Sampling (IS) based Particle Filter (PF) tracking algorithms,
has been proposed recently and promising results have been ob-
tained. While these two algorithms out-perform other algorithms,
they can only implement the optimal importance function in re-
spective sub-optimal form and suffer related drawbacks in tracking
performances. A novel hybrid BS-1S Particle Filter based acoustic
source tracking algorithm is proposed in this paper. The height of
the target source is used to control a sampling switch importance
function that allows the tracking algorithm to switch between using
the BS based and the IS based algorithm. Numerical result shows
that the proposed algorithm is able to out-perform the BS and the
IS based tracking algorithms in reverberant environments.

1. INTRODUCTION

Acoustic source localization and tracking (ASLT) has been an ac-
tive research area over the past two decades. Indeed many such
techniques have been reported in the literature and several of such
techniques have been used in applications such as hand-free au-
dio conferencing, conversational interface, sound based healthcare
monitoring, etc. One main problem faced by such techniques in
practice is the reverberation effect encountered in a closed room
where a target signal will arrive as multiple signals at the sensor.
This makes it difficult, if not impossible, for the basic form of
conventional acoustic source localization (ASL) algorithms such as
the Steered Beam Former (SBF), the Generalized Cross Correla-
tion (GCC) based Time-Delay Estimator (TBE), the high resolution
spectral estimation methods (e.g. Capon, MUSIC), etc., to function
effectively. One reason for the basic form of such techniques to fail
is that they do not take into consideration past estimations made on
the source signals and the time-varying nature of the source signals.
In order to tackle this problem, the Particle Filter (PF) based track-
ing approaches have been proposed recently [1-6].

The PF (Particle Filter) approach works by applying the se-
quential Monte Carlo (SMC) method and the hidden Markov chain
(HMC) assumption. The source location information is estimated
through a collection of particles iteratively sampled from the state
space (the enclosed reverberant environment in ASLT case). The
PF based acoustic source tracking (AST) approach then updates se-
quentially the source location by taking into consideration both cur-
rent array observation and previously estimated locations. Several
PF based algorithms have been proposed in the literature, one of
them is the Bootstrap (BS) PF algorithm [5]. The BS-PF is able
to minimize the reverberation effects for source tracking. However,
the limitation of the BS-PF is that it does not make use of the cur-
rent observations that may be useful in indicating the true source
location. Another PF based tracking algorithm is the Importance
Sampling (IS) PF algorithm [6], which is capable of locating the
source rapidly. The limitation of the IS-PF algorithm is, however,

that it discards any previous source location estimations in the sam-
pling of new particles.

This paper proposes a novel Particle Filter based tracking al-
gorithm that is capable of overcoming the shortcomings of the BS-
PF and IS-PF algorithms. The proposed algorithm overcomes the
shortcomings by introducing a source height controlled sampling
switch technique. The novel sampling switch technique is able to
adaptively adopt either BS-PF or IS-PF at each iteration based on
the accuracy of the corresponding source height estimation. The im-
portant assumption is that the source height is always a constant in
the entire ASLT process, and that any inaccurate height estimation
is caused by the reverberation effects. Therefore, if the estimated
source height indicates strong reverberation influence at certain it-
eration, the sampling switch will automatically adopt the BS-PF
to minimize the reverberation effects. Otherwise, if the estimated
source height indicates weak reverberation influence, the IS-PF will
be adopted to accelerate the locating speed. The resultant hybrid
BS-IS PF tracking algorithm hence successfully combines the fast
locating capability of the IS-PF and the robust tracking capability
of the BS-PF.

The remaining part of this paper is organized as follows. Sec-
tion 2 gives a description on the formulation of the AST problem.
Section 3 discusses two well known Particle Filter based source
tracking algorithms. The proposed modified Particle Filter algo-
rithm is presented in Section 4. The performance of the proposed
algorithm is shown in Section 5 through some numerical examples.
Finally, Section 6 concludes the findings presented in this paper.

2. PROBLEM FORMULATION FOR ACOUSTIC SOURCE
TRACKING

The acoustic source tracking (AST) problem to be discussed in this
paper assumes a single target source moving in a closed room where
the reverberation effect is not negligible. Omnidirectional micro-
phones are fixed at known locations on the surrounding walls.

The signals received by the array are organized into frames of
equal length L. The objective of the AST problem here is to estimate
the source locations based on the sampled signals,

Y (k) = heor,, (k) 5 (k) + iy (k) (1

where y;, (k) is the signal received at the mth sensor and at the kth
frame, Ay, (k) is the channel (direct-path together with multi-path)
impulse response between the source and the mth sensor, s(k) is the
source signal, ‘x’ is the convolution operator of the source signal
and the channel impulse response, and n,,(k) denotes the uncorre-
lated background noise.

The acoustic source’s instantaneous location can be defined by
its Cartesian coordinates (x;, y;). Let the source’s instantaneous
velocity be x; and yj along the x-axis and y-axis respectively, the
source’s state variable at each time step k in the state space can be
expressed as,

Xge = [ i i) )
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With equation (2), the objective of source location estimation
is now re-formulated to estimate the source’s state variable (but the
velocity components may not be emphasized in the general ASLT
case). Let Y, be the (ASL algorithms measured) observation vari-
able. The AST problem can now be handled by the Bayesian fil-
tering approach based on the HMC (Hidden Markov Chain) model.
The state and observation variables, and their relationship can be
described by the Anderson and Moore’s equations [8].

X = g(X—1,u) 3)
Yie = h(Xy, vie) “

where g(-) and h(-) are the transition function and observation func-
tion. Both functions are not necessarily linear, and the noise terms
uy, and v, may also be non-Gaussian.

Let the posteriori probability density function, p(Xy|Y;.x), be
denoted as PDFp. The Bayesian filtering solution can now be ap-
plied to determine the PDFp, in two steps: “prediction” and “up-
date”, in a recursive manner,

P(Xi|Yik—1) = /p(Xk‘kal)P(kal|Y1:k71)ka71 )

P(Xe|Y1:k) o p(Ye| X)) p(Xi[Yi:k—1) (6)

where in (5), p(Xg|Y1:—1) is the priori PDF, p(Xj|X)_1) is the tran-
sition density, and p(Xg_1|Y1.x_1) is the PDFp that has been esti-
mated at the previous (k — 1)th time step; in (6), p(¥;|X;) denotes
the likelihood function.

It is quite obvious that the two step approach effectively takes
into consideration both the previous source location estimations and
the current observations. The recursive manner of the two step ap-
proach allows the application of sequential Monte Carlo (SMC)
technique, also known as the Particle Filtering (PF) technique, to
sequentially estimate the desired PDFp. The source state variable,
X, can be estimated from its PDFp as the Mean or the Mode. This
constitutes the Bayesian filtering based AST solution.

3. ACOUSTIC SOURCE TRACKING USING PARTICLE
FILTER

3.1 General Concept of Particle Filter Theory

For AST problem, the state space is defined as the x-y Cartesian
plane of the entire enclosure inside which the acoustic source re-
sides. The particle (state sample) is defined as the grid point that
records a fixed (x, y) location inside the state space. In this way, at

each iteration, new particle set of size N: a,gn), wheren € {1,...,N},

are sampled in the prediction step. The followed update step asso-
ciate each particle with a weight w,gn) to denote its likelihood of

representing true source location. The PDFp in the Bayesian filter-
ing problem can be approximated by

Z “’k

where §(-) denotes the Dirac delta function. The source state vari-
able at kth time step can now be estimated by computing the Mean
of the approximated PDFp, i.e.
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This constitutes the general concept of PF, and several PF based
AST applications can be found in the literature, hereby only two
typical ones will be discussed.

3.2 The Bootstrap Particle Filter Algorithm

The bootstrap Particle Filter (BS-PF) algorithm is originally devel-
oped by Gordon et al. in [5], and is famous for its low demands of
computational power and reduced difficulties of implementation.

The general work flow of BS-PF follows the standard two steps
Bayesian filtering approach in (5) and (6). However, the prediction
step of BS-PF is simplified in the way that only the previous state
source state variable estimation is considered. Thus, current state
particles are sampled only according to the pre-defined source state
transition function:

o™ o< ("), ur) ©)

In practical implementation, the Langevin process [1] was sug-

gested by [6] to serve as the source state transition function.
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where uy, is the Gaussian noise variable

I I

in which .4 (u,X) represents the density of a multi-dimensional
Gaussian random variable with mean vector y and covariance ma-
trix X, Ty is the time interval between particle filter’s two adjacent
updates, and the other model parameters are defined as

a = exp(—BTy) (12)
b = wi-a? (13)

where ¥ denotes the steady-state velocity and 8 indicates the rate
constant.

While in the update step, the weights of the newly sampled par-
ticles will be updated according to the likelihood function and be
normalized so that the summation of all the weights equals to one:

a" = p(¥lo™) (14)

o =@/ Z a" (15)

The choice of the likelihood function in practical implementa-
tion is also widely open. For the AST purpose, the output of the
ASL algorithm can be used directly as the pseudo likelihood func-
tion. For example, we may use the SRP-PHAT [7] to approximate
the likelihood function:

Yk|ak T,))dw (16)

/ Z Z S Z Z;|exp(jw(fm—
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where S;,(®) and S, (@) denote the Fourier transform of the signal
at mth and nth sensor,the symbol * denotes the complex conjugate
of the fourier transformed signal, and 7,,,7, are the respective direct
path delays.

The main limitation of the BS-PF based AST algorithm is that
during the prediction step, the transition function sampled particles
are drawn from the entire state space instead of from some high po-
tential regions indicated by the current observation Yj. As a result,
the BS-PF based AST algorithm may take extra time steps to locate
the source at the initial stage of the tracking process. Despite this
limitation, the transition function based particle sampling is able to
minimize the reverberation effects, making the BS-PF based AST
algorithm competitively reverberation-robust.
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3.3 The Importance Sampling Particle Filter Algorithm

The importance sampling Particle Filter (IS-PF) is generally con-
sidered as an upgraded PF implementation of the rather simplified
BS-PF [6].

In the IS-PF’s prediction step, the specially introduced impor-

tance function q(-) serves to sample particles a,E") from high poten-

tial state space regions indicated by the current observation variable
Y. For the AST purpose, the state space regions associated with
peak ASL algorithm output power can be denoted as the impor-
tance regions. Therefore, in practical implementation of the IS-PF,
the importance function can be approximated by:

gis(0x|Y1.x) = p(o|¥x) a7

from which it is quite obvious that the simplified importance func-
tion only takes into consideration the current state observations,
which can be the output of the SRP-PHAT algorithm.

The non-normalized importance weights can be calculated ac-
cording to the same pseudo likelihood function as in (14) and (16),
but with some update to avoid the degeneracy problem [8] (same
problem also encountered by the BS-PF, which solved it by intro-
ducing an additional resampling step), i.e.

(OC/E’Z> [Y14-1)

qis(ak Y1.1)

The weights are then nomarlized in the same way as in (15).

The importance function based particle sampling makes the al-
gorithm able to locate source rapidly, and this constitute the main
advantage of the IS-PF based AST algorithm. However, due to the
sub-optimal nature of the simplified importance function, the IS-PF
algorithm’s tracking performance is highly dependent on the accu-
racy of the current observations Y. If strong reverberation effects
present, the observations may be affected and not be able to indi-
cate potential particle sampling regions accurately. The IS-PF based
AST algorithm may suffer from the inaccurate observation resulted
low reverberation robustness during the tracking process.

4. PROPOSED HYBRID BS-IS PARTICLE FILTER
ALGORITHM

4.1 Concept of the Proposed Hybrid Algorithm

In [9], to solve the weight variance caused degeneracy problem, the
optimal importance function was derived as,

Gopr (0 |Y1:1) = p(0g |01, Y) 19

which clearly indicates that the sampling of current state particles
should take into consideration of both previous state estimation and
current state observation. The dual state consideration based sam-
pling complies with the Bayesian filtering concept described in sec-
tion 2.

The optimal importance function, however, suffers from two
drawbacks: one is the ability to sample from both previous estima-
tion and current observation simultaneously; the other one is the
need to evaluate p(Yk|ak,1) = fp(Yk‘ak)p((Xk‘(Xk,I)dak, which
generally has no analytic form. Therefore, only the sub-optimal
form of the importance function may be applied in the IS-PF im-
plementation, which may suffer from the reverberation effects if
applied in the AST problem as discussed in section 3.3.

Besides the “current state observation only” importance func-
tion used in the IS-PF, if we treat the transition function used in
the BS-PF prediction step as another simplified form of the optimal
importance function, i.e.

aps (04 |Y1:0) = p(ag| o 1) (20

The “previous state estimation only” sub-optimal nature of the im-
portance function used by the BS-PF may now contribute to the

limitation of the BS-PF based AST algorithm discussed in section
3.2.

Therefore, to develop fast and reverberation robust PF based
AST algorithm that overcomes the shortcomings of the BS-PF and
the IS-PF algorithms, we should sample the particles in the manner
closely approximate the optimal importance function:

q(og|Y1:x) = ploglonx—1)|p(Ye) (1)

which can be interpreted as the sampling of current state particles
should always take into consideration of previous estimations to
guarantee the tracking algorithm’s reverberation robustness; mean-
while, the sampling of new particles should also be subjected to the
accuracy of the current state observation to effectively accelerate
the locating speed.

Due to the fact that the accuracy of the observation is affected
by the reverberations, which can be treated as the “observations”
based on previous source states. We may therefore interpret the
observation into two components, i.e.

p(Yi) = p(Yilon) p(onx) + p(Ye|ok—1) p(@rk—1) (22)

where the first component represents accurate observation and in-
cludes valid information of current source state, sampling particles
according to such observation component can be quite safe; the lat-
ter component represents inaccurate observation and only includes
previous source state information, hence the sampling of particles
should follow the transition function to avoid being mislead by the
spurious observation.

Because that at any discrete time step, the observation can only
be accurate (p(Yy|ox)p(oux) > p(Yiox—1)p(@ix—1)) or inac-
curate (p(Yi|ayx—1)p(0rx—1) > p(Ye|laqx)p(0nx)). Intuitively,
this would suggest a hybrid structure of the BS-PF and the IS-PF,
and the accuracy of the current step observation is the key decision
maker. For implementation purpose, an additional binary sampling
switch(SS) density pss(Yy) is needed to help decide whether the cur-
rent step observation Y}, is accurate enough. The resulted sampling
switch importance function is,

gss(ox Vi) =
_ {P(O‘k|ak—l)v Pss(Yi) =
(o |Yy), pss(Yi) =

where pg(Y;) = 0 indicates inaccurate observation at kth time step,
and py(Y;) = 1 indicates accurate observation at kth time step.

(o] oe—1) - (1 = pss(Ye)) + (0 |Yi) - pss(Ye)
: (3)

4.2 Proposed Source Height Estimation based Hybrid BS-IS
Algorithm

If we have two additional microphone arrays along the ceiling and
one side wall of the room, the source height estimation (SHE), i.e.
the source’s (z) Cartesian coordinate, can be obtained readily by
applying the SRP-PHAT algorithm in the x-z Cartesian plane and
calculate the moving average of a series of reasonable estimations.

In most AST problems, the source’s height is always a con-
stant during the entire AST process, and the ideal SHE should be
a horizontal line along the time axis. However, the accuracy of
the SHE is also affected by the reverberation effects that have the
same detrimental effects on the source location estimation, espe-
cially for small reverberant rooms. Unlike the inaccurate observa-
tion, the inaccurate SHE can be more easily detected, as any inaccu-
rate SHE value may only fluctuate significantly along the constant
source height level.

Assuming that the SHE is performed independently and repeat-
edly at each iterative step of the PF based AST process, and that the
SHE accuracy is only affected by the reverberation effects, then any
SHE that differs from the SHE steady state value to certain extent
may indicate an inaccurate observation at the corresponding time
step. So the SHE based sampling switch decision is defined as,

{ Pss(Yk) = 07
PsS(Yk) =1,

if |Hy—H|>dy

if |Hy—H| <8y 24



16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP

where Hj, is the SHE at kth step, H is the Mean of all accurate SHE
up to kth step, and & is the defined SHE error threshold that decides
whether Hj, is accurate.
The proposed SHE based Hybrid BS-IS Algorithm can now be
summarized in the followed procedure:
1. Resampling(optional): resampling is performed if and only if
the BS-PF is adopted at the previous (k— 1)th step .

2. Source Height Estimations: estimate source height Hj with the
additional microphone arrays and the ASL algorithm applied in
the x-z Cartesian plane.

3. Sampling Switch Decision: decide the binary value of the sam-
pling switch density pgs(Y;) based on (24).

4. Particle Prediction: sample oy, according to BS-PF: p(oy|oy_1),
if pss(¥y) = 0; sample o according to IS-PF: p(oy|Yy), if
PsAv(Yk) =1L

5. Weight Update: update the new sampled particles’ weights ac-
cording to the designated weight update function of either BS-
PF (pss(Yx) = 0) or IS-PF (pgs(Y;) = 1)

6. Source Location Estimation: estimate the source (x, y) Cartesian

coordinates with the weighted particles:X; = ):f:’zl (o,i") a,fn)
5. NUMERICAL EXAMPLES
5.1 Simulation Setup
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Figure 1: An Illustration of the Simulated Reverberant Room, Mi-
crophone Array (o) Distributions and Acoustic Source Trajectory
(arrow).

The enclosed reverberant environment in this simulation is de-
fined as a typical rectangular room with dimensions of 4m x 3m x
3m. Both the x-y and x-z Cartesian planes of the room have been
divided into grid segmentations of 0.01m x 0.01m. The reverbera-
tions inside the room are simulated by the Image Method [10] for
a range of reverberation times R7gy € [0, 0.462] seconds. White
Gaussian noises are also added at each microphone to approximate
an average input SNR of 36.4dB.

There are a total of M = 16 microphone, grouped into 4 linear
microphone arrays. The distribution of the microphone arrays is il-
lustrated in Figure 1. The two microphone arrays mounted in the
x-y Cartesian plane have a constant height of 1.5m and serve to es-
timate the acoustic source’s (x, y) Cartesian coordinates. While the
rest two microphone arrays are allocated along the vertical central
axis of a side wall and the horizontal central axis of the ceiling re-
spectively. The latter two arrays are used to estimate the acoustic
source’s height. The distance between two adjacent microphones in

the same microphone array is either 0.8 m (along x-axis) or 0.6 m
(along y-axis or z-axis).

The acoustic source used in the simulation is a male speaker
with a fixed height of 1.7 m, and the source is assumed to move
straightly from (1,0.5) to (3,2) in (x, y) plane with constant speed.
The acoustic signal used here is a pre-recorded clean male speech
sample that lasts for about 7.86 seconds. The signal’s transmission
speed is set to be 343 m/sec. The microphone array received signals
are sampled at a frequency of 8 kHz and decomposed into non-
overlapping frames of L = 512 samples each.

For all the PF approaches, the number of particles is N = 50,
SRP-PHAT is applied as the ASL algorithm (observation function)
to measure observation Y, and SRP-PHAT’s output is used as the
pseudo likelihood p(ay|Yy). While for BS-PF, the Langevin process
is used to define the source state transition function, the particle
resampling size threshold is N;;, = 38. For the proposed hybrid BS-
IS PF, 8y is set to be 0.05m.

5.2 Simulation Results and Discussions

Source Height Estimation
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Figure 2: Source Height Estimation and corresponding Sampling
Switch Density for RTyy =~ 0.24 sec and SNR ~36.4 dB.

Figure 2 shows the simulation resulted SHE and the corre-
sponding sampling switch density. The SHE is marked with circle,
the error bar indicates the predefined SHE error threshold (0.05m in
this case), and the horizontal dotted line denotes the constant source
height level (1.7m in this case). The finally estimated H=1.6852m
is quite close to the actual source height 1.7m. By observing the
SHE fluctuation, it is quite convincing to see that the reverberation
resulted inaccurate SHE differs significantly from H and from each
other. This would help to verify the applicability of our proposed
SHE based sampling switch decision in (24). It is also quite con-
vincing to see that the binary sampling switch density could closely
respond to the fluctuating SHE. Once there is large SHE error, the
corresponding observation Y is also inaccurate, i.e. pg(¥;) = 0.
While for the other frames, the SHE fall within allowed error range,
the observations Y at those corresponding frames are classified as
accurate, i.e. pgs(¥;) = 1. The change of pg(Y;) values and the
SHE fluctuation has been shown to match with each other in fast
and accurate manner.

Figure 3 gives a better insight with the comparison of the track-
ing performances achieved by the three PF based algorithms. The
solid line presents the estimated source trajectory, the broken line
denotes the estimation standard deviation, and the dotted line is the
source actual trajectory. With randomized initial particles distribu-
tion, the BS-PF based algorithm encountered great difficulties in
locating the acoustic source. From the middle plot, it is easy to see
that the BS-PF based algorithm spent almost the first half of the
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Figure 3: AST Results of Hybrid BS-IS PF,BS-PF and IS-PF along x-axis and y-axis respectively for RTgg ~ 0.24 sec and SNR ~36.4 dB.

AST process to locate the source. However, once the BS-PF based
algorithm had correctly located the source, it performed very well in
the followed tracking process. The BS-PF’s competitive reverbera-
tion robustness has been well shown with its tracking performance.

In contrast, from the bottom plot, the IS-PF based algorithm
showed its rapid source locating capability by finding the source lo-
cation in very few frames. However, the tracking performance of the
IS-PF based algorithm clearly illustrated its relative poor reverber-
ation robustness. Even if the IS-PF based algorithm had followed
the source trajectory for quite a while, it could still encounter tem-
porary tracking difficulties by showing large estimation errors. This
could be contributed to the inaccurate SRP-PHAT measurements at
those corresponding frames.

Last but not the least, the hybrid BS-IS PF based algorithm’s
tracking performance from the top plot clearly indicates that the
hybrid algorithm has successfully overcomed the shortcomings of
both the BS-PF and the IS-PF. At the initial stage, all the parti-
cles were randomly distributed, and the SHE at the very beginning
frames were not very accurate. This suggested that at initial stage
the SRP-PHAT based observations did not indicate any valid in-
formation for particles’ sampling. Consequently, the hybrid BS-IS
PF based algorithm should switch to BS-PF mode that follows the
source state transition function to minimize the reverberation ef-
fects. After a few frames, the SHE had approached steady state,
suggesting accurate observations at corresponding frames. The hy-
brid BS-IS PF based algorithm rapidly located the source by switch-
ing to the IS-PF mode. For the followed AST process, the hybrid
BS-IS PF algorithm could firmly track the source trajectory even if
there were some inaccurate observations caused by reverberations
at certain frames. This shows that the hybrid algorithm is free of re-
verberation influences by switching from IS-PF to BS-PF whenever
necessary.

6. CONCLUSIONS

The objective of this work is to track a moving acoustic source in-
side an enclosed reverberant and noisy environment with distributed
acoustic sensor arrays. In this paper, we proposed a novel hybrid
BS-IS PF algorithm with source height estimation based sampling
switch technique. The height estimation can be readily obtained
with two additional microphone arrays, and can be used to indicate
whether the corresponding observation is accurate enough to adopt
proper PF algorithm. Numerical results show that the hybrid BS-IS

PF based algorithm has improved AST performance over the BS-PF
and the IS-PF based algorithms in reverberant environments.
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