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ABSTRACT 

The paper addresses the problem of estimating the parame-

ters of polynomial phase signals embedded in Gaussian 

noise. We consider an estimation method based on an ap-

proximate linear state space representation of the polyno-

mial phase signal. This approach offers the opportunity to 

use a nonlinear but exact measurement equation and guide 

the estimation of the states of these signals to an extended 

Kalman filtering algorithm. Procedure simulations were 

made on linear and quadratic phase modulation signals 

with time-varying amplitude and are consistent with the 

theoretical approach. The results given by this new algo-

rithm are compared with the performances of a standard 

Kalman technique. 

1. INTRODUCTION 

Polynomial phase signals (PPS) are frequently encountered 
in many signal processing applications such as in radar, so-
nar, laser velocimetry or telecommunications. There are 
non-stationary signals having a fast-varying instantaneous 
frequency. The estimation of the parameters of PPS signals 
affected by additive Gaussian noise has received consider-
able interest in signal processing literature and several 
methods formulated as linear system identification prob-
lems, have been used to solve the problem [1]. These ap-
proaches admit the solution in the form of a linear Kalman 
filter [2]-[4], which is the optimal tracking algorithm when 
the signal models are assumed linear and both state and ob-
servation noise are additive and Gaussian. A linear state 
model can be obtained by the approximation of Tretter [3], 
which regards as uncorrelated both amplitude and phase 
components of the gaussian noise. 
As the Tretter linear state model works satisfactorily as far 
as the signal-to-noise ratio (S/N ratio) exceeds 13dB, at 
lower levels of S/N ratios will be used nonlinear state mod-
els and Extended Kalman Filtering (EKF) procedures [5]-[7] 
which considers a local linearization that uses a first order 
Taylor expansion of nonlinear equations. 
In this paper we consider the estimation of parameters of a 
variable amplitude linear chirp signal, which is a second 
order polynomial phase signal, corrupted by additive Gaus-
sian noise. As compared to previous works on the subject 
[5], [6], the EKF algorithm developed in this paper removes 

their phase uncertainties by replacing the real-valued signal 
by its analytic representation. 
A drawback of EKF algorithms are the important number of 
divergence cases that arises even at large S/N ratios. To 
overcome this limitation, the EKF algorithm that we present 
uses a procedure that overestimates adaptively the variance 
of observation noise in order to compensate the effect of 
high-order terms neglected by linearization. 
This paper is organized as follows. Section 2 introduces the 
state-space model of variable amplitude polynomial phase 
signal affected by additive Gaussian noise. In section 3 we 
describe the EKF algorithm used in the estimation of PPS 
parameters. Section 4 provides simulation results and com-
parison with respect to linear Kalman filtering algorithm 
introduced in [4]. The results are obvious: in comparison 
with the previous algorithm, EKF works satisfactorily well 
at very low S/N ratios, especially with regard to polynomial 
phase parameters estimation  Finally, section 5 gives the 
concluding remarks and sketches the prospective work to be 
done. 

2. NON LINEAR STATE-SPACE REPRESENTATION 

OF POLYNOMIAL PHASE SIGNALS 

A polynomial phase complex signal with variable amplitude 
embedded in additive noise [ ]w n  is expressed as 

 [ ] [ ] [ ]( ) [ ] [ ] [ ]
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where the positive real-valued [ ]A n  is the amplitude of the 

signal which can be constant or time varying and [ ]nΦ  is a 

deterministic phase polynomial of order M, with the phase 
coefficients , 0, ,

i
b i M= K assumed real and unknown. The 

additive noise is assumed complex, white and Gaussian, 
having zero-mean and variance 2

w
σ . It can be written as 

 [ ] [ ] [ ]R I
w n w n jw n= +  (2) 

with [ ]R
w n  and [ ]I

w n  the real and the imaginary part of 

the analytical noise. If both parts are not correlated between 
them, having the same variance, we can write: 
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where {}E ⋅  is the expectation operator. An analytical signal 

having these properties is called “circular” noise [8]. 

2.1 The State-Space Model and Transition Equation 

The state-space model and the transition equation of a poly-
nomial phase signal can be derived taking as a starting point 
the M-order phase polynomial [ ]nΦ  Taylor series expan-

sion [4], [8]: 
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where ( ) [ ]k
nΦ  stands for the k-order derivative of the phase 

function: 

 ( ) [ ] ( ) [ ] ( ) [ ]1 1 1 , 1,k k k
n n n k M

− −
Φ = Φ −Φ − =  (8) 

Note that in discrete time other definitions for (8) are possi-
ble as well [1]. 
In order to obtain the exact state-representation of variable 
amplitude PPS, we define the following ( )2 1M + ×  state 

vector [ ]nx : 

[ ] [ ] [ ] ( ) [ ] ( ) [ ] ( ) [ ]1 2
T

M
n A n n n n n = Φ Φ Φ Φ x K (9) 

Considering only phase variations of a PPS signal, the state 
transition equation is written as 
 [ ] [ ]1n n+ =x Fx  (10) 

where the ( ) ( )2 2M M+ × +  transition matrix F is com-

posed of coefficients in (6) and (7) 
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This model can be extended in order to include variable am-
plitude PPS. We will assume that the amplitude of the signal 
follows a random walk model 
 [ ] [ ] [ ]1A n A n v n+ = +  (12) 

where [ ]v n  is a sequence of i.i.d. random scalars with the 

distribution ( )20, vN σ .  

Including eq. (12) in eq. (10), the final expression of state 
transition equation is 
 [ ] [ ] [ ]1n n v n+ = +x Fx G  (13) 

where G is a ( )2 1M + × vector 

 [ ]1 0 0
T

=G K  (14) 

As reveals (13) the state transition equation of PPS model is 
linear. 

2.2 The Observation Equation 

In order to estimate the parameters of chirp signals cor-
rupted by noise, a nonlinear observation equation is used. In 
this sense, the measured signal [ ]y n  is expressed as a 2 1×  

vector in terms of its real and imaginary parts: 

 [ ] [ ]( ) [ ]( )Re Im
T

n n n =  y y y  (15) 

Viewing (15), the observation equation is nonlinear: 

 [ ] [ ]( ) [ ]n n n= +y h x w  (16) 

where the 2 1×  nonlinear function [ ]( )nh x is written as 
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The observation noise vector [ ] [ ] [ ]
T

R In w n w n =  w  is 

defined by (2)-(5). The correlation matrix is also given from 
the same equations 
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In order to use EKF, we apply the first order linearization 

procedure to [ ]( )nh x  in (17) around the estimation of the 

state vector ˆ 1n n −  x : 
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As is obvious, the replacement of [ ]( )nh x  by its first order 

approximation has dramatic effects on stability and conver-
gence of EKF algorithm, which implies the appearance, es-
pecially at low S/N ratios, of “lack of convergence” cases. A 
mechanism which practically eliminates these cases will be 
presented in the next Section. 

3. THE EKF ALGORITHM 

As far as the observation model is nonlinear, in order to ap-
ply the Kalman filtering procedure as it was shown, a first 

order linearization around ˆ 1n n −  x  is needed at each step 

of the standard Kalman algorithm. The procedure is well 
known as Extended Kalman Filter (EKF) algorithm [9] and 
it uses state-space equations (13) and (16) as well as the 
linearization of the observation function around the current 
vector estimate (20). 
Assume that the initial state [ ]1x , the observation noise 

[ ]nw  and the state noise [ ]v n  are jointly Gaussian and 
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mutually independent. Let ˆ 1n n −  x  and 1n n −  R  be 

the conditional mean and the conditional variance of [ ]ˆ nx  

given the observations [ ] [ ]1 , , 1n −y yK  and let ˆ n n  x  and 

n n  R  be the conditional mean and conditional variance 

of [ ]ˆ nx  given the observations [ ] [ ]1 , , ny yK . Then [9] 

3.1 Measurement Update Equations 
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3.2 Time Update Equations 

 ˆ ˆ1n n n n +  =     x Fx  (25) 
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where [ ]nK  is the Kalman gain matrix at moment n . 

The parameters of variable amplitude PPS, given by the 

vector [ ] 0 1

T

MA n b b b =  θ K is expressed in terms 

of the initial state vector, [ ]0x by 

 [ ]0=θ Cx  (27) 

where the matrix C  is: [ ]( )diag 1 1 1 1! 1 !M=C K . 

Consequently, at step n, the estimation of the initial state 

vector ˆ 0 n  x  is used to express the estimation of θ [5] 

 [ ]ˆ ˆ ˆ0 0n
n n n

−
=   =     θ Cx CF x  (28) 

As EKF is not an optimal estimator, if the initial estimation 

of the state is wrong or if the process is modelled incor-
rectly, the filter may quickly diverge, owing to its lineariza-
tion. This behaviour appears in our case as long as the S/N 
ratio is lower than 10dB. As example for 0dBSNR = , the 
rate of divergent cases may exceed 20%. By contrast, there 
are not cases of divergence for the linear counterpart of the 
method [4]. Figure 1 shows the rate of divergence of stan-
dard EKF method with respect to SNR obtained from simu-
lations made on typical PPS. 
As a result of many simulations carried out, we concluded 
that it is more effective to use an overestimate of the value 
of the variance of the noise in order to compensate for the 
terms neglected during the linearization of measurement 
equation. The consequences of such an increase on variance 
are positive: the rate of divergence diminishes drastically. 
The same effect is seen with respect to estimation errors. 
The overestimation procedure was established empirically 

and lies in substitution of matrix [ ]ˆ
w

nQ  in (22) by 

[ ]R w
k nQ  where the robustness factor 

R
k  is computed as 

follows 
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The improvements obtained by using 
R

k  are revealed in 

Figure 1. We designate the EKF that uses 
R

k  factor as ro-

bust EKF algorithm. 

4. SIMULATION RESULTS 

In this section we give some simulation results for the esti-
mation of PPS in Gaussian noise based on robust EKF algo-
rithm. The 1000 samples second order PPS sequence pre-
sented in Figure 2 was used. The real values of its phase 
parameters are: 0 2,b π= 1 0.0785,b = 3

2 1.309 10b −= × . The 

state noise [ ]v n  is zero-mean Gaussian white noise 

with 2 310
v

σ −= . 
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Figure 2. Second order PPS in gaussian noise, SNR=5dB. 
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Figure 1. Rate of divergence vs. SNR assessed on the same signal  by 
Kalman filters under disscussion. 
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Figures 3 to 7 give the convergence plots for PPS parame-
ters for two levels of S/N ratio. The initial conditions were 
as in [5]: 
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By contrast to Kalman-Tretter filtering algorithm introduced 
in [4], the EKF works satisfactorily at low levels of S/N 
ratio, especially if the focus of estimation is put on phase 
parameters. Only the amplitude estimation is strongly af-
fected by high levels of noise. The most exact estimation is 
obtained for 2b , while the initial phase 0b  is the most diffi-

cult to establish, since its estimation depends on higher order 
coefficients exact estimation. 
The comparison of EKF and Kalman-Tretter algorithms 
performances was the second goal of this paper. With that 
end in view, a statistical analysis was made by taking 100 
noisy realizations of the test signal for S/N ratio values be-
tween 0 and 20dB. The averages of RMS error were calcu-
lated for each of 4 parameters that describe the second order 
PPS. The results are presented in Figures 7 to 10 and certify 
that as long the S/N ratio is lower than 13dB, the phase pa-
rameters estimation by EKF is far better than the results 
given by Kalman-Tretter method. The single parameters for 
which Kalman-Tretter presents better performances is the 
amplitude, but from 10dB up, both methods performs iden-
tically. As result, we can declare that EKF extends the Kal-
man methods range from 13dB as imposed by linear Kal-
man algorithm to approximately 5dB. 

5. CONCLUSIONS 

The paper gives a new state space model of variable am-
plitude polynomial phase signals that allows better perform-
ances for EKF algorithm than the old linear Kalman method. 
The robust EKF implemented on this model extends the 
range of performances of Kalman algorithms in the polyno-
mial phase estimation from a S/N ratio of 13dB to 5dB. 
If the paper reveals the progress realized on the way of 
Kalman filtering estimation of PPS parameters, a lot of 
problems remain to be solved by future works. First at all, 
we refer to better amplitude estimation for PPS, then to the 

extension to multicomponent chirp signals and higher order 
polynomial phase signals. 
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