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ABSTRACT 

 
Super-resolution (SR) is the term used to define the process of 
estimating a high resolution (HR) image or a set of HR images 
from a set of low resolution (LR) observations. In this paper we 
propose a class of SR algorithms based on the maximum a poste-
riori (MAP) framework. These algorithms utilize a new mul-
tichannel image prior model, along with the state-of-the art image 
prior and observation models. Numerical experiments comparing 
the proposed algorithms, demonstrate the advantages of the 
adopted multichannel approach. 
 

1. INTRODUCTION 

Resolution enhancement of an image / frame or of a video se-
quence based on multiple LR observed frames, which is also re-
ferred to in the literature as super-resolution (SR), is of critical 
importance in signal processing applications, such as video sur-
veillance, remote sensing, medical imaging, cell phones, digital 
video cameras, portable Digital Versatile Disc (DVD), portable 
Global Positioning Systems (GPS), High Definition Television 
(HDTV) e.t.c. [1]-[2]. The super-resolution problem is an inverse 
problem that requires a regularized solution. The Bayesian frame-
work, used in this work, offers many advantages (see [1] for ex-
ample).  

In most of the Bayesian formulations which have been used 
for the SR problem so far, single channel image priors have been 
adopted, based on a Gaussian stationary assumption for the re-
siduals of the local image differences [3], whereas there have also 
been proposed non Bayesian total variation (TV) regularization 
techniques [4]-[5]. As far as the imaging models are concerned, 
many techniques are incorporating the motion field (MF) informa-
tion [3]-[6], whereas others do not use this information at all.  

The term multichannel [7] in the context of video recovery 
implies the use of the between frames correlations. Such ap-
proaches have been used successfully in the past for video restora-
tion and compressed video reconstruction [6]-[8] and [9], respec-
tively. However, these approaches were deterministic and the 
multichannel idea was basically imposed by using between frame 
regularization.  

In this paper we address the video SR problem utilizing a 
MAP approach. One of the main contributions of this work is the 
use of a new multichannel prior that incorporates registration be-
tween frames information which is directly related with the accu-

racy of the motion field estimation.  
This paper is organized as follows. Section 2 describes the ap-

propriate mathematical background on all possible image priors 
and observation models used. Section 3 introduces a MAP prob-
lem formulation for the SR of uncompressed video for each one of 
the proposed models, along with the realizations of the corre-
sponding algorithms. In section 4 we demonstrate the efficacy of 
each one of the models through simulation experiments which 
provides a comparison among them indicating the benefits of the 
new prior. Finally, section 5 presents the conclusions. 

2. MATHEMATICAL BACKGROUND 

2.1 Observation Models 
 

In this paper we use two different observation models. In the first 
one the relationship between a LR observation ig  and its HR coun-
terpart if  is given in matrix-vector form (all images have been lexi-
cographically ordered) by 
         Α     for 1,2 ,i i i i P+ =g = Hf n …   (1) 

where ig  and if  are of dimensions 1MN ×  and 1LMLN ×  
respectively, Α  is the MN LMLN×  down-sampling matrix 
which sub-samples the HR frame, H  is the LMLN LMLN×  
blurring matrix, in  of size 1MN × , represents the additive white 
Gaussian noise (AWGN) term, which includes the acquisition er-
rors, P  represents the total number of  frames used and L  denotes 
the resolution enhancement factor. 

Equation (1) can be rewritten for the multichannel case as 
 ,= +g AHf n   (2) 
where 
      [ ],..., ,..., ,TT T T

k m k k n− +=g g g g [ ],..., ,..., ,TT T T
k m k k n− +=f f f f  

                            [ ],..., ,..., TT T T
k m k k n− +=n n n n                             (3) 

and n , m  indicate respectively the number of frames used in the 
forward and backward temporal directions ( 1n m+ + = P ), 
with respect to the k th−  frame, T  denotes the transpose of a 
matrix-vector, TA  defines the up-sampling operation and 
 
      { } { }Α Α Α,..., ,..., , ,..., ,..., ,diag diag= =H H H H A      (4) 

are respectively of dimensions PLMLN PLMLN×  and 
PMN PLMLN× . Note that a generalization of models (1) and (2) 

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



is to consider a different blur and down-sampling per frame, i.e. 
replace H  by iH  and Α  by Αi .       

The second observation model utilizes the motion field, accord-
ing to which 
       ( ) ( )Μ Μ, , , ,

ˆ , ,k
i i k k i k i i k ik i k= + = + =f d f n f n M d       (5) 

where if  and kf  are column vectors of size 1LMLN × , Μ ,( )i kd  

is the 2-D motion compensation matrix of size LMLN LMLN× , 
mapping frame kf  into frame if  with the use of ,i kd  (displace-

ments at each pixel location), and ,i kn  is assumed to be an AWGN 
process that accounts for the motion compensation (registration) 
errors and is also described by a column vector of size 1LMLN × . 

Combining (1) with (5), results in the definition of the second 
imaging model (warp – blur model [1]),  

Α , ,        ( ) for ,..., ,..., ,i i k k i k i k m k k n+ = − +g = HM d f w    (6) 

with , ,i k i i k= +w n AHn  a column vector of size 1MN ×  repre-
senting the total contribution of the noise term (including both reg-
istration and acquisition errors) which is again modelled to be 
AWGN. Here, using the imaging model in (6) we are incorporating 
only the motion information that is relevant to the SR of the middle 
(k th− ) frame. 
   
2.2 Image Prior Models 
 
In this work we consider two prior models. Although deterministic 
approaches have been developed in the past [10], the Bayesian for-
mulation of a prior offers many advantages. A simple model based 
on a Gaussian stationary assumption (stochastic non-stationary as-
sumptions [11] have also been used) is given by 

             1( , )j j jNε α−= Qf 0 I∼ , or equivalently 

                 ( )2( ; ) exp ,
2
j

j j jp
α

α ∝ −f Qf                                 (7) 

where Q  represents a convolutional operator (discrete Laplacian)  

of size LMLN LMLN× ,  ⋅  denotes the 2l  norm and the pa-

rameter jα accounts for the within channel (within frame j) inverse 

variance, with 0  being the 1LMLN ×  zero vector and I  the 
LMLN LMLN×  identity matrix. 

The second image prior model introduced in this paper is a new 
mulichannel prior that takes into account both within frame 
smoothness captured by equation (7) and between-frame smooth-
ness incorporated through the motion field information. More spe-
cifically the multichannel prior we propose, is given by 

 

             ( ; ) ( | ; ) ( ; ),
k n k n

i j ij j j
i k m j k m

j i

p Z p pβ α
+ +

= − = −
≠

∝ ∏ ∏f , f f fβ α         (8) 

where 
                 ( )( )2( | ; ) exp /2i j ij ij i ij jp β β∝ − −f f f M f      (9) 

and  ( ; )j jp αf is given by (7) with    
 

               ( ),( ) ,T
ji ij j i= =M M M d       (10) 

 
where matrix ( )TijM clearly represents the operation of backward 

motion compensation along the motion vectors (mapping frame if  

into frame jf  with the use of ,j id ), whereas β  and α  are also the 

column vectors that contain the parameters ijβ  and jα , respec-

tively. The parameter ijβ  represents the inverse variance (precision) 
of the motion compensation error between frames i and j. 

The joint pdf in the right hand side term of Eq. (8) can be also 
written as 

                 

( ) ( ) ( )

[ ]1/2 -1

, ; , | ; ;

1exp , ,
2

i j ij j i j ij j j

iT T
ij i j ij

j

p p pβ α β α

−

= ∝

⎛ ⎡ ⎤ ⎞⎟⎜ ⎢ ⎥ ⎟⎜∝ − ⎟⎜ ⎢ ⎥ ⎟⎟⎜⎜⎝ ⎠⎢ ⎥⎣ ⎦

f f f f f

f
R f f R

f
        (11) 

where 
 

           
( ) ( )

1
ij ij ij

ij T TT
ij ij j ij ij ij

β β

β α β
−

−⎡ ⎤
⎢ ⎥= ⎢ ⎥− +⎢ ⎥⎣ ⎦

I M
R

M Q Q M M
        (12) 

                      
denotes the ‘cross-channel’ inverse covariance matrix. Then, we can 
rewrite (8) as 

   
[ ] 1

1

1( ; , ) exp ,
2

1exp ,
2

k n k n iT T
i j ij

ji k m j k m
j i

T

p Z

Z

+ +
−

= − = −
≠

−

⎡ ⎤
⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥∝ −⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦

⎡ ⎤= −⎢ ⎥
⎣ ⎦

∑ ∑
f

f f f R
f

f R f

β α
  (13) 

thus 

                                   1/2 1/21 ,Z −−= =R R        (14) 

with 1−R  representing the inverse covariance matrix of the prior 
pdf ( ( , )Nf 0 R∼ ) which is not given in closed form due to space 
constraints. 

Evaluating Z  from (14) is cumbersome given the size of 
1−R and mainly because of the need to find the derivative of this 

determinant with respect to all the involved parameters. Therefore, 
in the herein work we approximate the functional relationship of the 
parameters jα  and ijβ  and the normalizing constant Z  (the parti-
tion function) of the multichannel prior as (in this paper we choose 
m n= )  

             ( -1)/2 /2( ) ( )
k m k m k m

P LMLN PLMLN
j ij

j k m i k m j k m
j i

Z α β
+ + +

= − = − = −
≠

∝ ∏ ∏ ∏ .   (15) 

Clearly, the introduced prior is an improper one. Improper priors 
have been used in the past with success in image recovery problems, 
see for example [11].   
 

3. MAP PROBLEM FORMULATION AND 
PROPOSED ALGORITHMS 

Taking into account the main possible combinations of the obser-
vation models ((1) or equivalently (2) and (6)) with the prior mod-
els ((7) and (13)) we propose three formulations of the HR problem 
and derive the corresponding MAP algorithms. 
 
3.1 Model 1 
 
The simplest approach to the super resolution problem is to use a 
single channel to obtain the observation model of (1). In this case no 
motion field information is used (in applications where more than 
one frames are to be restored, these frames are independently super 
resolved based on (1) without using any of the adjacent channels). 
Given (1), the fidelity pdf is defined as 
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     ( )22( | ; ) exp ( /2) ,
MN

i i i i i iip γ γ γ∝ − −g f g AHf        (16) 

where the parameter 1
iγ
−  is the acquisition noise variance (inverse 

precision), whereas the prior model is defined by (7). 
In obtaining the MAP estimate the following objective function 

is minimized 

         
( | ; , ) 2 log ( , ; , )

2 log ( | ; ) 2 log ( ; ),
MAP i i i i i i i i

i i i i i

J p

p p

α γ α γ

γ α

∝ − =

= − −

f g g f

g f f
             (17) 

 
resulting in 

            2 2
( 1)

, ,i i
i i i

LMLN MNα γ−= =
−Qf g AHf

      (18) 

  
      ( )ˆ( / )T T T T T

i i i iα γ+ =H A AH Q Q f H A g .                 (19) 
 

3.2 Model 2 
 
This model is based on [3], where the observation model is de-
scribed by (6) and the prior model is also given by (7).  In that case 
the fidelity pdf is given by  

          
, ,

22

ˆ( | , , ; ) ( | ,; )

     exp( ( /2) ),

k
i i i k k i ik i k ik

MN

ik i ik kik

p pγ γ

γ γ

≡ ∝

∝ − −

g f d d g f

g AHM f
           (20) 

where the parameters ikγ  are  the inverse variances (precisions 
related to the motion compensation errors / registration noise and 
also to the acquisition noise) and as is expected for i k=  it holds 
that ik i kγ γ γ= = . Moreover, when kf (and the motion field 

matrices) are given, the random variables ig  (observations), or else 
the respective error terms, are assumed to be statistically independ-
ent. Thus we have 

    , ,( | ; ) ( | , , ; ),
k m

k i k i k k i ik
i k m

p p γ
+

= −
= ∏g f g f d dγ                (21) 

where γ  denotes the column vector that contains all the (scalar) 

parameters ikγ . 
With this model, the objective function that is minimized is 

given by  
              

, ,

, ,

( | ; , ) 2 log[ ( | ; ) ( ; )]

2 log[ ( | , , ; ) ( ; )]

2 log[ ( | , , ; )] 2 log[ ( ; )],

MAP k k k k k

k m

i k i k k i ik k k
i k m
k m

i k i k k i ik k k
i k m

J p p

p p

p p

α α

γ α

γ α

+

= −
+

= −

∝ − =

= − =

= − −

∏

∏

f g g f f

g f d d f

g f d d f

γ γ

 (22) 

resulting in  

         2 ,ik
i ik k

MNγ =
−g AHM f

                               (23) 

                         ˆ( ) ,T
k ka+ =J Q Q f Z                                   (24) 

where 

                     
[ ( )],

   [ ( )],

k m
T T

ik ki ik
i k m

k m
T T

ik ki i
i k m

γ

γ

+

= −
+

= −

=

=

∑

∑

J M H A AHM

Z M H A g
                     (25)                                                

whereas the estimation of the parameter kα  is given (by the left 
hand side term of (18)). Obviously with this model only the part of 

the motion field information which is relative to the HR frame k̂f  is 
used and this contribution is attributed to the formulation of the 
observation model. 
 
3.3 Model 3 
 
With this model, the multichannel observation model described by 
(2) is combined with the new multichannel prior described by (8), 
(13) and (15).       

Based on the above analysis the fidelity pdf term is given by 
1

12 1
( | ; ) ( { }) exp{ ( ) ( )},

2
Tp Det

− −∝ ⋅ − − −g f g AHf g AHfγ Γ Γ  

   (26) 
where { }1 1 1,..., ,...,k m k k mdiag γ γ γ− − −

− += I I IΓ  is the covariance 

matrix of size PMN PMN× , I  is the identity matrix of size 
MN MN× , and [ ,..., ,..., ]Tk m k k mγ γ γ− +=γ  is the column vec-
tor that contains the inverse noise variances for each one of the 
channels that are used.  

Consequently, the objective function is given by 

   
( | ; , , ) 2 log ( , ; , , )

2 log ( | ; ) 2 log ( ; , )

MAPJ p

p p

∝ − =

= − −

f g g f

g f f

β α γ β α γ

γ β α
            (27) 

and its minimization results in 

2 2
( 1)

, ,
( 1)

j ij
j i ij j

P LMLN PLMLN
P

α β−= =
− −Qf f M f

   (28) 

                              1 ˆ( ) ,−+ =G R f gΛ                                    (29) 
with  

1

{ ,..., ,..., }

T T

T T T T T T
k m k k mdiag γ γ γ

−

− +

= =

=

G H A AH

H A AH H A AH H A AH

Γ
 

and  
1 { ,..., ,..., }.T T T T T T T T

k m k k mdiag γ γ γ−
− += =H A H A H A H AΛ Γ

      In this model the motion field information is taken into account 
only through the prior and not through the observation term, 
whereas (18) also holds as far as the estimation of iγ  is concerned. 
Moreover, in model 3 simultaneous SR (and restoration) of all the 
HR frames is taking place, which is not the case in models 1 and 2. 
Finally, it is clear that (19), (24) and (29) can not be solved in closed 
form, given that analytical inversion of matrices is not possible due 
to the non-circulant nature of matrices ,  and T

ijA A M . Thus, we 
resorted to a numerical solution using a conjugate-gradient (C.G.) 
algorithm. 
  

4. NUMERICAL EXPERIMENTS 

 
In this section we present numerical experiments to evaluate our 
algorithms and also justify the benefits provided by the use of the 
new multichannel prior based on (13). In all experiments, a central 
316 316×  region of the sequence Mobile was selected, similarly to 
the experiments in [3]-[4] (these experiments have also been con-
ducted using more sequences yielding similar results). Moreover, 

2m n= =  ( 3k = ) and frames ‘018’ - ‘022’ were chosen.  
Two cases were considered, where in the first one uniform 

9 9×  blur was used, whereas in the second one no blur was used 
( =H I ). After blurring, sub-sampling by the factor of two 
( 2L = ) in both dimensions took place and white Gaussian noise 
was added such that the blurred signal-to-noise ratio (BSNR) de-
fined (in dB) as 
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2
1

1010 log / ( ) ,i i iBSNR MN γ−⎛ ⎞⎟⎜= − ⎟⎜ ⎟⎟⎜⎝ ⎠
AHf AHf  

or equivalently the SNR when =H I , for each LR frame equals to 

20dB, 30dB and 40dB ( iAHf  is the spatial mean of vector iAHf ).  
The metric used to quantify performance was the improvement 

in signal-to-noise ratio (ISNR). This metric (in dB) is defined as 

           ( )22
10 ,

ˆ10 log / ,i i I i iISNR = − −f g f f  

where ,i Ig  denotes the bicubic interpolation of the thi  LR observa-
tion. 

In model 1, considering both experimental cases, an iterative 
scheme was used (in our attempt to get the best possible initial con-
ditions for models 2 and 3) where the bicubically interpolated LR 
observations served as initial conditions for the C.G. algorithm and 
for the estimation of the parameters.  

In all experiments (in both cases) with models 2 and 3 the algo-
rithm (including the estimation of the parameters) is initialized by a 
single frame stationary super-resolution algorithm (model 1) from 
which the motion field computation was also performed using a 3 
level hierarchical block matching algorithm with integer pixel accu-
racy at each level. For the C.G. algorithm implementation, matrices 
ijM were initially estimated and remained fixed (no iterative 

scheme was adopted and the same holds for the estimated precision 
parameters in the proposed algorithms of models 2 and 3). 

In all the aforementioned models, the convergence criterion 
which was adopted for the termination of the C.G. algorithm was 

2 2 5/ 5 10new old old
k k k

−− < ⋅f f f  (in model 1 it was used for 

each frame independently). 
Moreover, a noteworthy observation of our experiments was the 

robustness of model 3 in terms of initial conditions. More specifi-
cally the ISNR in all cases, when the (C.G.) algorithm was initial-
ized by the bicubically interpolated LR observations and the motion 
fields along with the parameters were also estimated by them, 
proved to be lower but close enough to its respective values which 
are given in tables 1 and 2 below (for this model).  

In table 1 the ISNR results for the blurry case are given, whereas 
in table 2 the ISNR results for no blur super-resolution are shown 
(for different (B)SNRs).  

 
 

TABLE 1 
ISNR (IN dB) COMPARISON AMONG MODELS WITH 

RESPECT TO THE MIDDLE FRAME 
Noise Level BSNR=20dB BSNR=30dB BSNR=40dB 

Model1 1.5489 3.4379 4.7620 
Model2 2.0390 3.5480 4.8175 

Model3 2.5756 4.1684 5.4582 
 
 
 

TABLE 2 
ISNR (IN dB) COMPARISON AMONG MODELS WITH 

RESPECT TO THE MIDDLE FRAME 
 (NO BLUR CASE) 

Noise Level SNR=20dB SNR=30dB SNR=40dB 
Model1 1.9269 3.6800 4.1258 
Model2 2.2788 3.7974 4.1522 

Model3 2.8934 4.3088 4.5426 
 

Figures 1, 2, 3 and 4 show representative examples of the pro-
posed algorithms. In these figures, due to space constraints, we 
show the central segment of the corresponding (middle) frame for 
each adopted approach. As can be seen, several areas benefit from 
the recovery (mainly by model 3) i.e., the numbers in the calendar 
are sharper.  
 
 
 

 
  (a) 

 
  (b) 

 
  (c) 

 
  (d) 

 
Figure 1 - SR results for BSNR=20dB (a) Segment of bicubically 
interpolated LR observation of middle frame, (b) SR model 1 
(ISNR=1.5489dB), (c) SR model 2 (ISNR=2.0390dB), (d) SR 
model 3 (ISNR=2.5756 dB). 
 
 

 
                         (e) 

 
                          (f) 

 
 (g) 

 
                         (h) 

 
Figure 2 - SR results for BSNR=30dB (e) Segment of bicubically 
interpolated LR observation of middle frame, (f) SR model 1 
(ISNR=3.4379dB), (g) SR model 2 (ISNR=3.5480dB), (h) SR 
model 3 (ISNR=4.1684dB). 
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                         (a) 

 
                         (b) 

 
                         (c) 

 
                         (d) 

 
Figure 3 - SR results for SNR=20dB (a) Segment of bicubically 
interpolated LR observation of middle frame, (b) SR model 1 
(ISNR=1.9269dB), (c) SR model 2 (ISNR=2.2788dB), (d) SR 
model 3 (ISNR=2.8934dB). 
 

 
                         (e) 

      
                         (f) 

 
                         (g) 

 
                         (h) 

 
Figure 4 - SR results for SNR=30dB (e) Segment of bicubically 
interpolated LR observation of middle frame, (f) SR model 1 
(ISNR=3.6800dB), (g) SR model 2 (ISNR=3.7974dB), (h) SR 
model 3 (ISNR=4.3088dB). 

5.  CONCLUSIONS 

In this paper, we presented a MAP approach of a new multichannel 
image prior applied in the digital video SR problem, along with 
three proposed algorithms and their comparative study. These algo-
rithms have been tested in different cases (in the presence or the 
absence of blur for different BSNR and SNR values respectively). 
The experimental results show in both cases that the algorithm 
which is based on the new proposed model (model 3) performs 
better than previous ones in terms of both robustness with respect to 

the initial conditions and improvement in SNR (ISNR). Moreover, 
the efficacy of this algorithm is further established by the fact that it 
provides the maximum gain with respect to the single frame SR 
algorithm (model1) at low BSNR / SNR values, which is also the 
case with respect to model 2 when no blur is used (resolution en-
hancement efficacy). Finally, the comparison between models 2 and 
3 serves as a strong indication that the use of motion field in the 
prior term is much more efficient both in terms of restoration capa-
bility and resolution enhancement with respect to its use in the ob-
servation term (model). 
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