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ABSTRACT
In this article, two Kalman filtering techniques, the Un-
scented Kalman Filter (UKF) and the Extended Kalman Fil-
ter (EKF) are applied for cylinder-wise torque estimation.
In engine signal processing the problem of engine speed
evaluation is one of the main problems of current research
for engine control. In this work, two engine speed signals,
recorded at the free end and at the flywheel, together with
a multi-body model of the crankshaft are used to account
for torsional deflections of the crankshaft. In order to es-
timate cylinder-wise torque, additionally one cylinder pres-
sure signal is used to obtain a parametric torque model. The
resulting parameter and state estimation problem allows the
comparison of UKF and EKF. The performance of both algo-
rithms was evaluated using measurements from a four cylin-
der combustion engine. Whilst practical issues still exist, this
off-line study showed the feasibility of the approach.

1. INTRODUCTION

The requirements for today’s combustion engines are ever in-
creasing. Lower emissions and fuel consumption, as well as
increased driving comfort are demanded and require intelli-
gent solutions. Advanced control and diagnostic concepts are
being developed in order to reduce fuel consumption and ex-
haust emissions. These methods need feedback information
from each cylinder. In test beds cylinder pressure sensors in
all cylinders are usually used. Furthermore, there are also
other methods to reconstruct feedback information from the
combustion chamber.
In the literature there are three main indirect signal sources
considered for pressure or gas torque estimation: engine
speed, structure-born sound and torque. The fluctuations
of engine speed deliver information of cylinder-wise torque
[1], [2]. Alternatively, structure-borne sound, currently used
for knock detection in spark ignition engines, was applied
by Villarino [3] for the purpose of pressure reconstruction.
Larsson [4] examined pressure reconstruction considering a
torque sensor mounted at the crankshaft.
To further improve the accuracy of these approaches,
Hamedovíc et al. [5],[6] introduced a pressure sensor in one
cylinder in addition to the engine speed sensor at the fly-
wheel. They approximated the relationship between pressure
and engine speed by a stiff crankshaft model and neglected
torsional deflections of the crankshaft. This method is suc-
cessful in certain operating regions with low torsional oscil-
lations.
At higher engine speeds, the influence of torsional fluctua-
tions increases and disturbs the engine speed signal. This
work focuses on developing a new cylinder-wise torque es-

timation method fusing two engine speed signals with a tor-
sional multi-body model of the crankshaft and one pressure
signal. Therefore, an inversion of the linear time invariant
MIMO system is necessary.
The paper is organized as follows: In section 2 the multi-
body model of the crankshaft and its linearization to a lin-
ear time invariant MIMO system is explained. In section
3 the system inversion of this MIMO system for cylinder-
wise torque estimation is described. A parametric torque
model is obtained from the cylinder pressure measurement
which allows input torque modelling of the other cylinders.
The resulting state and parameter estimation problem is used
to compare the Extended Kalman Filter (EKF) and the Un-
scented Kalman Filter (UKF). The experimental results from
using a four-cylinder engine test bed are presented in section
4. Section 5 covers conclusions and future goals of this work.

2. CRANKSHAFT MODELLING

The relationship between gas torque and engine speed is de-
scribed by the dynamics of the crankshaft. Stiff crankshaft
modelling neglects the fact that torsional vibrations influence
engine speed, especially at higher engine speeds. This work
aims to show improved torque estimation using a multi-body
model of the crankshaft according to [7]. The torque balance
equation is as follows:

Θ ϕ̈ +D ϕ̇ +Kϕ = τ ind (ϕ)+τmass(ϕ)+τ load(ϕ)+τ f ric (ϕ).
(1)

The matricesΘ, D, K are symmetric and represent the rotat-
ing moment of inertia, damping and stiffness behavior of the
crankshaft. The crank angle vectorϕ and its derivativeṡϕ,
ϕ̈ are found from the torsional movement resulting from the
sum of indicated torqueτ ind, mass torqueτmass, load torque
τ load and friction torqueτ f ric . Indicated torqueτind,l of cylin-
der l at crank angleϕ is caused by the in-cylinder pressure
pl

τind,l (ϕ) = (pl (ϕ)− p0)h
(

ϕ− (l −1)
4π

z

)
(2)

with h(ϕ) = Ar

(
sinϕ + λ sinϕ cosϕ−µ cosϕ√

1−λ 2 sin2 ϕ+2λ µ sinϕ−µ2

)
, where

p0 is the ambient pressure,z the number of cylinders,l the
cylinder index according to the firing order,A the piston area,
r the crank radius,λ the connecting rod ratio, andµ the axial
offset ratio [6]. In the following,z= 4 is used, since the test
bed is a four-cylinder engine. Furthermore cylinder number-
ing is done according to the geometrical order of the cylin-
ders (starting with 1 at the free end side of the crankshaft) if
not mentioned otherwise.
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The mass torque results from the oscillating parts of the
crankshaft, such as pistons and rods and increases with en-
gine speed. The mass torque of cylinderl is calculated as
follows:

τmass,l (ϕ) =−θl (ϕ)
dϕ̇

dϕ
ϕ̇− 1

2
dθl (ϕ)

dϕ
ϕ̇

2

≈−ml

2
r2 dϕ̇

dϕ
ϕ̇− 1

2
dθl (ϕ)

dϕ
ϕ̇

2
(3)

whereθl (ϕ) stands for the moment of inertia of the oscillat-
ing parts of a cylinderl andml for the corresponding mass.
The moment of inertiaθl (ϕ) can be approximated byml

2 r2

according to Schagerberg [8].
Figure 1 shows the multi-body dynamic crankshaft model.
Neighboring rotating moments of inertiaθi , θ j of the
dampers, the free end, the four cylinders and the flywheel are
connected by relative stiffness and damping coefficientski, j
anddi, j . The corresponding stiffness and damping torques
are proportional to the crank angle or, rather, the crank angle
velocity. The absolute damping coefficientsdi introduced by
[7] reflect the piston friction in the cylinders. In this work
the absolute damping coefficients are included into the total
friction torque. For steady state, load and friction torque are
assumed to be constant and can be estimated from the mean
value of the total indicated torque.

d1,2

k1,2 k2,3 k3,4 k4,5 k5,6 k6,7 k7,8

d2,3 d3,4 d4,5 d5,6 d6,7 d7,8

c1 c2 c3 c4

τind,1
+ τmass,1

θ1 θ2 θ7θ4 θ5 θ6θ3 θ8

flywheelfree end

cylinders

dampers

τind,2
+ τmass,2

τind,3
+ τmass,3

τind,4
+ τmass,4

τload
+ τfric

Fig. 1. Crankshaft model forz= 4 cylinders

The multi-body dynamic crankshaft model can then be de-
scribed by the following nonlinear differential state space
equations:

ẋ = A(x)x+b(x,u)
y = Hx

(4)

with state vectorx = [xT
1 xT

2 ]T = [ϕT ϕ̇
T ]T . The nonlinear

effects are caused by the mass torque. The input vectoru and
the output vectory are chosen as follows:

u = [τind,1, . . . ,τind,4,τload]T

y = [ϕ̇ f e, ϕ̇ f lwh]T .
(5)

Available measurement signals are the angle velocities at the
free endϕ̇ f e and at the flywheel̇ϕ f lwh. For the free end,
an optical sensor is used. Engine speed at the flywheel is
measured using a toothed gear with 60 teeth.

Assuming identical mass torque at each cylinder allows the
formulation of the mass torque as an additional input to the
system and a linearized approximation can be found:

ẋ = Ax+b(x,u)︸ ︷︷ ︸
u∗

(6)

with u∗ = [τind,1 + τmass,1, . . . ,τind,4 + τmass,4,τload].
The mass torquesτmass,1 to τmass,4 are 180 crank angle de-
grees (CAD) phase shifted according to the geometrical order
of the cylinders. The matrixA depends on the spring, damp-
ing and rotating inertia coefficients. The mass torque can be
calculated from the engine speed measurement by (3).
The linearized crankshaft model is part of the torque estima-
tion approach described in the next section.

3. SYSTEM INVERSION USING A PARAMETRIC
TORQUE MODEL

In order to estimate cylinder-wise torque it is necessary to in-
vert the system equations (6). Having free end and flywheel
engine speed signals, as well as one pressure signal available
transforms this problem into an inversion of a linear time in-
variant MIMO system with five inputs (indicated torque of
cylinders 1-4 and load torque) and two outputs (engine speed
signals).
The system inversion approach in this work uses a paramet-
ric torque model which is obtained from the pressure mea-
surement in one cylinder. Therefore one input of the MIMO
system is known. Torque estimation is possible via parame-
ter estimation of the cylinder-wise torque model.
Section 3.1 describes the parametric torque model and its
transformation to a design model for a state and parameter
estimator. In section 3.2 implementation issues of the EKF
and the UKF are explained.

3.1 Parametric Torque model

In order to build the parametric torque model the cylinder
pressure needs to be processed. Without loss of generality the
measured cylinder pressure in this work is chosen to be cylin-
der one according to the geometrical order at the crankshaft.
A pressure decomposition according to [6] is conducted.
This decomposition is based on the fact that measured pres-
sure traces at one operating point are identical for each op-
erating cycle in the region before the combustion. This re-
gion is dominated by the compression in the cylinder. The
compression pressureg(ϕ) can be described by the follow-
ing adiabatic pressure model:

g(ϕ)V(ϕ)κ = C, (7)

whereκ is the adiabatic exponent,V(ϕ) is the stroke volume
andC is a constant. The parametersκ andC can be estimated
using a least square estimation method assuming that cylin-
der and compression pressure traces are equal in the crank
angle region of -180 to 0 before injection. [6]. The differ-
ence between the measured pressurep(ϕ) and the compres-
sion pressureg(ϕ) is called the combustion pressuref (ϕ).
In the following, this notation is used for the pressure de-
composition of cylinder 1.
Figure 2 illustrates the decomposition of the measured pres-
sure into compression and combustion pressure. The com-
pression component depends mainly on the manifold pres-
sure and the operating conditions. Since those are widely
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constant during one engine cycle the compression compo-
nent can be assumed to be identical for all cylinders in this
region.
Next, the corresponding combustion and compression torque
componentsτ f (ϕ) andτg(ϕ) can be calculated by:

τ f (ϕ) = f (ϕ)h(ϕ)
τg (ϕ) = (g(ϕ)− p0)h(ϕ),

(8)

wherep0 is the ambient pressure andh(ϕ) the geometrical
factor according to (1).
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Fig. 2. Pressure decomposition into a compression and a
combustion component (TDC: top dead center). All com-
ponents are normalized to the peak pressure.

Figure 3 illustrates the separation of the indicated torque into
combustion and compression torque. From considerations
above the compression torqueτg(ϕ) of cylinder 1 is used to
approximate the compression torques of the other 3 cylin-
ders. The compression torquesτcomp are then formulated as
known inputs to the crankshaft system (6):

τcomp= τg(ϕ− (l −1) π)≈ τcomp,l
∣∣
l=2,3,4 (9)

Considerations of the combustion components in figure 3 al-
lows a cylinder-wise segmentation of one operating cycle.
This is important for the design of the parameter estimators
further explained in sections 3.2.
In order to estimate the combustion components of cylinder
l (2-4) in firing order, the combustion torque of cylinder 1 is
used to build the following combustion torque model:

τcomb,l (ϑ l ,ϕ) = αl τ f (ϕ− (l −1)π−δl ) (10)
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Fig. 3. Separation of indicated torque into combustion and
compression torque. All components are normalized to the
indicated torque peak of cylinder 1.

The phase constantπ is added to shift the combustion torque
of cylinder 1 into the corresponding combustion segment of
cylinder l . The parameters of the combustion torque model
are a scaling parameterαl and a shifting parameterδl which
can be combined to a parameter vectorϑ l . These parameters
allow the adaptation of the combustion torque according to
phase and energy of the combustion.
The unknown load torque of the crankshaft system is as-
sumed to be constant over one engine cycle. It can therefore
be estimated through scaling the mean value of the indicated
torque of cylinder one:

τload = γ 4× τind,1 (11)

The mean value of the indicated torque of cylinder 1 needs
to be scaled by the number of cylinders (here 4) to get a good
initial load torque estimate. The scaling parameterγ then
scales the initial load torque estimate to get a better estima-
tion of the real load torque. Thus a load torque scaling pa-
rameterγ is introduced and can be estimated together with
the parameter vectorϑ according to the engine speed fluctu-
ations at the free end and at the flywheel.
In order to estimate the cylinder-wise combustion torque of
each cylinder, the combustion and load torque models need
to be integrated into the system equations of the crankshaft
(1). They are discretized and their inputs are split into known
and unknown inputsu1 andu2:

xk+1 = Φxk +B1 u1 +B2 u2 (12)

with the input vectorsu1 (known) andu2 (unknown), as well
as the discretized system matrixΦ:

u1 = [τind,1 + τmass,1,τcomp+ τmass,2, . . . ,τcomp+ τmass,4]
u2 = [τcomb,2, . . . ,τcomb,4,τload]

Φ = eA∆t

(13)

The sampling time∆t depends on the mean engine speedω

and crank angle resolution∆ϕ:

∆t =
∆ϕ

ω
(14)
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The fluctuations of the engine speed can be neglected. The
unknown inputsu2 described before are substituted by the
values obtained from the combustion and load torque models.
The unknown parametersξ are formulated as states:

(
xk+1
ξ

k+1

)
=


Φ xk +B1 u1 +B2


0

τcomb,2(δ1,k) α1,k
τcomb,3(δ2,k) α2,k
τcomb,4(δ3,k) α3,k

4× τind,1 γk


ξ

k


(15)

The structure of the new design model can be summarized
using a nonlinear system functionf (x̃) and a new input ma-
trix B. The parameter vectorξ

k
contains the combustion and

load torque parametersϑ l and γ. Measurement and mod-
elling uncertainty are assumed to be white Gaussian noise.
This leads to the following stochastic design model for a pa-
rameter and state estimator:

x̃k+1 = f (x̃k)+Bũk +vk

y
k
= Cx̃k +nk

(16)

with the new state and input vectors:

ũ = [τind,1 + τmass,1,τcomp+ τmass,2, . . . ,τcomp+ τmass,4]T

x̃ = [xT ,ξ T ]T

(17)

and white Gaussian process noisevk and measurement noise
nk. Process and measurement noise are furthermore mutually
independent (E{vk nT

k }= 0).

3.2 Dual estimation with the Extended and Unscented
Kalman Filters

For the dual estimation problem of states and parameters in
(16) the EKF and the UKF are compared. For a detailed de-
scription of both algorithms the reader is referred to [9], [10],
[11] and [12].
The measurement equation in (16) is linear. However, due to
the nonlinearity of the system functionf (x̃) a Jacobian ma-
trix and the unscented transformation off (x̃) are necessary
for the EKF and the UKF respectively. The nonlinear system
function f (x̃) contains the data-derived combustion torque
from the cylinder 1 pressure. Hence, no analytic descrip-
tion of the system function is known. In order to obtain the
Jacobian for the EKF the data-derived system functionf (x̃)
is linearly interpolated and then numerically differentiated.
The unscented transformation doesn’t need the calculation
of a Jacobian. Furthermore it delivers a higher accuracy of
mean and covariance estimates of the system states under as-
sumptions of white, Gaussian noise (second order compared
to first order Taylor series approximation of the EKF).
The initialization of both filters is adjusted according to the
cylinder-wise combustion segments. This means that the ini-
tial error covariance matrix, as well as the starting parame-
tersϑ0 are reset to the conditions of cylinder 1 (δ = 0, α = 1,
γ = 1) after each combustion cycle. Table 1 illustrates the fir-
ing of the four cylinders and the resulting segmentation into
four combustion segments of 180 CAD.

Combustion
cylinder 2

Combustion
cylinder 1

Combustion
cylinder 3

Combustion
cylinder 4

-180 ... 0
[CAD]

0 ... 180
[CAD]

180 ... 360
[CAD]

360 ... 540
[CAD]

Estimation
of α2,δ2

Estimation
of γ

Estimation
of α3,δ3

Estimation
of α4,δ4

Table 1. Combustion segmentation and the resulting order
of parameter estimations

The estimation algorithm starts with the cylinder 2 parame-
ter estimation. In segment 2 only the load torque parameter
γ is estimated, since the combustion torque of cylinder 1 is
known. After this segment, the load torque is updated with
γ and kept constant for the following three combustion seg-
ments. In segments 3,4 the parameters of cylinders 3,4 are
estimated. At the beginning of each segment, the error co-
variance matrix of the estimated parameters is reinitialized
to starting conditions. This procedure is repeated for every
operating cycle.

4. EXPERIMENTS USING A FOUR CYLINDER
ENGINE TEST BED

In order to validate the performance of the Extended and the
Unscented Kalman Filter approaches, a four-cylinder engine
test bed was used. The pressure measurements were avail-
able in a resolution of 1 CAD. Engine speed measurements
were available with 1 CAD resolution at the free end (optical
sensor) and 6 CAD resolution at the flywheel (60-2 toothed
gear).
EKF and UKF estimates were analyzed for different operat-
ing points. Figures 4 and 5 show the performance of EKF
and UKF at 2000 rpm and 8 bar load for 50 operating cycles.
Pressure measurements are used to calculate the combustion
torque reference. EKF and UKF peak and phase estimates
are equally good. The minor difference in EKF and UKF es-
timates are insignificant with respect to the resolution. One
reason for the equally good results of EKF and UKF may
be the linear measurement equation which reduces the non-
linearity of the problem. This result was confirmed by mea-
surements at other operating points.

5. CONCLUSIONS

This work showed a comparison of UKF and EKF for
cylinder-wise torque estimation considering engine speed
fluctuations at both ends of the crankshaft. In order to ac-
count for torsional deflections, a multi-body model of the
crankshaft was applied. For system inversion, a paramet-
ric torque model was obtained through one cylinder pressure
measurement. Its parameters were estimated using the EKF
and the UKF. They showed equally good performance for
peak and phase estimates.
This study analyzed the feasibility of the EKF and UKF
approach without computational considerations related to
a series production. Future work will focus on improved
crankshaft modelling, as well as on a different inversion strat-
egy for torque estimation.
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Fig. 4. Extended Kalman Filter, 2000 rpm and 8 bar load,
50 operating cycles: (a) Estimated peak of the combustion
torque. (b) Combustion phase error of the estimated com-
bustion torque
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50 operating cycles: (a) Estimated peak of the combustion
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