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ABSTRACT
This paper analyzes the constraints in extrapolating sound fields
from measurements using circular microphone setups. Different
representations of 2D wave fields are compared and several deriva-
tions for the decomposition into circular harmonics are summa-
rized. Theoretical limits are derived for the order of the obtainable
circular harmonic components due to spatial sampling, the measur-
ing radius, and sensor noise. The consequences of order limitations
are addressed for the extrapolation of wave fields to different radii.
It is shown that even though an exact extrapolation is only possible
within the measuring aperture, a coarse extrapolation can be pos-
sible beyond the radius of the microphone setup depending on the
direction relative to the wave propagation. For this purpose far field
approximations are derived for the extrapolation of an order limited
decomposition of a plane wave in different directions. Real world
measurements show good agreement with these investigations.

1. INTRODUCTION

The acoustic performance of listening rooms in general is a trade-
off between the effort for acoustic treatment and sound quality. An
analysis of the sound field in the room can provide valuable infor-
mation where unwanted reflections emerge from. Then, acoustic
treatment at the precise positions is possible without the risk of per-
forming unnecessary measures which could cause high installation
efforts and running costs.

However, also the measurement effort for the wave field anal-
ysis rises for increasing measuring apertures that are necessary for
the analysis of large regions of interest. In this paper we study ap-
proaches to sound field analysis based on circular measurements ex-
tending the theory for the extrapolation of sound fields beyond the
measuring aperture: In Sec. 2 we give a short overview of several
representations of acoustic wave fields and discuss their particular
benefits and drawbacks. In Sec. 3 different possibilities to obtain a
circular harmonic decomposition of a wave field from circular mea-
surements are compared. Discretization errors and other limitations
are discussed and their consequences for the extrapolation of wave
fields beyond the measuring aperture are addressed for different di-
rections relative to the wave propagation. Sec. 4 demonstrates the
application of the findings to real world measurements.

2. REPRESENTATIONS OF 2D WAVE FIELDS

The task underlying the measurements used for this paper was to
draw conclusions about the acoustic properties in a horizontal lis-
tening area. Therefore, the investigations are restricted to 2D wave
fields, i. e. 3D fields that do not vary over the vertical axis z. For our
wave field analysis we are interested in the sound pressure distribu-
tion in the whole horizontal plane at any point in time. This analysis
can be performed using different representations of the sound fields
of interest. Several possibilities are discussed in the following.

2.1 Multidimensional (MD) signals

MD signals are the most straightforward representation of any
sound field. For every point of interest a microphone has to be

positioned to measure the sound pressure at this point. There is
no transformation of the measured data involved, i. e. there are no
errors and artifacts as in the decomposed and extrapolated repre-
sentations described below. Severe drawbacks are the huge number
of measuring positions and the large amount of measured data that
render this approach impracticable in many cases. A possibility to
perform wave field analysis with a subset of all possible positions
in the horizontal plane is described in [3].

2.2 Multichannel (MCH) impulse responses

Room impulse responses measured e. g. on every point of the
boundary surrounding the area of interest provide information on
the wave field inside (Helmholtz integral [12]). As the measured
data of each channel is relative to the position of the microphone
of this channel, MCH impulse responses are not very intuitive to
study room acoustics, especially when curved microphone setups
are involved. It is not possible to read out the pressure distribution
directly at any position from this representation. The extrapolation
necessary to calculate the sound pressure at any point involves inte-
grals that depend on the measuring geometry. The following wave
field description avoids this problem by relating all data to one ref-
erence point independent of the geometry.

2.3 Circular harmonic decomposition, CHD

Wave fields can be decomposed into circular harmonics P̃ν (ω) start-
ing e. g. from MD measurements or MCH impulse responses. Cir-
cular harmonics are the eigenfunctions of 2D wave fields in polar
coordinates and can be seen as the special case of cylindrical har-
monics [12] for 2D fields

Pp(r,α ,ω) =
∞

∑
ν=−∞

P̃ν (ω)Jν (kr)e jνα . (1)

In this equation Jν (x) denotes the Bessel function of the first kind
of order ν and k = ω/c denotes the wave number. The subscript p
marks signals in polar coordinates throughout this paper. The har-
monic components P̃ν of the decomposed field are all relative to the
coordinate origin and are independent of the radius. Circular de-
composed wave fields can easily be extrapolated to positions where
no microphone was set up during the measurements. It is also possi-
ble to calculate a plane wave decomposition of the wave field from
the CHD [5].

2.4 Extrapolated wave fields

If the pressure distribution inside the whole area of interest needs to
be known but a full MD measurement is impossible, the other sound
field representations described above can be used. They all contain
– except for measurement errors – the full information about the
whole sound field as they all are parametrized representations of
arbitrary wave fields. Therefore the wave field can be extrapolated
to the whole area of interest from any of these descriptions within
the limits described below.
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However, extrapolations from CHDs are particularly easy to
perform as they are independent of the measurement geometry once
the decomposition is calculated. They only involve applying Eq. (1)
for any point. The same argument holds for plane wave decomposed
fields.

The term extrapolation is used in this context in a slightly dif-
ferent way than usually in signal theory. There, interpolation and
extrapolation mean the reconstruction of a function from its sam-
ples, either within a sampled interval or outside of such an inter-
val. Here, extrapolation means the reconstruction of a propagating
wave from its samples in time and space. Extrapolation of waves
requires not only the sample values, but also a propagation model.
This model is given here by the acoustic wave equation from which
Eq. (1) is derived.

3. CIRCULAR HARMONIC DECOMPOSITION AND
EXTRAPOLATION OF WAVE FIELDS

There are several possibilities to arrive at a CHD of a 2D sound
field. They will be compared in this section followed by an analysis
of limiting effects in the decomposition and extrapolation of wave
fields when using circular measurements.

3.1 Wave field decomposition from circular measurements

The full MD measurements for wave field analysis as mentioned
above can be used for any 2D pressure distribution but cause very
high efforts. As we are dealing with a special class of 2D signals
here, i. e. wave fields, boundary measurements are sufficient. There-
fore a practical approach to wave field analysis is to use circular
measurements that can be performed conveniently using a rotating
microphone setup followed by a CHD of the data.

The following list summarizes several derivations of the CHD
based on circular measurements:

1. Only one type of microphones (Pp or Vn,p):
This derivation of the CHD starts from circular measure-
ments of the pressure Pp(rM,α ,ω) or radial particle veloc-
ity Vn,p(rM,α ,ω) for radius rM. The measured data is a 2π-
periodic signal over the angle α . Therefore it is possible to
calculate the Fourier series (FS) coefficients P̊ν (rM,ω) for the
pressure signal Pp(rM,α ,ω). For the sake of clarity we omit the
frequency variable ω in the remainder

P̊ν (rM) =
1

2π

∫ 2π

0
Pp(rM,α ′)e− jνα ′

dα ′ , ν ∈ Z. (2)

Similarly, the FS for velocity measurements Vn,p results in

V̊n,ν (rM) =
1

2π

∫ 2π

0
Vn,p(rM,α ′)e− jνα ′

dα ′ , ν ∈ Z. (3)

The CHD can then be calculated from the FS coefficients
P̊ν (rM) or V̊n,ν (rM) as [10]

P̃ν =
1

Jν (krM)
P̊ν (rM) =

− jcρ0

J′ν (krM)
V̊n,ν (rM). (4)

This approach causes the least measurement effort. But there
are zeros in the Bessel function (and in its derivative, resp.) that
restrict the usable frequency range to frequency bands without
Bessel zeros because of Eq. (4).
The following modifications avoid these Bessel zeros in the de-
nominator. The same principles are often applied in spherical
microphone array processing [8].

2. Rigid scatterer:
Using a cylindrical scatterer inside the measurement setup re-
places the Bessel function (or it’s derivative) in the denominator
with a term that does not contain zeros [10].

3. Two types of microphones:
Using two types of microphones (e. g. Pp and Vn,p) at the same
measuring positions, it is possible to perform CHDs without
scatterer and without divisions by zero. It is also possible to
distinguish incoming and outgoing waves [5].

4. Cardioid microphone:
This method is similar to approach number 3, but only one mi-
crophone type is needed. There is no possibility to distinguish
incoming and outgoing waves [4, 10, 7].

5. Two radii:
This approach is similar to the two microphone approach, but
uses measurements on at least two radii instead of two types of
microphones.

3.2 Limitations in wave field analysis and extrapolation using
circular measurements

When measuring sound fields, discrete microphone positions have
to be used, i. e. spatial sampling of the sound field data is per-
formed. Together with additional restrictions, this leads to limi-
tations that have to be taken into account when decomposing and
extrapolating sound fields. These limitations are discussed in this
section for the concept of circular pressure measurements accord-
ing to Eqs. (2), (4). Similar considerations hold for the modified
approaches listed above.

3.2.1 Aliasing

Due to spatial sampling, spatial aliasing can occur. In the case of
circular measurements, sampling causes an infinite repetition of the
Fourier series coefficients P̊ν and the spherical harmonics P̃ν , re-
spectively.

Considering the Fourier series, Eq. (2), sampling Pp(rM,α) at
N points on the circle leads to the approximation

P̊ν (rM) ≈ P̂ν (rM) =
1

2π

N−1

∑
n=0

Pp(rM,αn)e
− jναn ∆αn (5)

which can be rewritten as DFT if the measuring points are dis-
tributed equally around the circle. Therefore, only N different
values for P̂ν can be obtained and modal repetitions will occur at
ν = mN ∀ m ∈ Z.

With the exception of some very special cases, all sound fields
contain an unlimited number of harmonic components. E. g. a Dirac
shaped plane wave (direction α0) can be decomposed into

P̊ν (r) = j−ν Jν (kr)e− jνα0 , ν ∈ Z (6)

with an unlimited number of modes ν [2]. Because of the charac-
teristics of the Bessel function, Jν (kr),

P̊ν (rM) ≈ 0 for |ν | > krM . (7)

Real world wave fields in general show the same behavior. There-
fore the inevitable modal aliasing will cause small errors for krM <
N −|ν | and large errors for krM > N −|ν |.

This behavior is clearly visible in Fig. 1 for the example of N =
100 measurement points. Aliasing restricts the usable harmonic
components to |ν | ≤ νmax = N − krM, i. e. the number of usable
modes decreases due to aliasing for high frequencies f = kc/(2π),
marked as ➊. In Fig. 1 also the applicability of Eq. (7) to arbitrary
measured fields can be observed.

As only N different values for P̂ν can be calculated from N
spatial samples, we can now limit our anti-aliasing considerations
to |ν | < N/2 (➋) and specify an anti-aliasing condition for these
modes:

krM <
N
2

⇒ P̂ν (rM) ≈ P̊ν (rM) ∀ |ν | < N
2

(8)

which leads to f < fal = 3.7 kHz in the example shown in Fig. 1.
Discussions about modal aliasing in the context of different spatio-
temporal sampling schemes can be found in [1, 9].
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Figure 1: Magnitude of Fourier series P̊ν (rM,ω) of discrete circu-
lar pressure measurement in dB. N = 100 equispaced microphone
positions with radius rM = 0.74 m were used. ➊, ➋, ➌ indicate the
order limits as described in the text.

3.2.2 Aperture limitations

Given a fixed measuring radius rM and number of spatial samples
N, a high number of harmonic components can be determined in
theory, provided that the number of measuring positions N is high
enough to avoid large aliasing errors. In practice, due to the sensor
noise and microphone positioning errors, the number of usable har-
monics is limited: Recalling Eq. (7) only the components |ν |/ krM
can be used for a given krM because only these have a significant
magnitude P̊ν (rM) � 0 that does not get lost in the signal errors
due to aliasing, sensor noise and positioning errors. This limitation
is marked as ➌ in Fig. 1.

3.2.3 2D measurements in a 3D world

In real world measurements our restriction to 2D causes two addi-
tional errors when measuring 3D fields with variations along the z
axis:

• In the analysis step (decomposition), vertical components of
traveling waves spread over all 2D components.

• In the extrapolation step, amplitude errors occur for 3D sources
that are not line sources parallel to the z axis. The amplitude
errors can be compensated for if the sources are known to be
point sources.

3.2.4 Consequences of order limiting

Summarizing, due to the limitations ➊,➋, and ➌ described above
not all harmonic components can be obtained. Depending on the
measuring aperture rM, signal frequency ω , and number of spatial
samples N, only harmonic components up to orders |ν | ≤ L can be
captured:

L(rM,ω ,N) = min(krM,N − krM) (9)
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Figure 2: Magnitude of the truncated Bessel series of a monofre-
quent plane wave ( f = 1.5 kHz, α0 = 0◦). The order is limited
to |ν | ≤ L = 21 ≈ krM for rM = 0.74 m at this frequency. Without
truncation a constant magnitude of 1 is expected in the whole plane.

The modes |ν | ≤ L are indicated in Fig. 1 as the diamond shaped re-
gion surrounded by thick lines. If modal restrictions due to aliasing
should be avoided, the triangular shaped region for f < fal remains.

Now we examine the consequences of order limiting the CHD.
This analysis is motivated by similar considerations for spherical
harmonics shown in [6]. As an example, a truncated Jacobi-Anger
series

PL,p(r,α) =
L

∑
ν=−L

P̊ν (r)e jνα , (10)

with P̊ν (r) as in Eq. (6) is examined. It corresponds to the field
of a Dirac shaped plane wave with direction α0 extrapolated from
a CHD limited to orders |ν | ≤ L (see Eqs. (1),(4),(6)). P∞,p(r,α)
equals the full field of a plane wave with |P∞,p(r,α)| ≡ 1. Note that
there is no aliasing involved in this example.

For a given value of L, PL,p(r,α) is a good approximation to
P∞,p(r,α) if Eq. (7) holds for |ν | > L which leads to kr < L. This
condition defines for each frequency f a virtual aperture with radius

r <
L

2π f
c. (11)

For a fixed L this radius r is frequency dependent. If we re-
consider the frequency dependency of the order limitation due to
the measurement aperture rM when decomposing the wave field,
L(rM,ω) = rMω/c, we can substitute L in Eq. (11):

r <
rMω/c

2π f
c = rM (12)

This equation states that the wave field can only be extrapolated
without errors inside the measurement aperture with radius rM. The
correct magnitude inside the aperture is clearly visible in Fig. 2 for
a monofrequent plane wave ( f = 1.5 kHz) and L = 21. In the imple-
mentation of the extrapolation Eq. (1) for limited orders |ν | ≤ L, the
frequency dependency of L is undesired. One possibility to avoid a
frequency dependent number of summands is to use a fixed maxi-
mum L and set the unused harmonic components equal zero.

For larger radii, i. e. kr > L, significant errors occur due to the
truncation because circular harmonic components with significant
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Figure 3: Magnitude of truncated Bessel series. Curves show sig-
nals of Fig. 2 for α = α0 and α = α0 ±π/2. The far field approxi-
mations Eqs. (14) and (16) are indicated as bold lines. The dashed
line indicates the magnitude of the full plane wave, i. e. an infinite
Bessel series.

magnitude are missing. However, depending on the application ex-
trapolations of wave fields beyond the aperture radius can be useful
as long as the limitations due to order limiting are kept in mind.
These limitations will be examined in the following for two inter-
esting cases.

The behavior of (10) for radii beyond the aperture can only
be analyzed numerically. Therefore we introduce far field approx-
imations that lead to simpler terms: For large arguments kr �
|ν2 −0.25| the Bessel functions can be approximated by [11]

Jν (kr) ≈
√

2
πkr

cos(kr− νπ
2

− π
4

). (13)

Substituting Jν (kr) in (10) we arrive at the following expression for
the resulting field in the direction of propagation of the plane wave,
α = α0:

PL,p(r,α0) ≈ P̂L,p(r,α0) =

=

√

2
πkr

[

(−1)L cos(kr− π
4

)+2

⌈

L
2

⌉

e j(kr− π
4 )

]

(14)

For L � 1 the cosine term can be neglected and due to the second
term in the brackets an amplitude of

|P̂L,p(r,α0)| ≈ L ·
√

2
(πkr)

(15)

remains. Substituting kr by the limit for the Bessel approxima-
tion kr ≈ L2 (see above Eq. (13)) we arrive at an amplitude of
|P̂L,p(L

2/k,α0)| ≈ 0.8.
The magnitude of the truncated Bessel series, the far field ap-

proximation, and a full plane wave field are shown in the upper
curves of Fig. 3 for α = α0. In consequence equation (14) states
that a coarse estimation of the wave field outside the measurement
aperture is possible in the direction of wave propagation by extrapo-
lating the order limited decomposition. In the far field an amplitude
error proportional to 1/

√
kr has to be accepted.

Orthogonal to the traveling direction of the plane wave, i. e. for
α = α0 ±π/2, substituting Eq. (13) in Eq. (10) leads to the approx-
imation

P̂L,p(r,α0 ±π/2) =

√

2
πkr

(−1)b L
2 c cos(kr− π

4
). (16)

This expression rapidly declines for increasing kr. Thus no extrap-
olation of the wave field is possible in this direction. This behavior
for α = α0 ±π/2 is shown in the lower curves of Fig. 3.

Now we can summarize the consequences of order limiting
when using circular measurements:

• The usable orders of the circular harmonic components are lim-
ited depending on radius rM, frequency ω , and order N.

• The extrapolation from the order limited CHD is possible with-
out large errors inside the measurement aperture if enough spa-
tial samples are used to avoid large aliasing errors.

• Outside the measurements aperture, a rough extrapolation is
possible in the direction of wave propagation whereas no ex-
trapolation is possible orthogonal to this direction.

4. MEASUREMENTS AND INTERPRETATION

Room impulse responses were measured in a horizontal plane at ear
level in a listening room. The measurements were performed for
100 equidistant positions (rM,α) on a circle with rM = 0.74 m for
the pressure Pp(rM,α) as well as for the radial component of the
particle velocity, Vn,p(rM,α).

With these measurements, a discrimination between incom-
ing and outgoing waves is possible using the CHD according to
Sec. 3.1, possibility 3. With this approach numerical problems
occur when extrapolating to positions near the origin that can be
avoided by calculating a plane wave decomposition from the CHD
first. As we are dealing with a source free region inside our mea-
surement setup, the more direct approach number 4 of Sec. 3.1 was
used with a virtual cardioid microphone formed by adding the pres-
sure and the velocity measurements

Cp(r,α) = Pp(r,α)+ρ0cVn,p(r,α). (17)

The Fourier series coefficients as well as the circular harmonic com-
ponents were order limited according to Sec. 3.2. After the CHD,
the signals were band limited to frequencies below 3.7 kHz to avoid
large aliasing errors.

Fig. 4 shows the wave field extrapolated from the band limited
CHD at time t = 17.5 ms for extrapolation radii r ≤ 1.8 m. The
direct sound from the acoustic source already passed the origin and
the first strong reflection is arriving from ≈ 45◦. The effects of
order limiting due to the measurement aperture rM = 0.74 m can
be observed as predicted in Sec. 3.2.4: Inside the aperture, the ex-
trapolation does not cause large errors. In the direction of wave
propagation, the extrapolation is also possible beyond rM = 0.74 m
accepting some amplitude errors. The projection of the aperture
in the direction of the direct sound propagation is indicated by the
dashed lines. Orthogonal to this direction, the amplitude of the ex-
trapolated field rapidly vanishes for r > 0.74 m.

Fig. 4 indicates that at an angle of ≈ 45◦ a strong undesired
reflection occurs in the listening room for the sound of the inves-
tigated source. Whether a passive or active compensation of this
room reflection is necessary depends on the content that should be
reproduced and the demands on the sound quality and is a mat-
ter of psychoacoustical considerations and acceptable costs for the
acoustical treatment. In the Fig. 4 also additional waves are visible
closely behind the wave front of the direct sound. With the back-
ground knowledge of the room geometry they can be identified as
vertical sound components from reflections above the listening area.
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Figure 4: Extrapolated pressure distribution (linear scale) at time
t = 17.5ms. The measurement aperture is indicated as a circle with
r = 0.74m. The arrow inside the wave field shows the traveling di-
rection of the direct sound wave, the arrow outside marks the trav-
eling direction of the first strong reflection.

5. CONCLUSIONS

The determination of wave fields inside of enclosures is a trade-off
between the number of measurement positions (microphone chan-
nels) and the resulting accuracy. Practical measurement setups con-
sist of a number of microphones mounted on a closed curve, e.g. a
line or a circle. Sequential measurements on a circular contour can
be realized with very little instrumentation, since they require only
one or two microphones and a computer-controlled stepper-motor
drive.

The obtained measurements allow the reconstruction of the
wave field not only inside the circle of measurements but also out-
side with the restriction to the propagation direction. The mathe-
matical tool for this extrapolation is the decomposition of the mea-

surement values into circular harmonics. The usable orders of its
components are limited by the finite radius of the measurement cir-
cle, the frequency range of the audio signals, and the finite number
of measurement positions on the circle. However, a careful analysis
of these restrictions allows the determination of the spatial structure
of wave fields.

REFERENCES

[1] T. Ajdler, L. Sbaiz, and M. Vetterli. The Plenacoustic Function
and its Sampling. IEEE Transactions on Signal Processing,
54(10):3790–3804, 2006.

[2] I. S. Gradshteyn and I. M. Ryzhik. Tables of Integrals, Series
and Products. Academic Press, 1965.

[3] M. Guillaume and Y. Grenier. Sound field analysis with a two-
dimensional microphone array. In Proceedings of IEEE Inter-
national Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP ’06), Toulouse, France, May 2006.

[4] E. Hulsebos. Auralization using Wave Field Synthesis. PhD
thesis, Technische Universiteit Delft, 2004.

[5] E. Hulsebos, D. de Vries, and E. Bourdillat. Improved micro-
phone array configurations for auralization of sound fields by
Wave Field Synthesis. preprint 5337, 110th AES Convention,
Amsterdam, May 2001.

[6] A. Ludwig. Plane and spherical wave spectra.
http://www.silcom.com/˜aludwig/Physics/
Exact_piston/Wave_spectra.htm. accessed
2007/01/31.

[7] M. A. Poletti. A unified theory of horizontal holographic
sound systems. Journal Audio Eng. Soc., 48:1155–1182,
2000.

[8] B. Rafaely. Analysis and design of spherical microphone ar-
rays. IEEE Transactions on Speech and Audio Processing,
13(1):135–143, 2005.

[9] S. Spors and R. Rabenstein. Spatial aliasing artifacts produced
by linear and circular loudspeaker arrays used for wave field
synthesis. In Audio Engineering Society (AES) 120th Conven-
tion, Paris, France, May 2006.

[10] H. Teutsch. Modal Array Signal Processing: Principles and
Applications of Acoustic Wavefield Decomposition. Springer,
2007.

[11] E. W. Weisstein. Bessel function of the first
kind. http://mathworld.wolfram.com/
BesselFunctionoftheFirstKind.html. accessed
2007/02/12.

[12] E. G. Williams. Fourier Acoustics. London, Academic Press,
1999.

©2007 EURASIP 2335

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP


	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

