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ABSTRACT

Tangible Acoustic Interfaces (TAls) are interaction devices
that are able to localize the interaction point on a solid sur-
face. Their advantages over traditional interaction devices
(touch screens, touch pads, etc.) is in the fact that actual
acoustic (vibrational) signals are acquired by contact sen-
sors. This opens the way to interaction classification and
recognition.

With this application in mind, this paper approaches the
problem of classifying the interaction object from the ac-
quired sounds. We focus on continuous interaction noise,
which we classify through a “fingerprinting” approach: fea-
tures are extracted from the acquired signals and matched
against pre-computed features. More sophisticated solutions
can be devised for the problem of the classification of noise-
like sounds but our approach has the advantage of being
computationally simple and can be profitably implemented
in real-time.

1. INTRODUCTION

Many research efforts are currently devoted to the develop-
ment of novel and intuitive devices for Human Machine In-
teraction (HMI). One of the main problems related to the de-
velopment of such devices is that active transducers need to
be distributed all over the interaction area, with very high
production costs. A possible solution to this problem is the
use of a limited number of passive acoustic transducers dis-
posed in specific points of the surface and sensitive to events
far from their locations (like sounds produced by scratches
on the board). In this context, solutions studied in Tai-Chi
project showed that an accurate and real-time localization of
impulsive and continuous touch of different objects on pas-
sive surfaces (such as plexiglass and medium density fiber
boards) is possible through Time Differences of Arrival anal-
ysis (see [I1]). The only requirement of such a system is that
the interaction between the object and the board produces a
noticeable sound. On the other side one of the advantages of
active transducers systems is that we can classify in a rela-
tively simple way the type of object interacting on the sen-
sitive area, thus enabling the system to behave in different
ways according to the specific class of object being used.
Let us consider, for example, a SmartBoard system used as a
blackboard. One may want, for example, to erase the black-
board when a brush is used as interaction tool. The Smart-
Board has active sensors under the touchable board. The di-
mension of the object interacting with the surface informs us
of its genre, while assessing the type of interacting object just
by using some transducers far from the event could result in
a difficult problem to be solved.

This paper concerns with the object classification based on
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a fingerprinting approach. In the past few years many re-
search efforts have been devoted to classify different types of
sounds based merely on their content and without any addi-
tional metainformation. The general architecture of finger-
printing frameworks is well described in [2]]. Speaking in
general terms, a fingerprinting system envisions the extrac-
tion of significative features from the sound to be classified
and matches the features against a set of pre-computed ones.
The main disadvantage of this approach is that the extraction
of the features is computationally demanding. Our system
has to work on a DSP hardware engaged for the most part of
its capabilities with the localization task. For the above pre-
sented reasons, we will limit our attention on simple sound
classification tools. We will not consider in our discussion
more sophisticated solutions (for example based on neural
networks or more sophisticated classification framework),
because of their computational cost. We will validate the
technique presented in this paper with experimental results,
showing that different classes of objects can be effectively
distinguished in most cases even in a not soundproof context.
The rest of the paper is organized as follows: Section [2] will
discuss advantages and disadvantages of some fingerprint-
ing algorithms dealing with similar problems. Section [3| will
show how standard signal processing tools can be effectively
used in our approach. Section ] will discuss the experimen-
tal framework we have used in our system. Section [3]finally
summarizes the work and the results.

2. BACKGROUND ON SIMILAR
FINGERPRINTING APPROACHES

In the context of digital audio fingerprinting several solutions
have been presented in the past few years. Most of them are
based on a windowing of the signal as a pre-processing step.
In order to reformulate with a common notation some algo-
rithms presented in literature, let define with x(n) the signal
and with x,,(n,!) the windowed version of the same signal:

xw(n,l) =x(n—IR)w(n) for n=0,1,...,N, (1)

where [ denotes a time index, N is the window size and R
determines the overlapping between x,,(n,1) and x,,(n,l+ 1)
(1 <R < N).In fingerprinting applications, Hanning window
is generally used and two successive frames overlap for the
most part of their length (an overlap factor of 31/32 is a com-
mon choice). Using the windowed signals we can compute
the STFT of x(n), denoted in the following as X (fi,!), where,
as usual, f is the frequency index (1 < k < K) and / is the
time index. In [3]] a simple but effective approach for finger-
printing has been presented. The frequency bins of X (f,/)
are grouped into equally spaced sub-bands, obtaining a low-
resolution version of the spectrogram. The sub-band energies
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Figure 1: STFTs of the scratch of a sponge (a) a wood stick (b) over a wood board (dB scale).

are obtained as follows:

(m+1)Nf—1

E(m,l) = Z

k=mNy

X (fi, 1), 2

where m is the sub-band index and Ny is the number of fre-
quency bins in each sub-band.
When the excerpt is corrupted by noise, the distorted and
original versions of the same excerpt can be instant by in-
stant different one from the other, but the temporal trends
are probably similar, thus revealing the same origin. In or-
der to achieve robustness of the classification system against
intentional or non-intentional corruptions of the signal, the
approach presented in [3]] computes the derivative of E (m,!)
with respect to frequency:

Ey <m7 l) =

E(m,l+1)—E(m,l).

The time-derivative of Ey(m,[) is computed:

Eft(m7l) = Ef(m+ 1,1) 7Ef(m7l)'
The decision is taken using the 2 levels quantized version

Ej/(m,1), denoted as E7, (m,1).

The feature Ej?t (m,1) is matched against the analogous pre-
computed features. The distance between the extracted and
the pre-computed features is computed with the Hamming
operator.

Even though the approach depicted in [3] is effective, it is not
suitable in the case of object classification: in fact the trend
of E¢(m,1) is not distinctive of the specific object but of the
trajectory and the strength of the specific touch. On the other
hand one may think that using a quantized version of E(m,[)
instead of Ef,(m, ) could be the solution of the problem, but
preliminary tests showed that the decision made upon a 2-
levels quantized version of E ¢(m, ) is not satisfactory for our
purposes.

In [4] a different approach is presented. Here, once X (f,/) is
computed, the mean and the standard deviation M (1) and S(!)
of each time-frame are computed. In [4] a 3-levels quantized
version of the STFT is used:

The best match of X (¢ ( Sl ) against the set of pre-computed
fingerprints in the database is the decision. Even though sim-
ple, this approach results to be suitable, after some modifica-
tions, for our purposes.

3. PROPOSED SOLUTION

3.1 Data frequency analysis and noise reduction

The solution proposed in this paper is based on the work of
Richly ([4]). In spite of the fact that the above mentioned
technique has been developed for musical signals, we treat
noise-like signals. We will discuss with examples at hands
which modifications we brought to the original system.

In order to be usable, a classification system must preserve
the following properties:

e Sounds belonging to different classes are mapped onto
different fingerprints (inter-class discriminative require-
ment.

e Sounds belonging to the same class are mapped onto sim-
ilar fingerprints (intra-class similarity requirement).

Similarity or difference of fingerprints is based on a distance
metric. Further details will be provided in Section[3.4]

In Figure [T] the plots of the STFT of the scratches of a
wood stick and a sponge over a wood board are depicted.
We can appreciate that the two instruments “sound” different,
thus the inter-class discriminative requirement of the system
is preserved. At the same time, however, we can observe
that different time intervals of the STFT are characterized by
different Fourier Transform, which means that the intra-class
similarity requirement is not preserved. The following para-
graphs will illustrate how to achieve the latter requirement.

Let us call the collection of M successive frames of the
STFT with X(/), with dimensions K x M . The SVD of X(/)
is recalled for convenience in equation (@).

X(D) =unDOVT (D). )
The noise-reduced version of X(I) is obtained according to
equation (3)

X{r} ZD {l l}U I}V< ){l } 3 (5)

0 if IX(fi 1) < M(1)

D=1 1 it M) <IXULD[ = M) +50) . L .
2 if IX (fi,0)] >M(1)+S(1) where r is the rank of the SVD, D(l){,»’j} is ij-th element in
(3)  D(I), Uy ; () is the i-th column of U(/) and, analogously,
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V(1){i, is the i-th row of V({). In Figurethe SVD reduc-
tion of the “sponge scratch” is presented using » = 1. As ex-
pected, we can observe that the spectrum has been smoothed
by the low-rank SVD noise reduction. In Section [] it will
be clear that the adoption of the SVD improves the classifi-
cation performances. In order to reduce the dynamic range
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Figure 2: SVD noise reduction of the sponge scratch pre-
sented in Figure[T] A decibel scale has been used.

of the signal, we applied also a logarithm compression on

X,

3.2 Quantization stage

A requirement of sound classification systems is the low
computational cost and, as stated above, the intra-class re-
quirement property. In order to fulfill both the requirements
we considered different quantization schemes:

1. M(l) and M(I) + S(I) as quantization thresholds, as in
equation 3]

2. M(l) as quantization threshold: bins above M(I) are
marked with 717, else ”0”.

3. Uniform quantization with 1....,8 bits.

4. Lloyd-Max quantization with 2,...,8 levels.

For reasons of space, we will focus our attention on the sec-
ond quantization scheme. In Figure [3 the 2-level quantiza-
tion of the sponge scratch is plotted using M(I) as quantiza-
tion threshold. White and black represent, respectively, the
quantization levels ’0” and *1’. An interesting side effect of
the quantization scheme followed in Figure [3]is its intrinsic
adaptivity to the instantaneous dynamic range of the signal.
Mean is computed on a frame by frame basis and will adapt
itself to the instantaneous dynamic of the signal. The result
of the quantization stage is the transformation from the signal

X{’}(l) into the new signal X{’ﬁq}(l)'

3.3 Training set construction

Once a suitable feature has been singled out, we have to build
the library of fingerprints to be used in the following classi-
fication step. In order to differentiate the library set from the
signal to be classified, each time a signal which is not de-
noted by the time index / it is part of the fingerprint library
set.

The first trivial possibility to build the training set is to use
Cc) = xird},

where (fv) means time-variant in opposition with time-
invariant library set as shown in the next paragraphs.

In Figure[3|we cannot appreciate any noticeable variation of
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Figure 3: 2 level quantization of the signal in Figure 2]

the fingerprint along the time axis, thus the SVD and quan-
tization stages enable us to preserve the intra-class similarity
requirement. This observation suggests us to neglect the vari-
ations of X {4} across different frames for the construction
of the fingerprint library. Using the same notation of equa-
tion , the transformation of X1"4} into the time-invariant
feature set C(*") is illustrated by the following equation:

) =Mo(x!74)), ©)

where Mo’ denotes the statistical mode. The training set
C") results in a column vector of K elements. In Section

we will show that the classification conducted using C*")

instead of C) is a little more effective, but presents the dis-
advantage of being computationally demanding.

3.4 Classification

Once we have built the training set, we have to classify un-
known signals. The classification results in the computation
of the distance between X 1”4} (1) and the feature library of
each instrument in the database. A fingerprint match is con-
sidered ’correct’ if the distance between the test sound and its
actual class (the actual instrument by which we know a priori
the sound was produced) is the minimum in the distance vec-
tor. Two different classification schemes were adopted ac-
cording to the distance metric used. The first distance metric
is applicable to both time-invariant and time-variant feature
sets, while the second distance metric can be used only with
time invariant feature-sets.

e Feature set C") and C"):Pearson correlation. Let us

call with C htx the time variant or time invariant feature
set of h-th instrument in the database. The distance com-
puted with the Pearson correlation between the feature

X{r4}(1) and CE:X) is:

zZ[X 14} (1)) z[C)
B M—1

DOy, X9 (1)) = 1 G
where z(-) is the z-score function and the feature

matrix X{”q}(l) has dimensions K x M. Due to the
computational cost of Pearson correlation distance, in
the experimental section we will use M = 1.
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e Feature set C("):Manhattan distance between the train-
ing set C") and X149} (1):

Dy (C) Xt (1)) = A YM Ly ()
X5 (D) ey — [CV) g |+

where R is the dynamic range of the signal. This way

the Manhattan distance DM(CSO,X{W}(I)) is normal-

ized across the fingerprint size and the dynamic range of

the error and lies in the range [0,1].
Pearson correlation is intrinsically bounded in the range
[—1,1], so distance is bounded and normalized in the in-
terval [0,2]. Pearson distance has the advantage over Man-
hattan distance of taking into account not only the punctual
element-wise distance but also the linear correlation between
the fingerprints. The drawback is the increased computa-
tional effort.

4. EXPERIMENTS

4.1 Data-set collection

The training set was built using the objects and surfaces in
Table &1

A training set of about 6 recorded sounds per instrument was

Table 1: Instruments and surfaces used to build the training
set

Instrument Surface
Highlighting pen Paper
Iron bar Wood
Ballpoint pen Paper
Polystyrene Wood
Brush Wood
Wooden Spoon Wood
Sponge Wood

built. Each sound has been sampled at 44100 Hz, 16 bits,
mono and saved in PCM Wave Format. The average length
of each sound is about 1 sec. The sounds were acquired in
a not soundproof environment, then wavelet coefficients of
sound records were thresholded using the SURE soft thresh-
olding algorithm to remove the ambient noise [5]. From each
spectrogram the most significant part was selected, to remove
attacks and decays of each sound. A simple nearest neighbor
interpolation is applied to the spectrograms in order to have
the same number of frames.

4.2 Experimental results

Four dimension of analysis have been considered, which are
orthogonal to the quantization policies described in Section
Bl In particular, the following testbeds have been imple-
mented:

e SVD/noSVD: 3-levels quantization with manhattan dis-
tance computed on the whole fingerprint.

e log/ no log compression: a logarithmic compression
function can be applied after the spectrogram coefficients
have been reduced by the SVD.

e Full/l frame distance: distance can be computed using
all the fingerprint coefficients or taking only the central
frame of the quantized spectrogram.
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e Manhattan/correlation distance: when distance is com-
puted across one frame only, the distance function can be
manbhattan or Pearson correlation distance.

To evaluate the quality of the match for each method, the
following procedure has been applied. For each element of
the test-set, the distance (manhattan or correlation) between
the fingerprint and the fingerprints stored in the database has
been computed. Different samples of the same instrument
show very similar distance behavior, so it is possible to make
statistics of each method per instrument rather than per sound
record. Therefore, an average distance vector for each in-
strument, computed as the mean of three test sound records
for that instrument is computed for each testbed. A rank of
the quality of the match is assigned to each instrument in the
testbed. To compute this rank, the vector containing the aver-
age distance per instrument is sorted in ascending order and
the difference between the second and the first entry of the
vector is computed. This absolute rank is then divided by
the minimum distance to obtain a per cent relative rank. The
main advantage of this representation is that one has an im-
mediate way of detecting false matchings, which have nega-
tive ranks.

Using the test procedure illustrated above, Figure[d] was gen-

Il manhattan
Bl correlation
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0.4r

Relative Rank

0.2

. . . . . . I
no SVD no log, fullno log, 1f log, 1f  log, full no log, 21 1flog, 21 1f

Figure 4: Relative rank for some testbeds using 2 and 3 levels
of quantization, using manhattan and correlation 1-frame dis-
tance. Full distance is computed using Manhattan distance.

erated. Fingerprint extraction without SVD has a low rate of
correct matches (~ 28%), while in the other tests the correct
match rate is 100%. This motivated the use of SVD on the
spectrogram to reduce the effect of noise.

From Figure[d one can make two considerations. First of all,
applying a log compression to SVD result does not change
noticeably the matching result. Second, matching carried out
computing distance over all the fingerprint matrix is better
than matchings performed on one frame only.

Figure [5| shows the rate of successful matches using Lloyd-
Max quantization. Here the distances are computed using
the central frame of the fingerprint matrix reduced by SVD,
without any log compression. The results are compared
in the case of manhattan distance and correlation distance.
We can appreciate that the quantization that adopt M(I) and
M(I)+ S(I) as quantization thresholds is more effective than
other techniques, even though it has less quantization levels.
The reason of this resides in its intrinsic adaptivity to the dy-
namic range of the signal.
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Figure 5: Rate of correct matches for LLoyd-Max quantiza-
tion with Manhattan and correlation distance functions.

5. CONCLUSIONS

In this paper we have shown a method that allows to assess
the object scratching over o solid surface by acquiring a vi-
brational signal. The technique can be effectively used in the
context of Tangible Acoustic Interfaces (TAIs) relying sim-
ply on acoustic signals. Results demonstrate that accurate
classification can be achieved.
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