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ABSTRACT

The DYPSA algorithm detects glottal closure instants
(GCI) in speech signals. We present a modification to the
DYPSA algorithm in which a voiced/unvoiced/silence dis-
crimination measure is applied in order to reduce spurious
GCIs detected by DYPSA for unvoiced speech or silence pe-
riods. Speech classification is addressed by formulating a
decision rule for the GCI candidates which classifies the
candidates as voiced or unvoiced on the basis of feature
measurements extracted from the speech signal alone. Dy-
namic programming is then employed in order to select an
optimum set of GCIs from the GCI candidates occurring
only during voiced speech. The algorithm has been tested
on the APLAWD speech database with 87.23% improvement
achieved in reduction of spurious GCIs.

1. INTRODUCTION

The classical model of the human speech production system
generally comprises a linear vocal tract model excited by a
quasi-periodic signal or a noise-like waveform. In several
important applications of speech processing, it is advanta-
geous to work with the vocal tract and the excitation signal
independently. Separation of the vocal tract from the source
effects is usually based on accurate estimations of glottal clo-
sure instants (GCIs) and the use of larynx synchronous pro-
cessing techniques such as closed-phase LPC analysis [1]
and closed-phase glottal inverse filtering [2]. These tech-
niques make it possible to separate the characteristics of the
glottal excitation waveform from those of the vocal tract filter
and to treat the two independently in subsequent processing.
Applications include low bit-rate coding [3][4], data-driven
techniques for speech synthesis [5], prosody extraction [6],
speaker normalization and speaker recognition. The DYPSA
algorithm is a recently proposed technique for identifying
GCIs and will be discussed in the following section. In this
paper, we describe a new modified version of the DYPSA al-
gorithmwhich maintains all the advantages of DYPSA’s high
accuracy in voiced speech but overcomes a problem with
the original form of the algorithm during unvoiced speech
in which spurious GCIs are erroneously detected. This is to
be achieved by estimating the likelihood that each GCI oc-
curs within voiced speech and suppress any GCIs for which
this likelihood is below a determined threshold.

The approach will involve defining 3 classes of speech as
voiced, unvoiced and silence. In practical applications, true
silence is always disturbed by the presence of noise. There-
fore, we use the term ’silence’ in this paper to mean the ab-
sence of speech, such as occurs outside speech endpoints or
during short pauses.

2. REVIEW OF THE DYPSA ALGORITHM

The Dynamic Programming Projected-Phase Slope Algo-
rithm (DYPSA) is an automatic technique for estimating
GCIs in voiced speech from the speech signal alone [7].
DYPSA involves the extraction of candidate GCIs using the
phase-slope function as presented in [8]. The GCIs are iden-
tified from this phase-slope function as positive-going zero-
crossings. DYPSA also involves identification of additional
candidates using the technique of phase-slope projection [7].
An optimum set of GCIs is then selected from the candidates
by minimizing a cost function using N-best Dynamic Pro-
gramming (DP) [9][10]. The cost function comprises five
components: speech waveform similarity cost, pitch devia-
tion cost, projected candidate cost, normalized energy cost
and the ideal phase-slope function deviation cost.

The accuracy of DYPSA has been tested on the
APLAWD speech database [11] with the reference GCIs ex-
tracted from the EGG signal. A comparative evaluation of
DYPSA with previous techniques such as [12], [13] and [8],
has shown significantly enhanced performance with identifi-
cation of 95.7% of true GCIs in voiced speech.

However DYPSA, in its current form, detects spurious
GCIs for unvoiced speech. For DYPSA to operate indepen-
dently over speech segments containing both voiced and non-
voiced speech, we need to detect the regions of voicing activ-
ity. This is viewed as a voiced/unvoiced classification prob-
lem. The solution to this classification problem involves in-
corporating a voicing decision for the GCI candidates within
the algorithm. The GCI candidates identified as occurring in
the unvoiced speech are then removed.

2.1 Identification of GCI Candidates

The speech signal with sampling frequency 20 kHz is passed
through a 1st order pre-emphasis filter with a 50 Hz cut-off
frequency and processed using autocorrelation LPC of order
22 with a 20 ms Hamming window overlapped by 50%. The
pre-emphasized speech is inverse filtered with linear interpo-
lation of the LPC coefficients for 2.5 ms on either side of the
frame boundary. Given the residual signal u(n), and apply-
ing a sliding M-sample Hamming window w(m), as defined
in [7], we obtain frames of data in the vicinity of each sample
n as:

xn(m) =
{
w(m)u(m+n) m= 0, ...,M−1
0 otherwise

(1)

with Fourier transform Xn(ω). The phase slope func-
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tion [8]

τn(ω) =
d arg(Xn(ω))

dω
(2)

is defined as the average slope of the unwrapped phase spec-
trum of the short time Fourier transform of the linear predic-
tion residual. DYPSA identifies GCIs as positive-going zero-
crossings of the phase slope function. In studying the phase
slope function, it is observed that GCI events can go unde-
tected because the phase slope function occasionally fails to
cross zero appropriately, even though the turning points and
general form of the waveform are consistent with the pres-
ence of an impulsive event indicating a GCI. To recover such
otherwise undetected GCI candidates, DYPSA relies on a
phase-slope projection technique. Whenever a local mini-
mum is followed by a local maximum without an interleav-
ing zero-crossing, the mid point between the two extrema is
identified and its position is projectedwith unit slope onto the
time axis. This technique is illustrated in [7] and draws on
the assumption that, in the absence of noise the phase slope
at a zero-crossing is unity. The final set of GCI candidates
is defined as a union of all positive-going zero-crossings and
the projected zero-crossings.

2.2 Dynamic Programming

The selection of true GCIs from the set of GCI candidates
is performed by minimizing a cost function using N-best
DP [9][10]. The N-best DP procedure maintains informa-
tion about the N most likely hypotheses at each step of the
algorithm. The value of N has been chosen as 3 following
the approach in [7]. The cost function to be minimized by
DP is

min
Ω

|Ω|
∑
r=1

λ TcΩ(r) (3)

where the weights are obtained using an optimization proce-
dure [7] as

λ = [λA λP λJ λF λS]T = [0.8 0.5 0.4 0.3 0.1] (4)

and Ω is a subset of GCIs selected from all GCI candidates,
|Ω| is the size of Ω, r indexes the elements ofΩ and T repre-
sents the transpose operator.

The elements of the cost vector evaluated for the rth GCI
of subset Ω are

cΩ(r) = [cA(r),cP(r),cJ(r),cF (r),cS(r)]T (5)

where cA(r) represents the speech waveform similarity cost,
cP(r) represents the pitch deviation cost, cJ(r) represents the
projected candidate cost, cF(r) represents the normalized en-
ergy cost and cS(r) represents the ideal phase-slope function
cost. The elements of the cost function all lie in the range
[-0.5, 0.5] and a low cost indicates a true GCI. The DP then
searches for the subset of GCIs giving minimum cost. The
advantage of using the DP cost function is that it effectively
penalizes GCI candidates in a way such that in most cases all
but one candidate per larynx cycles is rejected. The reader is
referred to [7] for further details.

Figure 1: Block diagram of voiced-unvoiced-silence detec-
tor.

3. VOICED, UNVOICED, SILENCE
CLASSIFICATION

Segments of speech can be broadly classified into three main
classes: silence, unvoiced and voiced speech. Silence is the
part of the signal where no speech is present and generally
contains at least some level of background noise. The tech-
nique adopted for speech classification takes into considera-
tion the statistical distributions and characteristic features of
the three classes. The main components of the classifier as
represented by Fig. 1 are (1) feature extraction, (2) Gaussian
mixture modeling and (3) the decision algorithm.

3.1 Feature Extraction

The speech signal is initially high-pass filtered at approxi-
mately 200 Hz. Frames of duration 10 ms are then defined
centred on each GCI candidate found from DYPSA using the
procedure described in Section 2.1 and features are then ex-
tracted for each frame. The choice of the features is based
on experimental evidence of variations between classes and
from the knowledge of human speech productionmodel. The
five features used in implementing the classifier, based on
[14], are:

1) Zero-Crossing Rate. Voiced speech usually shows a
relatively low zero-crossing rate while unvoiced speech has
a concentration of energy at high frequencies and therefore
typically exhibits a higher zero-crossing rate. The zero-
crossing rate for silence depends on the background noise.

2) Log Energy is defined as

Es = 10log10

(
ε +

1
N

N

∑
n=1

s2(n)

)
(6)

where ε is a small positive constant added to prevent com-
puting log of zero. In moderate or good noise conditions,
the energy of voiced sounds is significantly higher than the
energy of unvoiced speech or silence.

3) Normalized Autocorrelation Coefficient is defined as

C1 =
∑N
n=1 s(n)s(n−1)√

∑N
n=1 s

2(n)∑N−1
n=0 s

2(n)
. (7)

Adjacent samples of voiced speech are highly correlated,
therefore C1 is close to unity, whereas for unvoiced speech,
the correlation is closer to zero.
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4) First Predictor Coefficient from Linear Predictive
Analysis. It was shown by Atal [14] that the first predictor
coefficient is identical (with a negative sign) to the cepstrum
of the log spectrum at unit sample delay. Therefore the first
LPC coefficient can be used to help to discriminate between
the three classes of signal, each of which has differing spec-
tral characteristics evident in the first predictor coefficient.

5) Normalized Prediction Error. The normalized predic-
tion error from linear prediction can be written in dB [15]
as

Ep = Es−10log10
(

ε + |
p

∑
k=1

akφ(0,k)+φ(0,0)|
)

(8)

where Es is given in (6) and φ(i,k) = 1
N ∑N

n−1 s(n− i)s(n−k)
is the (i,k) element of the covariance matrix of the speech
signal. The normalized prediction error is large at glottal clo-
sures in voiced speech since the voiced excitation cannot be
well represented by the AR model employed in the predictor.

Out of the five parameters discussed above, none are suf-
ficiently reliable to give robust classification in the face of
noise, speaker variation, speaking style and so forth, as con-
firmed by earlier studies [16]. Therefore our decision algo-
rithm makes use of all five features to combine their contri-
butions in discriminating between the three classes.

3.2 Gaussian Mixture Modelling

It is assumed that the above features are from a multidimen-
sional Gaussian distribution where each class is modelled as
a Gaussian-shaped cluster of points in five-dimensional fea-
ture space. This assumption has the advantages of compu-
tational simplicity as the decision rule is determined by the
mean vector μ and covariance matrix C. In order to esti-
mate the parameter set we employ the K-means clustering
algorithm followed by iterations of the Expectation Maxi-
mization (EM) algorithm. The K-means algorithm [17][18]
partitions the points of a data matrix into K clusters. The EM
algorithm [19][20] then maximizes the log-likelihood from
data in order to estimate the parameters of the distribution.
For simplification of computation, the individual clusters are
not represented with full covariance matrices but only the di-
agonal approximations. Our experiments have shown that no
significant improvement is obtained from using full covari-
ance matrices in this context.

3.3 Decision Algorithm

We assume that the joint probability density function of the
possible values of the measurements for the ith class is a mul-
tidimensional Gaussian distribution, where i = 1,2,3 corre-
sponds to the voiced, unvoiced and silence classes respec-
tively. Let x be a d-dimensional column vector (in our
case, d = 5) representing the measurements. Then the d-
dimensional Gaussian density function for x with mean vec-
tor μ and covariance matrixCi is given by

gi(x) = (2π)−d/2|Ci|−1/2 exp
(
−1
2
(x− μi)TC−1

i (x− μi)
)
(9)
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Figure 2: Definition of evaluation metrics. The dotted lines
depict a frame defined around each reference GCI marker to
indicate a larynx cycle (after [7]).

where |Ci| is the determinant ofCi. We define the normalized
voicing measure as

Ψvus =
g1(x)

g1(x)+g2(x)+g3(x)
. (10)

From the definition in (10), the GCI candidates occurring in
the voiced segments of speech get assigned a higher score.
To simplify computation, we work in the log domain. Taking
the natural log on both sides of (9) we obtain

ln(gi(x)) = −d
2
ln(2π)− 1

2
ln |Ci|− 1

2
(x− μi)TC−1

i (x− μi)
(11)

from which we can define

ln(Ψvus) = ln(g1(x))− ln(g1(x)+g2(x)+g3(x)) (12)

The candidates in the voiced regions are assigned a high
score whereas for the non-voiced speech and silence we ob-
tain a low score (close to zero). The question now remains
as to the choice of a threshold value for the voicing score.
The threshold of 0.1 has been chosen empirically as suitable
for the APLAWD database. GCI candidates with scores be-
low this threshold are excluded from further processing. This
avoids DYPSA giving spurious GCIs during unvoiced speech
or silence and also simplifies the computation required for
the DP routine within DYPSA.

4. EXPERIMENTS AND RESULTS

For the performance comparison of the original DYPSA al-
gorithm and our proposed modified version, we require ref-
erence GCIs which are obtained from time-aligned simul-
taneously recorded EGG signals in the APLAWD database.
Reference GCIs are then extracted from the EGG signal us-
ing HQTx algorithm [21]. The HQTx markers (indicating
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‘ground truth’ GCIs in the speech waveform) are then com-
pared to the GCIs obtained from DYPSA using (i) Identifica-
tion rate - the percentage of larynx cycles for which exactly
one GCI is detected; (ii)Miss rate - the percentage of larynx
cycles for which no GCI is detected; (iii) False alarm rate -
the percentage of larynx cycles for which more than one GCI
is detected; (iv) Identification error, ζ - the timing error be-
tween the reference GCIs and the detected GCIs in the cycles
for which exactly one GCI has been detected; and (v) Identi-
fication accuracy - the standard deviation of ζ . These terms
are illustrated in Fig. 2 [7].

These metrics give us a measure of the performance of
DYPSA for the instances of glottal closures in only voiced
speech. We define a metric for the non-voiced regions of
speech by considering the number of GCIs that are detected
incorrectly in unvoiced or silence regions per second of un-
voiced speech and silence. The improvement of the modified
algorithm over the original DYPSA for the spurious GCIs
in non-voiced speech is defined as Q = νorig−νmod

νorig × 100%
where νorig and νmod are the number of spurious GCIs detect
in unvoiced and silence periods of the signal by the original
DYPSA algorithm and the modified algorithm respectively.

Fig. 3 depicts an example of the modified DYPSA’s oper-
ation. For this utterance extract, the dashed lines markedwith
� indicate the true GCIs from HQTx, the solid lines marked
with × indicate the GCIs from the original version of the
DYPSA algorithm and the lower solid lines marked with ◦
indicate the GCIs from our modified DYPSA algorithm. It is
observed that DYPSA’s GCIs match well in general with the
EGG-derived GCIs from HQTx during the voiced regions at
the start and end of this extract. The original DYPSA algo-
rithm generates spurious GCIs during the unvoiced region at
the centre of the extract whereas our modified DYPSA algo-
rithm doesn’t generate spurious GCIs during the unvoiced
regions. It can also be seen that our modified algorithm
generates more candidates than HQTx at the boundary from
voiced to unvoiced speech between 3.50 and 3.55 s. This
is explained by the uncertainty in voiced/unvoiced classifica-
tion at voicing boundaries and, in any case, can be controlled
by adjustment of the classification threshold in our method.
For this example, the improvement of modified DYPSA over
original DYPSA is 87.7%.

It is also observed when running tests over the com-
plete APLAWD database that introducing the voicing deci-
sion prior to the DP step reduces the identification rate as
DYPSA misses GCIs near the onsets and endpoints of voiced
regions due to the use of consistency measures in the cost
function. From the cost functions presented in [7], the pitch
deviation cost function and the speech waveform similarity
cost are defined as a function of the current and previous GCI
candidates under consideration by the DP. Pre-processing re-
jects the GCI candidates that occur in the unvoiced regions,
hence causing misses at the boundaries of some voiced seg-
ments. In order to improve the detection rate, implementa-
tion of the voicing decision as a post-processing (instead of
pre-processing) step was investigated. Once the DP has iden-
tified a set of GCIs (for both voiced and non-voiced speech),
we compute the logarithmic voicing score for each of the
GCIs. The GCIs identified as occurring in the voiced speech
are selected as being the true GCIs. Fig. 4 illustrates an on-
set of voiced speech. GCIs from HQTx are shown by the
dashed lines marked with �. The solid lines marked ◦ show
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Figure 3: GCI detection with modified DYPSA.
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Figure 4: GCI detection with modified DYPSA comparing
pre- and post-processing.

the results from our modified algorithm when the voicing de-
cision is applied as a pre-processor to the DP. The solid lines
marked � show the results when the voicing decision is ap-
plied as a post-processor, for which improved detection can
be observed.

Table I shows comparative results on the APLAWD
database for identification rate, miss rate, false alarm rate and
the improvement over the original DYPSA with the voicing
decision implemented as pre- and post-processing. We ob-
serve an improvement of 87.2% in the detection of spurious
GCIs using pre-processing compared to original DYPSA on
the APLAWD database. Post-processing achieves an 85.2%
improvement. We also note an increase in miss rate which is
attributed to occasional misses within the voiced speech due
to mixed voiced/unvoiced phonemes and misses at voicing
onset/endpoint boundaries. However, such misses are usu-
ally of low importance since speech data near onsets and end-
points is often less useful for speech analysis.
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Table 1: Performance comparison for GCI detection with
voicing discrimination.

Voiced Unvoiced
Ident. Miss False Improvement
Rate Rate Rate Q
(%) (%) (%) (%)

DYPSA 95.6 1.8 2.6 0

DYPSA 93.8 4.2 2.0 87.2
Pre-proc.

DYPSA 94.3 3.5 2.2 85.2
Post-proc.

5. CONCLUSION

We have presented a modification of the DYPSA algorithm
to include voicing discrimination that reduces the number of
spurious GCIs detected in unvoiced speech or silence. The
improvement obtained is conditioned by the need to main-
tain the high performance of DYPSA for voiced speech. The
technique adopted classifies a speech segment as voiced, un-
voiced or silence on the basis of feature measurements ex-
tracted from the speech signal alone. For each of the can-
didates we obtain a normalized voicing score and identify
the voiced GCI candidates. Having identified a subset of
voiced GCI candidates, DP is used for the selection of true
GCIs. Incorporating the voicing discrimination improves the
detection of spurious GCIs in unvoiced segments by approxi-
mately 87% while the identification rate for voiced segments
is only reduced by 1 to 2%, with most of the errors occurring
in the regions of voicing onset and endpoints. Application of
the voicing discrimination as both a pre- and post-processor
to the DP has been studied. The post-processing approach
shows slightly better identification rate for voiced speech but
with slightly less improvement in the rejection of spurious
GCIs in unvoiced speech.

The enhanced robustness of the modified algorithm,
which reduces the number of spurious GCIs, enables the use
of DYPSA autonomously over entire speech utterances with-
out the need for separate labelling of voiced regions. The
ability of DYPSA to correctly identify the glottal closure in-
stances enables the use of speech processing techniques such
as close-phase LPC analysis and closed-phase glottal inverse
filtering with many diverse applications in speech process-
ing.
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