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ABSTRACT

In this paper, we present a new space-time transmission framework
for Multiple Input Multiple Output (MIMO) Code Division Multiple
Access (CDMA) systems. A Constrained Space-Time Spreading
(CSTS) model is proposed by using a tensor modeling formalism.
The key feature of the CSTS model is the presence of two constraint
matrices controlling the spatial spreading of the data streams
and the reuse factor of the spreading codes across subsets of
transmit antennas. The proposed CSTS model allows one to
derive several multiple-antenna transmit schemes with different
space-time spreading patterns by simply adjusting the structure of
these two constraint matrices. Finite sets of CSTS schemes for 2,
3 and 4 transmit antennas are derived, which ensures the blind
recovery of the transmitted data streams. Exploiting the constrained
tensor model of the received signal, a joint blind detection using
the alternating least squares algorithm is used for performance
evaluation of several CSTS schemes.

1. INTRODUCTION

The growing research interest in Multiple Input Multiple Output
(MIMO) Code Division Multiple Access (CDMA) systems comes
together with the expectation that mobile users will be equipped
with two or more antennas in the near future. A generalization
of classical spatial multiplexing schemes for CDMA systems was
proposed in [1]. Transmit diversity schemes for MIMO-CDMA
have been proposed in [2, 3]. These methods, commonly called
space-time spreading, are capable of providing maximum transmit
diversity gain without using extra spreading codes and without
an increased transmit power. However, space-time spreading
methods put more emphasis on diversity than on multiple-access
interference.

In a seminal paper [4], the problem of multiuser detection
in the context of CDMA systems is linked to Parallel Factor
(PARAFAC) modeling. Following this work, some model
generalizations were proposed [5, 6, 7, 8, 9] under different
assumptions concerning multipath propagation structure (e.g.
including frequency-selectivity and/or specular multipath). All
these works are limited to single-antenna transmissions.

Recently, tensor decompositions have also been considered
for modeling multiple-antenna transmissions [10], [11], [12]. A
multi-antenna scheme exploiting the Khatri-Rao product structure
of the received signal is proposed in [10]. Despite its diversity-rate
flexibility and built-in blind identifiability, this multiple-antenna
scheme relies on temporal-only spreading of the data streams
(as in a conventional CDMA system). Since there is no spatial
spreading of the data streams across the transmit antennas, no
transmit spatial diversity is obtained. In [11], a generalized tensor
model is proposed for multiple-antenna CDMA systems with blind
detection. However, this modeling approach only considers spatial
multiplexing, where the number of data streams is restricted to be
equal to the number of transmit antennas. The approach of [12]

adds some flexibility at the transmitter by allowing the number of
data streams to be different from the number of transmit antennas.
Contrarily to [10] and [11], full spatial spreading of each data
stream across the transmit antennas is also permitted in [12].

In this work, we present a constrained space-time spreading
model for MIMO systems which is based on a tensor modeling
approach with constraint matrices. The proposed model allows one
to derive several multiple-antenna transmit schemes with different
space-time spreading patterns by simply adjusting the structure
of two constraint matrices of the tensor signal model. The first
constraint matrix controls the coupling of data streams and transmit
antennas while the second one controls the coupling of spreading
codes and transmit antennas.

As opposed to [12], where each data stream is spread over
all the available transmit antennas using necessarily different
spreading codes, the proposed model allows the reuse of the same
spreading code by each data stream, with the possibility to go
from full code reuse to full code multiplexing. Some examples
of constrained space-time spreading schemes are presented for
illustrating our modeling approach. Multiuser detection based on
an alternating least squares algorithm is considered for recovering
the transmitted data streams in a complete blind setting, without
using training sequences and not even spreading code knowledge.
Simulation results are provided for performance evaluation of
several constrained space-time spreading schemes using this blind
detection.

This paper is organized in the following manner. Section 2
describes the basic system model and assumptions. In Section 3, we
present the constrained space-time spreading model using a tensor
formalism. Feasible CSTS structures ensuring the blind recovery
of the transmitted data streams are also presented in this section.
The tensor received signal model for blind detection is described in
Section 4. The blind receiver is presented in Section 5 along with
computer simulation results for performance evaluation of some
CSTS schemes. The paper is concluded in Section 6.

2. GENERAL SYSTEM MODEL AND ASSUMPTIONS

We consider a MIMO system withM transmit andK receive
antennas.R denotes the total number of independent transmitted
data streams1 and J denotes the number of spreading codes
available at the transmitter. The block diagram of the considered
MIMO-CDMA system is shown in Fig. 1. Each transmitted data
stream consists ofN symbols. The wireless channel is assumed to
be flat-fading and constant duringN symbol periods. We assume
thatR,J, andM satisfy the following inequality:

1≤ R≤ J≤M.

1It is worth mentioning at this point that theR data streams can belong
to different users. We do not distinguish between both interpretations here.
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Figure 1: MIMO-CDMA system model
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Figure 2: CSTS block-diagram

The multiple-antenna transmission is structured in the following
manner. TheM transmit antennas are partitioned intoR smaller
antenna subsets ofMr antennas each so thatM = M1 + · · ·+ MR.
At the r-th antenna subset, space-time spreading is performed to
provide transmit diversity to ther-th data stream usingJr different
spreading codes whereJ = J1 + · · ·+JR and

1≤ Jr ≤Mr , r = 1, . . . ,R.

We assume that theR antenna subsets are formed by adjacent
antennas. Different antenna subsets transmit different data streams
using different spreading codes, i.e., there is no sharing of data
streams and spreading codes between any two different antenna
subsets. It is to be noted that full transmit diversity and full spatial
multiplexing are special cases of this transmission model. We can
distinguish the following types of transmit schemes that are covered
by our constrained space-time spreading model:
• R = 1, J = M: Full transmit diversity with full code

multiplexing;
• R= M, J = M: Full spatial multiplexing (e.g. [1])
• R= 1, J = 1: Full transmit diversity with full code reuse (e.g.

[2]);

3. CONSTRAINED SPACE-TIME SPREADING

In this section, Constrained Space-Time Spreading (CSTS) is
formulated using a tensor modeling formalism. At the transmitter,
the serial input data is parallel-to-serial converted intoR data
streams ofN symbols each, where

sn,r
.= s

(
(r−1)N+n

)

denotes then-th symbol of ther-th data stream. Letcp, j be thep-th
element of thej-th spreading code andhk,m be the spatial channel
gain between them-th transmit antenna and thek-th receive antenna.
Let us define the following matrices

S∈ CN×R, C ∈ CP×J, H ∈ CK×M

as thesymbol, codeandchannelmatrices, where

hk,m
.= [H]k,m, sn,r

.= [S]n,r , cp, j
.= [C]p, j

are, respectively, the typical elements of these matrices.
At the output of the CSTS block, the discrete-time signal

sample associated with then-th transmitted symbol,p-th chip and
m-th transmit antenna is represented by:

un,p,m
.= um

(
(n−1)P+ p

)
.

In this work, un,p,m is interpreted as the(n, p,m)-th element of
the third-order tensorU ∈ CN×P×M representing the effective
transmitted signal. We propose the following constrained
factorization for modeling the CSTS operation:

un,p,m =
R

∑
r=1

J

∑
j=1

gm(r, j)sn,rcp, j , gm(r, j) .= ψr,mφ j,m, (1)

wheregm(r, j) is the(r, j)-th element ofGm ∈ CR×J. This matrix
defines the coupling betweenR data streams andJ spreading codes
at them-th transmit antenna. Let us define

G =
M

∑
m=1

Gm = ΨΨΨΦΦΦT ∈ CR×J

as a matrix synthesizing the overall CSTS structure.G is called
here thecoupling matrix, and is given by the inner product of two
constraint matricesΨΨΨ ∈ CR×M and ΦΦΦ ∈ CJ×M . Both matrices
are composed of canonical vectors controlling the coupling ofR
data streams andJ spreading codes at theM transmit antennas,
respectively. ΨΨΨ can be viewed as astream-to-antenna selection
matrix andΦΦΦ as acode-to-antenna selection matrix. At this point,
we define the basic structure of these constraint matrices:
• The columns ofΨΨΨ and ΦΦΦ are canonical vectors2 belonging

to the canonical basesE(R) = {e(R)
1 , . . . ,e(R)

R }, and E(J) =

{e(J)
1 , . . . ,e(J)

J }, respectively;

• ΨΨΨ and ΦΦΦ are both full rank matrices,ΨΨΨΨΨΨT and ΦΦΦΦΦΦT being
diagonal matrices with equal traceM.

3.1 Generic CSTS structure

Our final goal is the blind recovery of the transmitted data streams
(regardless of the knowledge of the spreading codes). From an
identifiability point of view, the coupling involving the columns of
SandC determined byG, may induce rotational freedom in subsets
of columns of these matrices. A possible choice forG that ensures
the uniqueness ofS is given by a “row-wise” block-diagonal matrix,
each row containing a non-zero row vector [13]:

G =




γ1,1 · · · γ1,J1 0 · · · 0 · · · 0 · · · · · · 0

0 · · · 0 γ2,1 · · · γ2,J2 0
...

...
. ..

...
...

... 0 · · · 0
...

...
. . .

. ..
...

...
...

...
...

. ..
. .. 0 · · · 0

0 · · · 0 0 · · · 0 · · · 0 γR,1 · · · γR,JR




︸ ︷︷ ︸
R×(J1 +J2 + ···+JR)

(2)

whereγr, jr is the reuse factor of thejr spreading code, i.e., the
number of times thejr spreading code is used in the transmission
of ther-th data stream.γr, jr satisfies the following constraint:

R

∑
r=1

Jr

∑
r=1

γr, jr = M. (3)

Several CSTS schemes can be obtained from this generic CSTS
structure for different choices of theγr, jr ’s.

2A canonical vectore(N)
n ∈ RN is a unitary vector containing an element

equal to 1 in itsn-th position and 0’s elsewhere.

©2007 EURASIP 2200

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



3.2 Examples of CSTS schemes

For a fixed numberM of transmit antennas, a finite set, or codebook,
of CSTS schemes exists, each element of this set being given by
a different combination of the two constraint matricesΨΨΨ and ΦΦΦ
satisfying the generic CSTS structure (2). LetSM(ΨΨΨ,ΦΦΦ) denote the
feasible set of CSTS schemes for a fixedM, each element of this
set being given by the matrix pair(ΨΨΨ,ΦΦΦ). A criterion for deriving a
feasible setSM(ΨΨΨ,ΦΦΦ) of CSTS schemes ensuring the blind recovery
of the data streams is proposed in [13] using concepts of partition
theory. In this work, we restrict ourselves to the presentation of
feasible CSTS schemes, where the constraint matricesΨΨΨ andΦΦΦ are
derived from a common set ofgenerating arrays, as will be clear
from the following examples.

• M = 2: The 2 generating arrays are:

u2 = [1 1], U11 =
[

1 0
0 1

]
.

The setS2(ΨΨΨ,ΦΦΦ) of feasible CSTS schemes forM = 2 can be
derived from these generating arrays by:

S2(ΨΨΨ,ΦΦΦ) =
{

(u2,u2)︸ ︷︷ ︸
J=1

; (u2,U11)︸ ︷︷ ︸
J=2︸ ︷︷ ︸

R=1

; (U11,U11)︸ ︷︷ ︸
R=J=2

}

Note that 3 CSTS schemes are possible. The first one, where
ΨΨΨ = ΦΦΦ = u2, indicates that a single data stream is transmitted over
both transmit antennas using the same spreading code (R= J = 1).
This is a full transmit diversity scheme with full code reuse. In
the second scheme we haveΨΨΨ = u2 and ΦΦΦ = U11, meaning that
the single data stream is now associated with 2 different spreading
codes at the first and second transmit antennas. In this case, transmit
diversity with full code multiplexing takes place. Finally, the third
schemeΨΨΨ = ΦΦΦ = U11 indicates that two different data streams are
transmitted from both antennas using different spreading codes.
This full spatial multiplexing scheme with full code multiplexing
(i.e. different codes at different antennas), as in a standard spatial
multiplexing CDMA system [1].

• M = 3: In this case, we have 3 generating arrays:

u3 = [1 1 1], U21 =
[

1 1 0
0 0 1

]
, U111 =

[
1 0 0
0 1 0
0 0 1

]
.

The feasible setS3(ΨΨΨ,ΦΦΦ) is given by:

S3(ΨΨΨ,ΦΦΦ) =
{

(u3,u3)︸ ︷︷ ︸
J=1

; (u3,U21)︸ ︷︷ ︸
J=2

; (u3,U111)︸ ︷︷ ︸
J=3︸ ︷︷ ︸

R=1

;

(U21,U21)︸ ︷︷ ︸
J=2

; (U21,U111)︸ ︷︷ ︸
J=3︸ ︷︷ ︸

R=2

; (U111,U111)︸ ︷︷ ︸
R=J=3

}
,

yielding a total of 6 possible CSTS schemes. The first scheme
ΨΨΨ = ΦΦΦ = u3 is a 3-antenna transmit diversity with full code reuse.
The last oneΨΨΨ = ΦΦΦ = U111 is a spatial multiplexing system using
different spreading codes at each transmit antenna. In between
both extremes, we have 4 intermediary schemes which are different
combinations of transmit diversity and spatial multiplexing with
different code reuse patterns. For instance, the second and third
schemes transmit a single data stream using 2 or 3 spreading codes,
respectively. Similarly, the fourth and fifth schemes transmit 2 data
streams using 2 and 3 spreading codes, respectively.

• M = 4: Now, we have a total of 5 generating arrays:

u4 = [1 1 1 1], U31 =
[

1 1 1 0
0 0 0 1

]
,

U22 =
[

1 1 0 0
0 0 1 1

]
, U211 =

[
1 1 0 0
0 0 1 0
0 0 0 1

]
,

U1111=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

and the feasible setS4(ΨΨΨ,ΦΦΦ) is composed of 12 different CSTS
schemes satisfying (2):

S4(ΨΨΨ,ΦΦΦ) =
{

(u4,u4)︸ ︷︷ ︸
J=1

; (u4,U31) ; (u4,U22)︸ ︷︷ ︸
J=2

; (u4,U211)︸ ︷︷ ︸
J=3

; (u4,U1111)︸ ︷︷ ︸
J=4︸ ︷︷ ︸

R=1

(U31,U31) ; (U22,U22)︸ ︷︷ ︸
J=2

; (U31,U211) ; (U22,U211)︸ ︷︷ ︸
J=3︸ ︷︷ ︸

R=2

(U211,U211)︸ ︷︷ ︸
J=3

; (U211,U1111)︸ ︷︷ ︸
J=4︸ ︷︷ ︸

R=3

; (U1111,U1111)︸ ︷︷ ︸
R=J=4

}
.

We remark that(U31,U31) and(U22,U22) are two schemes having
the same number of transmitted data streams and spreading codes
but differing in the way the transmit antennas and spreading codes
are shared between the data streams. Let us take now the two
schemes(U31,U211) and(U22,U211). Both transmit2 data streams
over 4 transmit antennas using3 spreading codes.

Let us also look at scheme(U31,U211). It transmits the first data
stream over 3 transmit antennas using 2 different spreading codes
(one is reused at 2 transmit antennas) and the second data stream is
transmitted by a single antenna using a single spreading code. On
the other hand, the scheme(U22,U211) transmits both data streams
by assigning 2 transmit antennas to each one. The first data stream
is associated with a single spreading code while the second one uses
2 different spreading codes.

All the component CSTS schemes belonging to the sets
S2(ΨΨΨ,ΦΦΦ), S3(ΨΨΨ,ΦΦΦ) andS4(ΨΨΨ,ΦΦΦ) satisfy the generic structure (2)
which is required for the blind recovery of the transmitted data
streams. It is worth noting thatnot all the pairwise combinations
of generating arrays is a feasible CSTS scheme. For instance,
the scheme(ΨΨΨ,ΦΦΦ) = (U22,U31) is not feasible for blind symbol
recovery. In this scheme, thesamespreading code is reused by the
two different data streams, inducing a coupling between different
data streams. It can be shown [13] that this coupling leaves
rotational freedom within the antenna subset associated with the
second data stream, thus affecting uniqueness ofS (only the first
data stream can be uniquely recovered). Therefore, care must be
taken when deriving the CSTS schemes from the generating arrays.

4. RECEIVED SIGNAL MODEL

At the receiver, the discrete-time chip-rate sampled baseband
version of the received signal at then-th symbol period,p-th chip,
andk-th receive antenna (in absence of noise) is defined as:

xn,p,k
.= xk

(
(n−1)P+ p

)
,

wherexn,p,k is the (n, p,k)-th element of a received signal tensor
X ∈ CN×P×K . The MIMO signal model is then given in tensor
notation by:

xn,p,k =
M

∑
m=1

un,p,mhk,m. (4)
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The structure of the CSTS model defined in (1) yields the following
noise-free received signal model:

xn,p,k =
M

∑
m=1

R

∑
r=1

J

∑
j=1

gm(r, j)sn,rcp, jhk,m. (5)

It is worth noting that (5) is known in the specialized literature
as a Tucker3 model [14],gm(r, j) being the(r, j,m)-th element
of the core tensorG of dimensionR× J×M. To be specific,
(5) is a constrained Tucker2 model becauseG has only 1’s and
0’s elements, since we have definedgm(r, j) = ψr,mφ j,m. Instead
of using the Tucker2 notation, we will adopt here a “constrained
PARAFAC” notation for representing (5) in matrix form, since it
allows us to explicit the constraint matrices when working with the
model.

The received signal tensor can be organized as a set of matrices
{X· ·k} ∈ CN×P, k = 1, . . . ,K, each one containingN symbols× P
chips of the received signal associated with thek-th receive antenna.
It can be shown thatX· ·k admits the following “constrained
PARAFAC” factorization [9]:

X··k = SΨΨΨDk(H)ΦΦΦTCT , k = 1, . . . ,K, (6)
whereDk(H) is a diagonal matrix holding thek-th row of H on
the main diagonal. We can also define two other matrix setsXn·· ∈
CP×K collecting the received signal samples overP chips andK
receive antennas associated with then-th transmitted symbol; and
X·p· ∈ CK×N collecting the received signal samples overN symbol
periods andK receive antennas associated with thep-th chip of the
spreading code. These matrices can be respectively factored as

Xn·· = CΦΦΦDn(SΨΨΨ)HT , X· p· = HDp(CΦΦΦ)ΨΨΨTST , (7)
n = 1, . . . ,N, p = 1, . . . ,P. The received signal models (6) and (7)
are three different (but equivalent) writings of the received signal
tensorX ∈ CN×P×K .

Let us define the three matricesX1 = [XT
··1 · · ·XT

··K ]T ∈CKN×P,
X2 = [XT

·1· · · ·XT
·P·]

T ∈CPK×N, andX3 = [XT
1·· · · ·XT

N··]
T ∈CNP×K

concatenating the third-mode, second-mode and first-mode slices
of the received signal tensor, respectively, so that[X1](k−1)N+n,p =
[X2](p−1)K+k,n = [X3](n−1)P+p,k = xn,p,k. It can be shown [9] that
these matrices admit the following constrained factorization:

X1 = (H ¦SΨΨΨ)(CΦΦΦ)T

X2 = (CΦΦΦ¦H)(SΨΨΨ)T

X3 = (SΨΨΨ¦CΦΦΦ)HT , (8)
where¦ is the Khatri-Rao (column-wise Kronecker) product.

5. SIMULATION RESULTS

The Bit-Error-Rate (BER) performance of some CSTS schemes
for MIMO-CDMA systems is evaluated by means of computer
simulations. After detailing the simulation assumptions, the blind
receiver is described and the simulation results are shown.

5.1 Simulation assumptions

The average BERversus Signal-to-Noise Ratio (SNR) curves
are obtained from 5000 Monte Carlo runs. Unless otherwise
stated, the BER results represent the average performance of
the R data streams. At each run, the additive noise power
is generated according to the sample SNR value given by
SNR=10log10

(‖X1‖2
F/‖V1‖2

F

)
. The spatial channel gains are

redrawn from an i.i.d. complex-valued Gaussian generator. The
transmitted symbols are redrawn from a pseudo-random Quaternary
Phase Shift Keying (QPSK) sequence. When considering
orthogonal spreading codes at the receiver, Hadamard(P) codes are
used. For simulating the presence of inter-chip interference due
to multipath propagation, we consider pseudo-random codes as the
“effective” codes, which are redrawn from an i.i.d. complex-valued
Gaussian generator at each run. We assume that “guard chips” are
used to avoid inter-symbol interference, following the approach of
[4]. In this case,P denotes the number of ISI-free chips/symbol.

5.2 Blind receiver

As the blind receiver, we make use of the alternating least squares
(ALS) algorithm [4, 14]. Given the received signal tensorX ∈
CN×P×K , this algorithm consists in alternated least squares updates
of Ŝ, Ĉ andĤ based on the constrained model (8).Ŝ(0) andĤ(0)
are randomly initialized before starting the algorithm. At thet-th
iteration, the three least square updates are:

ĈT
(t) =

[
(Ĥ(t−1) ¦ Ŝ(t−1)ΨΨΨ)ΦΦΦT

]†
X̃1

ŜT
(t) =

[
(Ĉ(t)ΦΦΦ¦ Ĥ(t−1))ΨΨΨT

]†
X̃2,

ĤT
(t) =

[
(Ŝ(t)ΨΨΨ¦ Ĉ(t)ΦΦΦ)

]†
X̃3, (9)

whereX̃1 = X1 +V1 is the noisy version ofX1, V ∈ CKN×P being
an additive white gaussian noise matrix. The convergence of the
algorithm at thei-th iteration is declared when the error between
the true received signal tensor and its reconstructed version from the
estimated matrices does not change significantly between iterations
t andt +1. In this work we assume thatC is known at the receiver so
that the first estimation step in (9) is skipped. The estimation ofS is
affected by an inherent scaling factor, i.e.,Ŝ= S·Diag(δ1 · · · δR),
whereδ1, . . .δR are the scaling factors. These scaling factors are
eliminated by assuming that the first transmitted symbol of each
data stream is equal to one [4].

5.3 BER performance

We first compare the performance of different CSTS schemes. We
consider the schemes(u2,U11) and (U11,U11) for M = 2, and
the schemes(U21,U21) and (U111,U111) for M = 3. Note that
(U11,U11) and(U111,U111) are full spatial multiplexing schemes,
(u2,U11) is a full transmit diversity scheme, while(U21,U21) is a
combined transmit diversity and spatial multiplexing scheme. The
receiver works withK = 2 antennas and a data block ofN = 10
symbols. Figure 3 shows the performance of these schemes with
blind detection. ConsideringM = 2, we can see that(u2,U11)
outperforms(U11,U11) as expected, but this comes with a reduction
in spectral efficiency by a factor of two. Also forM = 3, (U21,U21)
offers a better performance than(U11,U11).

Figure 4 shows the performance of two CSTS schemes
(U21,U21) and (U21,U111) valid for M = 3. We consider both
orthogonal and random spreading codes. Note that both schemes
have the same spatial spreading pattern withR= 2. The difference
is on the code reuse pattern (J = 2 or 3). Here, we assumeK = 2,
N = 10 andP = J. First we note that a performance degradation
occurs when the spreading codes are not orthogonal (e.g. due to
multipath propagation). This causes a loss in the diversity gain, as
shown in Fig. 4. Note also that the scheme withΦΦΦ = U111 (J = 3)
offers a better performance than the scheme withΦΦΦ = U21 (J = 2).
Such an improvement is due to the use of more spreading codes.

Now, we consider a CSTS scheme forM = 5 transmit antennas
using(ΨΨΨ,ΦΦΦ) = (U221,U1121). In this scheme,R= 3 data streams
are transmitted usingJ = 4 spreading codes. The first data stream
is transmitted overM1 = 2 antennas usingL1 = 2 spreading codes.
The second data stream is also transmitted overM2 = 2 antennas,
but using only a single spreading code. The third data stream is
transmitted by a single antenna using a single spreading code. We
focus on the individual performance of each data stream in order to
investigate the influence of the number of used transmit antennas
and codes on their performance. We considerK = 3, N = 10 and
P = 4. Figure 5 shows the performance of each data stream. A
performance gain of the third data stream over the second one is
obtained considering both orthogonal and random spreading codes.
Note that the third data stream uses different spreading codes while
the second data stream reuses the same spreading code. This result
confirms that using different codes for transmit diversity generally
provides a higher diversity gain than reusing the same code [1].
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Figure 3: Performance of some CSTS schemes for different choices
of the constraint matricesΨΨΨ andΦΦΦ.
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Figure 4: Performance of two CSTS schemes using orthogonal and
random spreading codes.

6. CONCLUSION

In this paper, we have presented a constrained space-time spreading
(CSTS) framework for MIMO-CDMA systems relying on a tensor
modeling of the space-time spreading process. We have shown that
the two constraint matricesΨΨΨ andΦΦΦ characterizing the CSTS model
can be viewed as stream-to-antenna and code-to-antenna selection
matrices, respectively. The proposed CSTS model covers several
classes of multiple-antenna CDMA schemes, spatial multiplexing
with full code multiplexing to transmit diversity with full code
reuse. By focusing on the blind joint detection of the data
streams, we have presented sets of CSTS schemes forM = 2,3
and 4 transmit antennas for different choices of the constraint
matrices. Bit-error-rate performance of some CSTS schemes has
been evaluated using a blind alternating least squares receiver.
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