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ABSTRACT
We present an efficient compression algorithm for sequences of

triangular meshes with fixed connectivity. Our two main contribu-
tions in this paper are : a clustering technique which regroups the
vertices following the same affine motion ; a geometry compensa-
tion technique based on the estimation of 3D motion parameters
which are modeled by affine transform matrices. Then, a scan-
based temporal discrete wavelet transform is applied on the com-
pensated sequence, and the resulting wavelet coefficients are finally
encoded by an efficient coding scheme which includes a bit alloca-
tion process. Simulation results show that our compression method
provides good compression performances compared to some state
of the art coders.

1. INTRODUCTION

3D animations are widely used in a variety of fields, like computer
games, multimedia, medical imaging... They are often represented
by a sequence of triangular meshes, each mesh being defined by the
location of the vertices (geometry) and by a list of triangles (con-
nectivity). In general, the meshes are irregular, and the connectivity
of the meshes may also change with time. However, in this paper,
we restrict our attention to the animations defined by a sequence of
meshes sharing the same connectivity at any frame.

Most of the first compression methods proposed in 3D anima-
tions exploit the affine transformations of different segments of the
meshes [1, 2, 3, 4]. Also, some approaches proposed to predict the
vertex displacements along the sequence and then to encode the
residual errors [5, 6]. Recently, several more complex prediction
techniques have been proposed. In [7, 8, 9] for instance, the authors
exploited the temporal coherence by clustering vertices with similar
affine transforms between successive frames. In [9], Mamou and
al. proposed a novel approach for 3D mesh compression based
on a skinning animation technique. Their method is based on a
piecewise affine predictor coupled with a skinning model and a
DCT representation of the residuals errors. In [10], the authors
used the mesh connectivity to determine the order of compression
of vertex locations. In parallel, Alexa and Müller [11], proposed a
coding scheme based on the Principal Component Analysis (PCA)
to represent the mesh sequences with only a small number of basis
functions. Karni and Gotsman improved this method by further
exploiting the temporal coherence and finally encode the PCA
coefficients with a second-order predictive coding called LPC [12].
The method of [11] has been also improved in [13], where the au-
thors proposed to cluster vertices before using PCA. Briceno et al.
presented an original approach in [14]. The technique is to project
each frame onto a 2D image, and then to encode the resulting
sequence of ”2D images” with some well-known video techniques.
Besides, several methods based on wavelets have been proposed. In
[15], the authors proposed to exploit the temporal coherence of the
geometry components by applying a B-spline wavelet transform
on the successive vertex positions. Recently, a coder based on
temporal wavelet filtering implemented in lifting scheme has been
proposed [16, 17]. In [18], Guskov and Khodakovsky proposed
to exploit the parametric coherence of some specific animations
by combining a spatial multiresolution analysis and a predictive

coding scheme based on a I-frames/P-frames approach (similar to
some video compression methods). In parallel, J.H. Yang et al. also
proposed a wavelet-based algorithm, but for sequences of irregular
meshes with changing connectivity [19].

In this paper we propose an alternative way to compress 3D
animations in the framework of MCDWT (motion compensation
for discrete wavelet transform). In order to exploit the temporal
coherence of the geometry of an animation, we propose a coding
scheme combining a motion-based clustering for the estima-
tion/compensation of the vertex displacements, and a temporal
motion compensated wavelet transform (see figure 1). In our
compression algorithm, the animation is processed in 4 steps: i) a
clustering technique is used to regroup the neighbor vertices having
the same affine motion; ii) the motion of each cluster is estimated in
order to compensate the vertex displacements during the animation;
iii) a scan-based temporal DWT is applied on the compensated
animation. iv) the resulting wavelet coefficients are finally en-
coded with a coding scheme which includes a bit allocation process.

The rest of this paper is organized as follows. Section 2 presents
the motion-based clustering approach and the scan-based process-
ing. Section 3 presents the proposed motion estimation and the ge-
ometry compensation techniques. In section 4 we present thescan-
based temporal DWT. Experimental results are given in section 5
and compared to results of some state of the art methods. We fi-
nally conclude and propose future works in section 6.

2. MOTION-BASED MESH CLUSTERING

The first step of our algorithm consists in the clustering of the
meshes. Our clustering technique is based on the motion, i.e., ver-
tices with similar motion belong to the same cluster. The number
of clusters obtained by this technique depends on the motion nature
between the two frames.

2.1 Notations
Let us define F the sequence of T meshes:

F = { f1, f2, ..., ft , ... fT }. (1)

Let us also define Vt the set of V vertices at each frame t of the
sequence1 by :

Vt = {v1
t ,v

2
t , ...,v

i
t , ...,v

V
t }, ∀t, (2)

and V i the set of neighbor vertices of vi
t (neighbor vertices which

form the same connex component). The set V i is identical for all
frame t of the sequence (with fixed connectivity) and is written as:

V i = {(v1
t )i,(v2

t )i, ...,(vk
t )i, ...,(vK

t )i}, ∀t, (3)

1Since the connectivity remains the same for all the frames of the se-
quence, the number V is constant whatever t.
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Figure 1: General structure of the proposed compression algorithm.

where K is the number of the neighbor vertices of vi
t , such as K ≤V .

Finally, the clustering for each frame t is denoted by:

Ct = {C1
t ,C2

t , ...,Cn
t , ...,CN

t }, (4)

with N the number of clusters at the frame t which depends on the
motion between the frame t and the frame t −1 .

2.2 Clustering Principle
The proposed technique creates a clustering of each connex compo-
nent of the animation. The principle of the method is the following.
We consider that a vertex at time t is related with a vertex at time
t −1 by:

vi
t = Mi

t ∗ vi
t−1, ∀vi

t ∈ Vt , (5)

where the vertices are given in homogeneous coordinates2. Mi
t is

the affine transform matrix. This matrix is of size (4× 4) and con-
tains 12 coefficients representing the motion (rotation, translation
and scaling):

Mvi
t =

( [R,S]3×3 [Tr]3×1

0 0 0 1

)
(6)

where the matrix [R,S]3×3 contains the rotation and scaling infor-
mation, and [Tr]3×1 is the translation vector.
In order to solve the equation (5), we introduce the matrix P i

t of
size (4× (Q + 1)) containing the coordinates of the vertex vi

t and
the coordinates of the Q vertices of its first order neighborhood
( Q ≤ K ≤V ). So, P i

t is given by:

P i
t =

(
vi

t (v1
t )i ... (vq

t )i ... (vQ
t )i

)
(7)

where vi
t and (vq

t )i are to be column vectors given in homogeneous
coordinates.
The affine transform Mi

t is then computed as follows:

Mi
t = P i

t ∗ (P i
t−1)

+ (8)

where (.)+ stands for the pseudo-inverse operator.

A cluster Cn
t ∈ Ct of the frame t, represented by the vertex

vi
t , will contain the vertex vi

t and all of its neighbor vertices (vk
t )i

among V i verifying:

‖Mi
t ∗ (vk

t−1)i − (vk
t )i‖2 < ε, (9)

where ε is a threshold. The resulting partition verifies the following
properties:

∪Cn
t = ft and Cn

t ∩Cm
t = /0, ∀m,n (10)

2A vertex v given in homogeneous coordinates is written as vt =
(x,y,z,1).

Figure 2: Clustering of the SNAKE sequence, N = 23 clusters.

In other way, the cluster Cn
t can be written as:

Cn
t = {(v j

t )n} j=1,...,V ′ (11)

where the quantity V ′ (V ′ ≤ K ≤V ) is the number of vertices in the
cluster Cn

t which verify the equation (9).

2.3 Scan-based processing
In the proposed approach, the sequence is processed on the fly (also
called scan-based processing), meaning that the animation is pro-
cessed by Groups Of Frames (denoted by GOF), treated and com-
puted independently.
In the rest of the paper, we consider that a GOF is composed by T
frames. Also, the number N of clusters per frame is supposed to be
the same in each frame of the current GOF. To simplify, the clus-
tering process is done for the first two frames of each GOF of the
sequence and is maintained constant in the whole GOF.
As example, the clustering of the 7th frame of the SNAKE sequence
is shown in the figure 2, for N = 23 clusters.

3. MOTION ESTIMATION AND GEOMETRY
COMPENSATION

3.1 Estimation of 3D Motion Parameters
Once the partition Ct is computed, we associate to each cluster Cn

t ∈
Ct an affine transform noted here Mn

t , defined as in section (2.2) by
the formula (6). The estimation of the affine transform is done for
each cluster between the frame t of the GOF (t = 2, ...,T + 1) and
the same cluster of the first frame (key frame) corresponding to t = 1
(see figure 3), such that:

(v j
t)n = Mn

t ∗ (v j
1)n, ∀(v j

t)n ∈Cn
t , (12)

The proposed motion estimation consists in computing a set of N
affine transforms Mn

t per frame t, corresponding to the N clusters in
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Figure 3: Estimation of the affine motion. To compute the scan-
based wavelet transform (Section 4) and avoid boundary effects, we
need to use the first frame of the next GOF, which is also estimated
according to the first frame of the current GOF.

the frame t. Each affine transform Mn
t can be computed as previ-

ously (formula (8)) by:

Mn
t = Qn

t ∗ (Qn
1)+ (13)

with (.)+ the pseudo-inverse operator. Qn
t is now a matrix of size

(4×V ′) including the set of vertices (v j
t)n ∈Cn

t , it is given by:

Qn
t =

(
(v1

t )n (v2
t )n ... (v j

t )n ... (vV ′
t )n

)
(14)

with (v j
t )n a column vector.

Once the affine transform Mn
t is computed for each frame t (t =

2, ...,T + 1) and for each cluster Cn
t (n = 1, ...,N), the whole affine

transforms are entropy coded without loss with an arithmetic coder
[20].

3.2 Geometry Compensation (GC)
The geometry compensation, denoted by GC in the rest of the paper,
consists to displace all the frames of a given GOF on the first frame
(key frame) of this GOF, while keeping this key frame unchanged.
In other words, once the affine motion Mn

t is computed for each
frame t of the GOF and for each cluster Cn

t according to the key
frame, we compensate this motion and we reconstruct a new GOF
which contains all the frames compensated on the first one.
Let us denote the new compensated cluster by:

Ĉn
t = {(v̂ j

t )n} j=1,...,V ′ (15)

Each compensated vertex (v̂ j
t )n ∈ Ĉn

t is computed as follows:

(v̂ j
t )n = (Mn

t )− ∗ (v j
t )n, (16)

for all t = 2, ...T + 1, n = 1, ...,N and j = 1, ...,V ′, where (.)− is
the inverse operator.
To show the efficiency of our motion estimation/compensation tech-
nique, the figure 4 compares the position of the last frame (in red)
of a GOF (size of the GOF = 8) in function of the first frame (in
yellow), with compensation or without compensation . We can ob-
serve the motion is well compensated for the three animations.
The temporal wavelet transform is then done on the compensated
sequence as explained in the following section 4.

4. GEOMETRY COMPENSATED DWT

A practical problem in temporal wavelet transform implementation
is related to memory requirements of time filters. Usually, wavelet
transform is implemented by loading all the data in memory and
then performing filtering. In the case of temporal filtering of mesh

(a) Without compensa-
tion.

(b) With compensation.

(c) Without compensation.

(d) With compensation.

(e) Without compensation.

(f) With compensation.

Figure 4: We compare the position of the last frame (in red) of a
GOF (size of the GOF = 8) in function of the first frame (in yellow),
with compensation or without compensation. We can observe the
motion is well compensated for these three animations.
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sequences, this would require a huge memory size and moreover
could imply an encoding delay as long as the sequence duration
itself. As said in Section 2.3, a simple solution to the temporal fil-
tering problem is to crop the input sequence in several short subse-
quences called GOF (Groups Of Frames) and then compute filtering
for each GOF independently.

Once each GOF is geometry compensated, we can apply the
scan-based wavelet transform on the compensated sequence. For
this, we use the lifting scheme which is an efficient way to imple-
ment wavelet transforms. An interesting property of the lifting im-
plementation is that for each transversal implementation of wavelet
filter, it exists an equivalent lifting implementation. So, it is re-
versible, scalable and still assure perfect reconstruction.

f1̂ f2̂ f3̂ f4̂ f5̂ f6̂ f7̂ f9̂

GOF 1 GOF 2
f8̂

GOF 3

ĤF1
ĤF3ĤF2

ĤF4

LF̂1 LF̂2 LF̂3 LF̂4

Figure 5: Example of a scan-based wavelet transform decomposi-
tion (lifting scheme (2,0) - 1 level decomposition)

Figure 5 shows the principle of the scan-based filtering on the FACE
sequence, for a GOF of 4 frames, by using the lifting scheme (2,0)
proposed in [17]. Each GOF is independently filtered and in order
to solve the boundary problem, we need to consider the first frame
of next GOF to compute the filtering of the last frame of previous
GOF. The scan-based approach allows to overcome this problem,
by computing the temporal transform as it would be by considering
all the sequence as a whole, but by keeping in memory only data
necessary to compute the wavelet transform on one GOF. Also, a
special treatment is done for the boundary effects of the last GOF
of the sequence.

The high frequency (HF) details and the low frequency (LF)
sequence of each GOF are encoded with an efficient bit allocation-
based coder [17].
As the connectivity remains the same for all frames of the mesh
sequence, we simply encode the connectivity of the first frame with
the efficient coder of Touma and Gotsman [21].

5. SIMULATION RESULTS

5.1 Distortion Error Criterion
To evaluate the quality between the original sequences and the re-
constructed ones, we use the metric error called KG error, intro-
duced by Karni and Gotsman in [12]. This metric corresponds to the
relative discrete L2-norm both in time and space and is expressed in
percent. It is given by:

KG error = 100
||G− Ĝ||

||G−E(G)||
(17)

where G is a matrix of dimension (3V,T ) containing the geometry
of the original sequence, Ĝ the quantized version of the geometry,
and E(G) an average matrix in which the tth column is defined by:

(X̄t (1 ... 1) ,Ȳt (1 ... 1) , Z̄t (1 ... 1))T

with X̄t , Ȳt , and Z̄t the mean values of the coordinate sets of each
frame t.

5.2 Experimental Results
We have tested the efficiency of our coder on different sequences.
Here, we present three animation sequences: DOLPHIN, SNAKE
and DANCE, with different features presented in Table 1. Where
T the number of frames, V the number of vertices per frame, K
the number of the connex components of the mesh, and N is the
average number of the clusters obtained for the whole GOFs of the
sequence.

Sequence T V K N
SNAKE 128 9179 1 35
DANCE 200 7061 1 36

DOLPHIN 64 6179 1 28

Table 1: Considered features of the used sequences.

Figures 6, 7 and 8 show the curves KG Error/bitrate for the
three different sequences, using the proposed coder for different
GOF sizes. The results are compared to the Wavelet-based coder
proposed in [17] (without clustering and without GC). Also, we
compare the coding performances of the proposed coder with the
PCA-based coder of [11] , the CPCA- based coder of [13] and the
Skinning-based coder of [9]. We choose different GOF sizes of
8 frames, 64 frames (DOLPHIN ), 128 frames (SNAKE) and 200
frames (DANCE). The bitrate is given in bits per vertex per frame.

For the different figures 6, 7 and 8, we observe that the best
results are given by the Skinning-based coder of [9]. However,
the three cases of the proposed coder provides best results than
Wavelet-based coder of [17] and PCA-based coder (for figure 6).
Also, for the figure 6 the proposed coder using the lifting scheme
(4,2) is better than the CPCA-based coder of [13] (at high bitrates).
Nevertheless, the proposed coder using scan-based processing for a
GOF of size 8 frames is interesting when huge sequences must be
processed. Indeed, a large sequence requires a huge memory and
moreover could imply an encoding delay as long as the sequence
duration itself.

6. CONCLUSIONS AND FUTURE WORKS

We have presented in this paper a new method to encode the 3D
mesh sequences with fixed connectivity. We proposed an original
approach to construct a partition of the geometry of the mesh se-
quence based on the motion of the sequence. Also, we proposed to
compensate the geometry of the sequence using the estimation of
its 3D motion. Our compression scheme uses a scan-based wavelet
transform applied on the compensated sequence which requires low
memory. Experimentally, we have shown that using motion esti-
mation and GC before the lifting steps reduces the energy of the
wavelet coefficients and improves the efficiency of the coder when
small GOF size are used. First experimental results are promising.
For our future research, we are improving the clustering method as
well as the proposed motion estimation and GC approach.
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Figure 6: KG Error/bitrate for DOLPHIN relative to different com-
pression methods.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6 7 8 9 10 11 12
Bitrate (bits/vertex/frame)

K
G

 (%
)

Wavelet coder of [17]

Proposed coder : GOF =128 frames - Lifting scheme [2,0]- 7 decomposition level

Proposed coder : GOF =128 frames - Lifting scheme [4,2]- 4 decomposition level

Proposed coder : GOF = 8 frames - Lifting scheme [2,0]- 3 decomposition level

Skinning coder

Figure 7: KG Error/bitrate for SNAKE relative to different compres-
sion methods.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 1 2 3 4 5 6 7 8 9 10 11
Bitrate (bits/vertex/frame)

K
G

 (%
)

Wavelet coder of [17]

Proposed coder : GOF = 8 frames - Lifting scheme [2,0]- 3 decomposition level

Proposed coder : GOF = 200 frames - Lifting scheme [4,2]- 3 decomposition level

Skinning coder

Figure 8: KG Error/bitrate for DANCE relative to different com-
pression methods.

©2007 EURASIP 2109

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP


	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

