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ABSTRACT

Scan based localization is a passive localization method ap-
plicable to scanning emitters such as radars with mechan-
ically rotating antennas. The scan based location estimate
requires prior knowledge of the emitter scan rate. This pa-
per develops joint estimation techniques for the scan rate and
the emitter location using scan time measurements at N= 4
separate receivers, doing away with separate estimation of
the scan rate. The joint estimators are based on geometric,
pseudolinear and maximum likelihood estimation. The latter
two are also applicable to the general geolocation problem
where N> 4. The performance of the proposed estimators is
demonstrated by way of computer simulations.

1. INTRODUCTION

Passive emitter localization is an important research problem
with civilian and military applications including user loca-
tion in wireless mobile communication systems, and target
location and tracking in electronic warfare systems. Several
techniques are available for passive emitter localizationuti-
lizing different sensor measurements such as angle of arrival
(bearing), Doppler shift, time of arrival, time differenceof
arrival, and received signal energy. The main limitation of
time difference of arrival techniques is the requirement of
high-precision time of arrival measurements and highly syn-
chronized clocks at multiple receivers. Furthermore the re-
ceivers are required to detect the same signal from signifi-
cantly different angles, often along sidelobes of a directional
signal. The scan-based localization technique dispenses with
these limitations and is particularly effective for mechani-
cally scanning radars with narrow azimuth beamwidth [1].

This paper develops improved estimation methods for
scan-based emitter localization. The proposed methods are
suitable for geolocation of radars performing circular or sec-
tor scans [2] and provide a joint estimate of the scan rate
and the emitter location in 2D plane. A maximum likelihood
estimator and a pseudolinear estimator based grid search
method are presented in detail. The latter is particularly use-
ful for initializing an iterative maximum likelihood search
algorithm.

The paper is organized as follows. Section 2 provides an
overview of the scan based geolocation problem. A geomet-
ric solution is presented in Section 3 where the number of
receivers is fixed atN=4. In Section 4 the pseudolinear es-
timation based grid search method is described in detail for
large numbers of receivers. Section 5 covers the maximum
likelihood estimator. Computer simulations are given in Sec-
tion 6 and the paper concludes in Section 7.
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Figure 1: Scan-based geolocation. The times (tk) correspond
to the time instants the emitter beam is intercepted by the
UAV receivers.

2. OVERVIEW

Fig. 1 illustrates a typical operational scenario for the scan-
based geolocation technique. The figure shows a stationary
emitter scanning its main antenna beam at a constant scan
rateω. The main beam sweeps across a number of RF re-
ceivers on-board UAVs equipped with GPS receivers. The
RF receivers sense the incoming emitter signals (modulated
by the antenna beam pattern) and pass the measured data to
a processing unit, which estimates the scan intercept timesat
the beam peaks. The instantaneous UAV positions associated
with the beam peaks are also recorded.

The main underlying idea of the scan-based localization
technique is to determine the emitter position by exploiting
the constraint of antenna uniform rotational motion that the
emitter uses to perform its search and track functions. This
paper extends the scan-based localization method developed
in [1] to include the estimation of the scan rate. This is partic-
ularly useful in scenarios where the emitter is only perform-
ing a sector scan [2].

3. GEOMETRIC SOLUTION

It is possible to determine jointly the emitter location and
scan rate using four receivers by exploiting the trigonometric
relationships in the localization geometry. Fig. 2 shows a
radar scanning across four receivers. This emitter/receiver
geometry gives rise to three adjacent triangles. As shown in
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Figure 2: Joint estimation of the emitter position and scan
rate using four separate receivers.
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Figure 3: A samplef (ω).

Appendix A at the end of the paper,r2 andr3 are given by

r2(ω) =
|sin(β2 +ω(t3− t1))|

√

µ2
12+ µ2

23+2µ12µ23cos(β2 +ω(t3− t1))

r3(ω) =
|sin(β3 +ω(t4− t2))|

√

µ2
23+ µ2

34+2µ23µ34cos(β3 +ω(t4− t2))

(1)

with µi j = (sinω(t j −ti))/di j , βi the baseline deviation angle
at theith receiver, anddi j the distance between receiversi and
j.

The only unknown in (1) is the scan rateω. If we con-
sider the central triangle in Fig. 2, then the scan rate must
also satisfy the cosine rule:

f (ω)= r2
2(ω)+r2

3(ω)−2r2(ω)r3(ω)cosω(t3−t2)−d2
23= 0.

(2)
Fig. 3 gives an illustration off (ω) for a true scan rate 100
deg/s and no time scan measurement errors. Clearly there are
a finite number of zero-crossings, which include the zero-
crossing associated with the true scan rate. In practice one
may apply prior knowledge of the expected scan rate range
to further limit its possible values. The scan rate is usually
within the range of 12–240 deg/s corresponding to a scan cy-
cle of 1.5–30 s. Scan rates outside this range are very rare [2].
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Figure 4: AOA formulation.

For each scan rate solution, the radar position,[x,y]T , in
the 2D plane can be determined using

(x−x2)
2 +(y−y2)

2 = r2
2 (3a)

(x−x3)
2 +(y−y3)

2 = r2
3 (3b)

where[x2,y2]
T and [x3,y3]

T are the known locations of re-
ceivers 2 and 3, andr2 andr3 are calculated using (1).

4. PSEUDOLINEAR ESTIMATION BASED GRID
SEARCH

Fig. 4 shows several receivers intercepting the emitter main
beam as it scans across them at different timestk with k rang-
ing from 1 toN. The angles subtended at the emitter can be
expressed asα1k = ω(tk − t1), whereω is the emitter scan
rate to be estimated. As is clear from the figure, each re-
ceiver presents an angle of arrival given byαi = α1 + α1i
whereα1 is the (unknown) AOA angle associated with the
first receiver. If the scan rate is known, then the problem
of localizing the emitter is equivalent to the angle of arrival
(AOA) problem but with an extra unknown, the offset angle
α1. When the scan rate is not known, a total of two extra un-
knowns, viz.ω andα1, need to be estimated in conjunction
with the emitter position[x,y]T .

We introduce a cost function inspired by pseudolinear es-
timation for AOA localization [3]

E =
N

∑
k=1

(rk sinεk)
2 (4)

whereεk = αk −βk(x,y) andβk(x,y) is the true bearing an-
gle at receiverk. For AOA-only problems, this cost function
results in a linear estimator (pseudolinear estimator or PLE)
[3], [4], [5], [6]. In our scan based problem, however, the two
additional unknowns introduce nonlinearities, which makes
the minimization problem intractable analytically.

To take advantage of the AOA pseudolinear estimator, we
remove the nonlinear effects of the scan rate and angle offset
by implementing a 2D grid search. For each hypothesized
pair of scan rate and offset angle in the grid, the bearing angle
at each receiver is computed usingαk = α1 + α1k = α1 +
ω(tk−t1) wheretk (1< k≤N) is the measured scan intercept
time. Minimizing E given the bearing valuesαk becomes a
straightforward least squares problem as shown next.
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Expand the right-hand side of (4) as

E(ω,α1) =
N

∑
k=2

(

rkxsinαk− rkycosαk
)2

(5)

whererkx andrky are the coordinates of the vectorrk joining
the emitter to thekth receiver. Each vectorrk may alterna-
tively be expressed in terms ofr1 asrk = r1 +u1k. Knowing
the positions of the receivers, the vectorsu1k in Fig. 4 can be
computed. The errorE then becomes

E(ω,α1) =
N

∑
k=2

[

(r1x +ukx)sk− (r1y +uky)ck
]2

(6a)

=
N

∑
k=2

(r1xsk− r1yck−zk)
2 (6b)

wheresk , sin(ω(tk − t1) + α1), ck , cos(ω(tk − t1) + α1)
andzk = ukyck−ukxsk. If we let

A =





s2 −c2
...

...
sN −cN



 r1 =

[

r1x
r1y

]

z=





z2
...

zN





then the least square error estimator is obtained as

E(ω,α1) = ‖Ar̂1−z‖2, r̂1 =
(

ATA
)−1

ATz. (7)

In a grid search framework the separation between grid
points is governed byε/M

√
2 [7] whereε is the required

accuracy for determining the global minimum andM is the
Lipschitz constant of the cost functionE satisfying

|E(y1)−E(y2)| ≤ M‖y1−y2‖ (8)

for all y1 andy2 within the search region. The Lipschitz con-
stantM can be estimated by fitting largest directional deriv-
atives ofE to a reverse Weibull distribution as shown in [8].
The location parameter of the reverse Weibull distribution
then gives an estimate ofM.

To reduce estimation errors arising from the use of a grid,
one can use a single Gauss-Newton (Taylor series) iteration
with the grid search estimate as the initial guess. This will
lead to a refined estimate. If we write the measurement equa-
tion as

τ = g(x)+n

whereτ is the scan time measurement vector andn is the
scan time measurement error vector with covarianceΣ, the
singe Gauss-Newton iteration is given by

x̂ = x0 +
(

GTΣ−1G
)−1

GTΣ−1(τ −g(x0))

wherex0 = [x0,y0,ω0]
T is the computed initial guess andG

is the Jacobian ofg evaluated atx0.

5. MAXIMUM LIKELIHOOD ESTIMATOR

The first step in maximum likelihood estimation is to de-
termine the conditional joint probability density function of
scan time measurements, or the likelihood function, as a
function of the scan rateω and the emitter locationp =

[x,y]T . If we let t1, t2, t3, . . . , tN, denote the measured scan
intercept times then the scan times (i.e. intercept time differ-
ences) can be formed ast1i = ti − t1. The measured scan time
vector is given by

τ = [t12, t13, t14, . . . ,t1N]T

and is related to the scan time vector mean

t(ω, p) =
1
ω

v(p), v(p) =















cos−1 (p1−p)T (p2−p)
‖p1−p‖‖p2−p‖

cos−1 (p1−p)T (p3−p)
‖p1−p‖‖p3−p‖

...

cos−1 (p1−p)T (pN−p)
‖p1−p‖‖pN−p‖















(9)

by τ = t(ω, p)+ n wheren = [n12 n13 . . . n1N]T is the time
scan error vector. The scan time error covariance matrix is
defined as

Σ = E{nTn} = σ2
t Q (10)

where the(N−1)× (N−1) matrixQ has all its off-diagonal
elements set to 1 and its diagonal elements set to 2.

The conditional joint pdf ofτ is given by

f (τ|ω, p) =
1

(2π)(N−1)/2|Σ|1/2

×exp

{

−1
2
(τ − t(ω, p))TΣ−1(τ − t(ω, p))

}

. (11)

Maximizing the log-likelihood function over[ω, p] results in

[ω̂ML , p̂ML ] = argmin
ω, p

JML (ω, p) (12)

whereω̂ML and p̂ML are the ML estimates of the scan rate
and emitter position, respectively, andJML (ω, p) is the ML
cost function:

JML (ω, p) = eT(ω, p)Σ−1e(ω, p), e(ω, p) = τ − t(ω, p).
(13)

The ML optimization problem does not have a closed-
form solution. Iterative numerical search techniques, such
as the Gauss-Newton (GN) algorithm, the Nelder-Mead sim-
plex method [9] and the method of scoring, can be used to
compute the ML estimate. All these search algorithms re-
quire an appropriate initial solution to avoid divergence.The
geometric solution derived in Section 3 can be used to gen-
erate such an initial guess.

An alternative to divergence-prone iterative search algo-
rithms is to employ grid search as pursued in the previous
section. The grid search for ML estimation proceeds as fol-
lows. For each emitter position in a 2D grid we calculate the
ML cost function:

JML =

(

τ − 1
ω

v(p)

)T

Σ−1
(

τ − 1
ω

v(p)

)

. (14)

To find an ML estimate ofω from τ and given emitter
position on the 2D grid, we minimizeJML or equivalently
IML = σ2

t JML :

∂ IML

∂ω
=

2
ω2 vT(p)Q−1

(

τ − 1
ω

v(p)

)∣

∣

∣

∣

ω=ω̂
= 0 (15)
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which yields

ω̂ =
vT(p)Q−1v(p)

vT(p)Q−1τ
. (16)

Substitutingω̂ back into (14) in order to eliminate the scan
rate parameter gives

IML |ω=ω̂ =

(

τ − 1
ω̂

v(p)

)T

Q−1
(

τ − 1
ω̂

v(p)

)

(17a)

= τTQ−1τ − (vT(p)Q−1τ)2

vT(p)Q−1v(p)
(17b)

which is essentially a profile likelihood cost function.
Due to the special form of the symmetric positive definite

matrixQ, the inverse ofQ can be written as

Q−1 =
1
N











N−1 −1 · · · −1

−1
...

...
...

...
. . .

.. . −1
−1 · · · −1 N−1











= I − 1
N

(18)

whereI is the identity matrix and 1 is the matrix whose ele-
ments are all 1. After replacingQ−1 by I −1/N in (17b) and
carrying out some vector/matrix algebra, we obtain

IML |ω=ω̂ = ‖τ‖2− τ2
s

N
−

(

τTv(p)− τsvs
N

)2

‖v(p)‖2− v2
s

N

(19)

whereτs andvs are the sums of the vector elements ofτ and
v, respectively.

Noting that the first two terms on the righthand-side of
(19) are independent of the emitter position, the cost function
for grid search can be rewritten as

EML (p) = −
(

τTv(p)− τsvs
N

)2

‖v(p)‖2− v2
s

N

(20)

which has a significantly reduced computational complexity
of O(N) compared withO(N2) for (17).

6. SIMULATION STUDIES

This section presents Monte Carlo computer simulations car-
ried out for the modified pseudo-linear and maximum like-
lihood estimators. The simulation scenario consists of 8 re-
ceivers and one emitter located at[5,20]T . The actual emit-
ter/receiver geometry is shown in Fig. 5 where the true scan
rate was set to 60 deg/s (6 s per scan cycle).

To speed up processing, the grid search is carried out in
two steps. The first search step makes use of a coarse grid
and its purpose is to identify a significantly smaller subregion
where a finer grid search is initiated to determine the state as-
sociated with the global minimum of the cost function. In the
actual implementation of the PLE and MLE, the 2D grid is
subdivided in anad hocmanner into 16 subregions where
coarse search is initiated. A small selection of subregions
(two subregions in this work) where the cost function is low-
est is recorded. These selected subregions are then subjected
to a finer grid search and the emitter state associated with the
lowest cost value is noted. Because of errors introduced by
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Figure 5: Simulated localization geometry.

the application of a grid, a single Gauss-Newton iteration is
applied to the grid computed state and used to estimate the
final scan rate and emitter position.

A set of 30,000 Monte Carlo runs were used for each es-
timator to determine the bias and the standard deviation. The
bias for all three parameters (i.e. emitter scan rate and emit-
ter location) turned out to be considerably small and hence no
bias plots are presented. As can be seen from Fig. 6, the esti-
mated emitter scan rate standard deviation meets the Cramer-
Rao lower bound for both PLE and MLE. However, Fig. 6
shows superior emitter positioning performance for the MLE
as scan time errors increase due to the inherently better esti-
mation performance of MLE than PLE.

7. CONCLUSION

This paper presented algorithms for joint estimation of scan
rate and location of a scanning emitter. A geometric so-
lution exploiting the trigonometric properties of the geolo-
cation problem was developed. Joint estimation algorithms
based on the PLE and MLE techniques were proposed. The
former utilizes an equivalent AOA formulation of the scan-
based localization problem. To alleviate convergence issues
with iterative search techniques, grid search algorithms were
developed. The estimate obtained from grid search was used
to initialize a single-iteration GN algorithm. Computational
complexity associated with grid search was significantly re-
duced by exploiting the dependence between the parameters
to be estimated and by employing coarse and fine grid search
methods. The MLE was shown to yield a better positioning
performance than the PLE for large scan time errors.

Appendix A

The emitter position is either in the receiver sector or the op-
posite sector as shown in the left and right configurations of
Fig. 7. An expression for the distance of the emitter from the
central receiver can readily be derived by the application of
trigonometric properties, as shown next.

©2007 EURASIP 2093

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1−sigma scan time intercept error (ms)

st
d 

er
ro

r 
in

 th
e 

x 
co

or
di

na
te

 (
km

)

PLE
MLE
CRLB

(a)

2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

20

1−sigma scan time intercept error (ms)

st
d 

er
ro

r 
in

 th
e 

y 
co

or
di

na
te

 (
km

)

PLE
MLE
CRLB

(b)

2 4 6 8 10 12 14 16 18
2

4

6

8

10

12

14

16

18

20

22

1−sigma scan time intercept error (ms)

st
d 

er
ro

r 
in

 s
ca

n 
ra

te
 (

de
g/

s)

PLE
MLE
CRLB

(c)

Figure 6: Standard deviation for location estimates (a) and
(b), and scan rate (c).

First let α12 = ω(t2 − t1), α23 = ω(t3 − t2) be the sub-
tended angles at the emitter. From the sine rule we have

µ12 =
sinα12

d12
=

sinθ12

r2
and µ23 =

sinα23

d23
=

sinθ23

r2
.

The anglesθ12 andθ23 therefore satisfy sinθ12 = µ12r2 and
sinθ12 = µ12r2 with µ12 andµ23 known.

The total angular sum, associated with the left and right
triangles in Fig. 7, isα12+α23+θ12+θ23+β2 = 2π where
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Figure 7: Possible emitter/receiver geometric configurations

0 < β2 ≤ π in the left configuration of Fig. 7 andπ < β2 <
2π in the right one. Henceλ = cos(θ12+ θ23) = cos(α12+
α23 + β2) is known and we can write cosθ12cosθ23 = λ +
sinθ12sinθ23. Squaring both sides gives 1−λ 2 = sinθ 2

12+

sinθ 2
23+2λ sinθ12sinθ23.

Substituting sinθ12 and sinθ23 with µ12r2 andµ23r2 leads
to

r2 =

√

1−λ 2

µ2
12+ µ2

23+2µ12µ23cos(β2 +α12+α23)
.

Definingχ2 = β2 +α12+α23, we obtain

r2 =
|sinχ2|

√

µ2
12+ µ2

23+2µ12µ23cosχ2

. (21)
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