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ABSTRACT 4

Scan based localization is a passive localization methed ap =
plicable to scanning emitters such as radars with mechan- ><UAV4 .
ically rotating antennas. The scan based location estimate )
requires prior knowledge of the emitter scan rate. This pa- *

the emitter location using scan time measurements atdN emitter
separate receivers, doing away with separate estimation of ,
the scan rate. The joint estimators are based on geometric, —w =<
pseudolinear and maximum likelihood estimation. The fatte %
two are also applicable to the general geolocation problem

where N> 4. The performance of the proposed estimators ig-jgure 1: Scan-based geolocation. The timigscorrespond
demonstrated by way of computer simulations. to the time instants the emitter beam is intercepted by the
UAV receivers.

per develops joint estimation techniques for the scan ratk a Scanningg

UAVL (t)

1. INTRODUCTION

Passive emitter localization is an important researchlpmb

with civilian and military applications including user lac 2 OVERVIEW

tion in wireless mobile communication systems, and target

location and tracking in electronic warfare systems. Saver _ ) ) ) )

techniques are available for passive emitter localizatipn ~ Fig- 1 illustrates a typical operational scenario for tharsc
lizing different sensor measurements such as angle ogarrivoased geolocation technique. The figure shows a stationary
(bearing), Doppler shift, time of arrival, time differencé emitter scanning Its main antenna beam at a constant scan
arrival, and received signal energy. The main limitation of’ate w. The main beam sweeps across a number of RF re-
time difference of arrival techniques is the requirement ofc€ivers on-board UAVs equipped with GPS receivers. The
chronized clocks at multiple receivers. Furthermore the reby the antenna beam pattern) and pass the measured data to
ceivers are required to detect the same signal from signif@ Processing unit, which estimates the scan intercept t@mes
cantly different angles, often along sidelobes of a dicet| the beam peaks. The instantaneous UAV positions associated
signal. The scan-based localization technique dispenises w With the beam peaks are also recorded.

these limitations and is particularly effective for mechan e main underlying idea of the scan-based localization
cally scanning radars with narrow azimuth beamwidth [1]. ¢echnigue is to determine the emitter position by explgitin

This paper develops improved estimation methods foghe constraint of antenna uniform rotational motion that th
scan-based emitter localization. The proposed methods aggnitter uses to perform its search and track functions. This
suitable for geolocation of radars performing circular@r-s  paper extends the scan-based localization method dedelope
tor scans [2] and provide a joint estimate of the scan ratg, [1] to include the estimation of the scan rate. This isipart

and the emitter location in 2D plane. A maximum likelihood y|arly useful in scenarios where the emitter is only perform
estimator and a pseudolinear estimator based grid seargly 3 sector scan [2].

method are presented in detail. The latter is particulasru
ful for initializing an iterative maximum likelihood sedrc
algorithm.

The paper is organized as follows. Section 2 provides an
overview of the scan based geolocation problem. A geomet-
ric solution is presented in Section 3 where the number of
receivers is fixed a=4. In Section 4 the pseudolinear es- It is possible to determine jointly the emitter location and
timation based grid search method is described in detail foscan rate using four receivers by exploiting the trigonainet
large numbers of receivers. Section 5 covers the maximumelationships in the localization geometry. Fig. 2 shows a
likelihood estimator. Computer simulations are given in-Se radar scanning across four receivers. This emitter/receiv
tion 6 and the paper concludes in Section 7. geometry gives rise to three adjacent triangles. As shown in

3. GEOMETRIC SOLUTION
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Figure 2: Joint estimation of the emitter position and scan Figure 4: AOA formulation.
rate using four separate receivers.
For each scan rate solution, the radar positjgyy]", in
5 — — — — the 2D plane can be determined using
i (x=%2)*+(y—y2)? =13 (3a)
(x—x3)?+(y—ys)? =13 (3b)

-10; where [x2,y2|T and[xs,ys]T are the known locations of re-

ceivers 2 and 3, ang andr3 are calculated using (1).

f(w)

15}

4. PSEUDOLINEAR ESTIMATION BASED GRID
SEARCH

Fig. 4 shows several receivers intercepting the emittenmai
30 i i i ‘ ‘ ‘ ‘ ‘ beam as it scans across them at different titpesth k rang-
20 40 60 80 100 120 140 160 180 200 ing from 1 toN. The angles subtended at the emitter can be
scan rate (deg/s) . .
expressed as1x = w(tk —t1), wherew is the emitter scan
) rate to be estimated. As is clear from the figure, each re-
Figure 3: A sampléf (w). ceiver presents an angle of arrival given by= ai + ai;
whereas is the (unknown) AOA angle associated with the
first receiver. If the scan rate is known, then the problem
of localizing the emitter is equivalent to the angle of ativ
(AOA) problem but with an extra unknown, the offset angle

-20t

25}

Appendix A at the end of the papeg, andrs are given by

[sin(B2 + w(ts —t1))|

ra() = ai. When the scan rate is not known, a total of two extra un-
\/Il122+ 125+ 2U12123c08 B + W(t3 — 1)) knowns, viz.c anday, neetho be estimated in conjunction
_ (1) Wwiththe emitter positiorix,y]". _
r3(w) = |sin(Bs+ w(ta —12))| ~ We introduce a cost function inspired by pseudolinear es-
\/”223+ u§4+2u23u34cos([33+ W(ta—1)) timation for AOA localization [3]
N
with i = (sinw(t; —t;))/dij, Bi the baseline deviation angle E=5 (rsingg)? (4)
at theith receiver, and;; the distance between receivesd K=1

The only unknown in (1) is the scan rade If we con-  whereg = ax — Bk(X,y) andBk(x,y) is the true bearing an-
sider the central triangle in Fig. 2, then the scan rate musgle at receivek. For AOA-only problems, this cost function
also satisfy the cosine rule: results in a linear estimator (pseudolinear estimator d£)PL

[3], [4], [5], [6]- In our scan based problem, however, thetw
f () =r3(w)+r3(w)—2ra(w)ra(w)cosw(ts —t) —ds,=0.  additional unknowns introduce nonlinearities, which meake

(2)  the minimization problem intractable analytically.

Fig. 3 gives an illustration of (w) for a true scan rate 100 To take advantage of the AOA pseudolinear estimator, we
deg/s and no time scan measurement errors. Clearly there agmove the nonlinear effects of the scan rate and angletoffse
a finite number of zero-crossings, which include the zeroby implementing a 2D grid search. For each hypothesized
crossing associated with the true scan rate. In practice ormair of scan rate and offset angle in the grid, the bearinggang
may apply prior knowledge of the expected scan rate rangat each receiver is computed usiog = a3 + a1k = a1 +
to further limit its possible values. The scan rate is usuall w(tx—t1) wherety (1 < k < N) is the measured scan intercept
within the range of 12—240 deg/s corresponding to a scan cyime. Minimizing E given the bearing valuesy becomes a
cle of 1.5-30 s. Scan rates outside this range are very rre [Ztraightforward least squares problem as shown next.
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Expand the right-hand side of (4) as

N

E(w,a1) = z (rexsina — rkycosak)2 (5)
=2

whereryy andryy are the coordinates of the vectgrjoining
the emitter to thekth receiver. Each vectar, may alterna-
tively be expressed in terms of asri = ry + uy. Knowing
the positions of the receivers, the vectoigin Fig. 4 can be
computed. The errdE then becomes

N

E(w,01) = ¥ [(rx+Uo)sc— (ny+ug)ed®  (6a)
k=2
N

= 3 (rxsc—r1yc— %) (6b)

(
N

wheres, £ sin(w(ty —t1) + a1), o = cogw(tk —t1) + a7)
andz = UyCx — UkxS. If we let

S —C 2

_ T _
r = [rly:| =

A= : :
SN —CN 7N

then the least square error estimator is obtained as

. . -1
E(w,o1) = |AP1—2Z% F1=(ATA) ATz (7)

[x,y]T. If we letty, tp, t3,..., ty, denote the measured scan
intercept times then the scan times (i.e. intercept timedif
ences) can be formed gs=1t; —t;. The measured scan time
vector is given by

T = [tio,t13,t14, ..., tan] "

and is related to the scan time vector mean

1(p1=p) (P2—p)
€08 " Tp,=p[e, 7]
cos ! (Pi=P) (P3—P)

t(w, p) = %V(p), W ©)

1 (p1-D) (Pu-—p)

COS o= plTpy—pl
by T = t(w, p) + nwheren = [ny2 Ny ... M7 is the time
scan error vector. The scan time error covariance matrix is
defined as

s =E{n"n} =0?Q (10)
where thgN — 1) x (N — 1) matrix Q has all its off-diagonal
elements set to 1 and its diagonal elements set to 2.
The conditional joint pdf of is given by

1
(ZIT)(N_l)/2|Z|1/2

X exp{—;(r —t(w,p) " T Y1 —t(w, p))} . (1)

f(tlw, p) =

In a grid search framework the separation between grigjaximizing the log-likelihood function oveliw, p] results in

points is governed bg/M+/2 [7] where¢ is the required
accuracy for determining the global minimum adis the
Lipschitz constant of the cost functidghsatisfying

|E(yr) —E(Y2)| < Mllys — Y| (8)

[QwvL , Pvi| = argmindyL (w, p) (12)
@, p

wheredy. and gy, are the ML estimates of the scan rate
and emitter position, respectively, adg, (w, p) is the ML

for all y; andy, within the search region. The Lipschitz con- cOst function:

stantM can be estimated by fitting largest directional deriv-
atives ofE to a reverse Weibull distribution as shown in [8].
The location parameter of the reverse Weibull distribution

then gives an estimate bf.

To reduce estimation errors arising from the use of a gri
one can use a single Gauss-Newton (Taylor series) iterati
with the grid search estimate as the initial guess. This wil
lead to a refined estimate. If we write the measurement equ

tion as
T=9(X)+n

whereT is the scan time measurement vector and the
scan time measurement error vector with covariancthe
singe Gauss-Newton iteration is given by

x=x+ (GT=716) 6"z L1~ g(x0))

wherexy = [Xo, Yo, @] is the computed initial guess a@l
is the Jacobian aj evaluated axg.

5. MAXIMUM LIKELIHOOD ESTIMATOR

e(O)7 p) =T _t(w7 p)
(13)
The ML optimization problem does not have a closed-

JML ((Jl)7 p) = eT(wa p)zile(wa p)>

dform solution. Iterative numerical search techniqueshsuc

the Gauss-Newton (GN) algorithm, the Nelder-Mead sim-
plex method [9] and the method of scoring, can be used to

gompute the ML estimate. All these search algorithms re-

guire an appropriate initial solution to avoid divergenche
geometric solution derived in Section 3 can be used to gen-
erate such an initial guess.

An alternative to divergence-prone iterative search algo-
rithms is to employ grid search as pursued in the previous
section. The grid search for ML estimation proceeds as fol-
lows. For each emitter position in a 2D grid we calculate the
ML cost function:

= (5~ j)vm))Tzl (r-2vp). a9

To find an ML estimate ofw from 1 and given emitter
position on the 2D grid, we minimizéy_ or equivalently

The first step in maximum likelihood estimation is to de-ly. = atzJML:

termine the conditional joint probability density functiof

scan time measurements, or the likelihood function, as a

function of the scan rateo and the emitter locatiomp =
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e — V(R (1 Svp))

=0

wW=w

(15)
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which yields

V' (P)Q *v(p) B ———
W= —"—"-—7". 16 O UAVs

VI(p)Q T (16) 200 P ,
Substitutingéo back into (14) in order to eliminate the scan

rate parameter gives
10+

ML iy = (T - ;)V(p)>T Q! (T - %V( p)) (17a)

V()2
F(PQ (P (170) . s

which is essentially a profile likelihood cost function.

Due to the special form of the symmetric positive definite
matrix Q, the inverse of) can be written as 15 ; o N R ‘
-25 -20 -15 -10 -5 0 5 10 15 20 25

X position (km)

y position (km)
(%))
T

of o 9

— TTQflr _

-10r . o

N-1 -1 ... -1

Ql= % ot SRR % (18) Figure 5: Simulated localization geometry.
: oo =1
-1 -~ -1 N-1
. ) ) ) ] ] the application of a grid, a single Gauss-Newton iteraton i
wherel is the identity matrix and 1 is the matrix whose e|e'applied to the grid computed state and used to estimate the

ments are all 1. After replacing@~* by | — 1/Nin (17b) and final scan rate and emitter position.

carrying out some vector/matrix algebra, we obtain A set of 30000 Monte Carlo runs were used for each es-

2 timator to determine the bias and the standard deviatioa. Th
2 T _ TsVs
2 (Tv(p) - RP)

It | = ||T]2— 5 = (19) bias for all three parameters (i.e. emitter scan rate ant emi
ML lw=0 = N IV(p)||2 — V2 ter location) turned out to be considerably small and hence n
N bias plots are presented. As can be seen from Fig. 6, the esti-

mated emitter scan rate standard deviation meets the Gramer
Rao lower bound for both PLE and MLE. However, Fig. 6
sshows superior emitter positioning performance for the MLE
as scan time errors increase due to the inherently betier est
mation performance of MLE than PLE.

wherets andvs are the sums of the vector elements afnd
v, respectively.

Noting that the first two terms on the righthand-side o
(19) are independent of the emitter position, the cost fanct
for grid search can be rewritten as

SVs 2
EML(p):_(TTV(p)—_TTV) (20) 7. CONCLUSION

2
v(p)||2— ¥ _ _ . o
VPl N This paper presented algorithms for joint estimation ofisca
which has a significantly reduced computational complexityate and location of a scanning emitter. A geometric so-

of ¢(N) compared withZ (N2) for (17). lution exploiting the trigonometric properties of the geol
cation problem was developed. Joint estimation algorithms
6. SIMULATION STUDIES based on the PLE and MLE techniques were proposed. The

former utilizes an equivalent AOA formulation of the scan-

This section presents Monte Carlo computer simulations cabased localization problem. To alleviate convergenceeissu
ried out for the modified pseudo-linear and maximum like-with iterative search techniques, grid search algorithragew
lihood estimators. The simulation scenario consists of-8 redeveloped. The estimate obtained from grid search was used
ceivers and one emitter located[6120]". The actual emit-  to initialize a single-iteration GN algorithm. Computatd
ter/receiver geometry is shown in Fig. 5 where the true scabomplexity associated with grid search was significantly re
rate was set to 60 deg/s (6 s per scan cycle). duced by exploiting the dependence between the parameters

To speed up processing, the grid search is carried out ifp be estimated and by employing coarse and fine grid search
two steps. The first search step makes use of a coarse gfigethods. The MLE was shown to yield a better positioning
and its purpose is to identify a significantly smaller suimeg  performance than the PLE for large scan time errors.
where a finer grid search is initiated to determine the state a
sociated with the global minimum of the cost function. In the
actual implementation of the PLE and MLE, the 2D grid is Appendix A
subdivided in arad hocmanner into 16 subregions where
coarse search is initiated. A small selection of subregion¥he emitter position is either in the receiver sector or fhe 0
(two subregions in this work) where the cost function is low-posite sector as shown in the left and right configurations of
est is recorded. These selected subregions are then ®hjecFig. 7. An expression for the distance of the emitter from the
to afiner grid search and the emitter state associated véth titentral receiver can readily be derived by the application o
lowest cost value is noted. Because of errors introduced byigonometric properties, as shown next.
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Figure 6: Standard deviation for location estimates (a) ané6 ]

(b), and scan rate (c).

First let o12 = w(tz —t1), 023 = w(t3 —t2) be the sub-
tended angles at the emitter. From the sine rule we have

sinaio . sinBy»

. sinass . sinBy3
di2 r2 '

and  pp3 =

Hi2 =
do3 ro

The angle®¥:, and 6,3 therefore satisfy sifljo = uyoro and
SinBy2 = Hior2 With L1 andppz known.

The total angular sum, associated with the left and right

triangles in Fig. 7, i9x12 + az3+ 612+ 23+ B2 = 2rrwhere

©2007 EURASIP
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Figure 7: Possible emitter/receiver geometric configareti

0 < B2 < min the left configuration of Fig. 7 and < 3, <
2m in the right one. Henca = cog 612+ 623) = coj a2+
023+ B2) is known and we can write c@,Ccos63 = A +
sinB12sinBy3. Squaring both sides gives-1A2 = sinfZ, +
Sin62;+ 22 sinBy2sinBz3.

Substituting sid12 and sinB,3 with up2r, andupsr, leads
to

1-—A2
)= .
\/“fz + HZ;+ 2H1223C0S B2 + 012+ O23)
Defining x2 = B> + a12+ 023, we obtain
|SinX2|

2 pr—
\/ U2, 4 U35+ 2U12123C0SX2

r

(21)
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