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ABSTRACT

In this paper, a discrete-time estimator is proposed for second-order
moments of continuous-time generalized almost-cyclostationary
(GACS) processes. GACS processes have statistical functions that
are almost-periodic functions of time whose Fourier series expan-
sions have both frequencies and coefficients that depend on the lag
shifts of the processes. The class of GACS processes includes the
almost-cyclostationary (ACS) processes which are obtained as a
special case when the frequencies do not depend on the lag shifts.
ACS processes filtered by Doppler channels and communications
signals with time-varying parameters are further examples. The
discrete-time process obtained by uniformly sampling a continuous-
time GACS process is considered. It is shown that such discrete-
time process is ACS and it is proved that its discrete-time cyclic
correlogram is a mean-square consistent estimator of the cyclic au-
tocorrelation function of the continuous-time GACS process, as the
sampling period approaches zero and the data-record length ap-
proaches infinity.

1. INTRODUCTION

Almost-cyclostationary (ACS) processes, also called almost-
periodically correlated processes, are an appropriate model for al-
most all modulated signals adopted in communications and for
processes encountered in econometrics, acoustics, mechanics, cli-
matology, hydrology, and biology [2], [3], [4], [11]. In com-
munications applications, almost-cyclostationarity properties have
been exploited to develop signal-selective detection and parameter-
estimation algorithms, blind-channel identification and synchro-
nization techniques, and so on.

For ACS processes, multivariate statistical functions are
almost-periodic functions of time that can be expressed by (gener-
alized) Fourier series expansions whose coefficients depend on the
lag shifts of the processes and whose frequencies, referred to as cy-
cle frequencies, do not depend on the lag shifts. In [5], the class of
the generalized almost-cyclostationary (GACS) processes is intro-
duced. It extends the class of the the ACS processes to the case in
which also the frequencies, referred to as lag-dependent cycle fre-
quencies, depend on the lag shifts. GACS processes are an appro-
priate model to describe chirp signals and several angle-modulated
and time-warped communication signals. Furthermore, in [6] and
[7] it is shown that time-variant channels of interest in communi-
cations transform a transmitted ACS signal into a GACS one. In
particular, it is shown that the GACS model can be appropriate to
describe the output signal of Doppler channels due to relative mo-
tion between transmitter and receiver with nonzero relative radial
acceleration when the input signal is ACS.

The problem of second-order moment estimation for
continuous-time GACS processes is addressed in [10], where
second-order properties in the wide-sense are shown to be com-
pletely described by the cyclic autocorrelation function and the
cyclic correlogram is shown to be a mean-square consistent asymp-
totically Normal estimator of the cyclic autocorrelation function
under mild mixing conditions expressed in term of summability of
cumulants.

The discrete-time counterparts of the results of [10] are not
straightforward since a discrete-time counterpart of GACS pro-
cesses does not exist and uniformly sampling a continuous-time
GACS process leads to a discrete-time ACS process. In particu-
lar, the GACS nature of the underlying continuous-time process can
only be conjectured starting from the discrete-time ACS process of
its samples [8]. Moreover, aliasing in the cycle frequency domain
needs to be accounted for.

In this paper, the discrete-time cyclic correlogram of the
discrete-time ACS process obtained by uniformly sampling a
continuous-time GACS process is considered as an estimator for
(samples of) the continuous-time cyclic autocorrelation function of
the GACS process, and its mean and variance are evaluated for both
finite and infinite data-record lengths. It is shown that for GACS
processes no simple condition on the sampling frequency can be
stated as for band-limited wide-sense stationary or ACS process
in order to avoid or limit aliasing. However, it is shown that the
discrete-time cyclic correlogram is a mean-square consistent es-
timator of the aliased cyclic autocorrelation function as the data-
record length approaches infinity. In addition, sufficient conditions
are provided to assure that the discrete-time cyclic correlogram be a
mean-square consistent estimator of the cyclic autocorrelation func-
tion as the data-record length approaches infinity and the sampling
period approaches zero.

2. GENERALIZED ALMOST-CYCLOSTATIONARY

PROCESSES

A finite-power complex-valued continuous-time stochastic process
x(t), t ∈ R, is said to be second-order GACS in the wide sense [10]
if its autocorrelation function

Rxx∗(t,τ) , E{x(t + τ)x∗(t)} (1)

is an almost-periodic function of time. That is, for each fixed
τ , Rxx∗ (t,τ) is the limit of an uniformly convergent sequence of
trigonometric polynomials in t which can be written in the two fol-
lowing equivalent forms [5], [6]:

Rxx∗(t,τ) = ∑
α∈Aτ

Rxx∗(α,τ)e j2παt (2a)

= ∑
n∈I

R
(n)
xx∗(τ)e j2παn(τ)t . (2b)

In (2a), the real numbers α and the complex-valued functions
Rxx∗(α,τ), referred to as cycle frequencies and cyclic autocorre-
lation functions, are the frequencies and coefficients, respectively,
of the (generalized) Fourier series expansion of Rxx∗(t,τ) that is,

Rxx∗(α,τ) , lim
T→∞

1

T

∫ T/2

−T/2
Rxx∗(t,τ)e− j2παt dt . (3)

Furthermore, in (2a) and (2b),

Aτ , {α ∈ R : Rxx∗(α,τ) 6= 0} (4a)

=
⋃

n∈I

{α ∈ R : α = αn(τ)} (4b)
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Figure 1: Support in the (α,τ)-plane of the cyclic autocorrelation
function of (a) an ACS process and (b) a GACS (not ACS) process.

is a countable set, with I also countable, the functions αn(τ) are
referred to as lag-dependent cycle frequencies and the functions

R
(n)
xx∗(τ), referred to as generalized cyclic autocorrelation functions,

are defined as

R
(n)
xx∗(τ) , lim

T→∞

1

T

∫ T/2

−T/2
Rxx∗(t,τ)e− j2παn(τ)t dt . (5)

It can be shown that, with some refinement of definition (5), it
results [5], [6]

Rxx∗(α,τ) = ∑
n∈I

R
(n)
xx∗(τ)δα−αn(τ) (6)

where δγ denotes Kronecker delta, that is, δγ = 1 for γ = 0 and
δγ = 0 for γ 6= 0. That is, the lag-dependent cycle-frequency curves
α = αn(τ), n ∈ I, describe the support of the cyclic autocorrelation
function Rxx∗(α,τ).

For complex processes, two second-order moments need to be
considered for a complete characterization in the wide sense: The
autocorrelation function (1) and the conjugate autocorrelation func-

tion Rxx(t,τ) , E{x(t + τ)x(t)}. The conjugate cyclic autocorre-

lation function Rxx(α,τ) is defined by (3) with Rxx∗(t,τ) replaced

by Rxx(t,τ). The cyclic autocorrelation function and the conjugate
cyclic autocorrelation function can be both represented by the con-
cise notation

Rxx(∗)(α,τ) , lim
T→∞

1

T

∫ T/2

−T/2
E{x(t + τ)x(∗)(t)}e− j2παt dt (7)

where superscript (∗) denotes an optional complex conjugation.

The wide-sense ACS processes are obtained as a special case
of GACS processes when the lag-dependent cycle frequencies are
constant with respect to τ and, hence, are coincident with the cycle
frequencies [5]. In such a case,

Rxx(∗)(t,τ) = ∑
n∈I

R
αn

xx(∗)(τ)e j2παnt . (8)

Moreover, Rxx(∗)(α,τ) = R
αn

xx(∗)(τ) for α = αn ∈ A, and

Rxx(∗)(α,τ) = 0 otherwise, with A = {αn}n∈I countable. Thus, for
ACS processes only one term is present in the sum in (6) and, con-
sequently, the generalized cyclic autocorrelation functions are coin-
cident with the cyclic autocorrelation functions.

In Figure 1, the support in the (α,τ)-plane of the cyclic auto-
correlation function Rxx∗(α,τ) is reported for (a) an ACS process
and (b) a GACS (not ACS) process. For the ACS process, such a
support is contained in the lines α = αn, n ∈ I, that is, lines parallel
to the τ axis in correspondence of the cycle frequencies. For the
GACS process, the support is constituted by the curves α = αn(τ),
n ∈ I (see (6)).

The GACS model turns out to be appropriate in mobile commu-
nications systems when the channel cannot be modeled as almost-
periodically time-variant [6], [7]. For example, the output com-
plex envelope y(t) of the Doppler channel existing between a sta-
tionary transmitter and a moving receiver with constant relative ra-
dial acceleration is GACS when the input complex envelope x(t)
is ACS. In fact, the transmitted signal experiences a quadratically
time-variant delay. Under the “narrow-band” approximation [12],
the time-varying component of the delay in the complex envelope
x(·) can be neglected obtaining the chirp-modulated signal

y(t) = a x(t −d0)e j2πνt e jπγt2

(9)

where a is the complex gain, d0 the constant delay, ν the frequency
shift, and γ the chirp rate. Thus, if x(t) is ACS (with autocorrelation
function (8)), the autocorrelation function of y(t) is given by

E
{

y(t + τ)y∗(t)
}

= ∑
n∈I

R
(n)
yy∗(τ)e j2πηn(τ)t (10)

where
ηn(τ) = αn + γτ (11)

R
(n)
yy∗(τ) = |a|2 R

αn

xx∗(τ)e j2πντ e jπγτ2

e− j2παnd0 (12)

are the lag dependent cycle frequencies and generalized cyclic au-
tocorrelation functions, respectively. That is, y(t) is GACS with
lag-dependent cycle frequencies linear with slope γ [10].

Further examples of GACS processes are angle modulated
signals and communications signals with time-varying parameters
such as baud rate and carrier frequency [5].

3. DISCRETE-TIME ESTIMATION OF THE CYCLIC

AUTOCORRELATION FUNCTION

Let us make the following assumptions on the continuous-time pro-
cess x(t) and the data-tapering window.

Assumptions

1a) The stochastic process x(t) is (second-order) GACS in the wide
sense, that is, for any choice of z1 and z2 in {x,x∗},

E{z1(t + τ) z2(t)} = ∑
n

R
(n)
z1z2

(τ)e j2πα
(n)
z1z2

(τ)t . (13)

1b) For any choice of z1 and z2 in {x,x∗}, the fourth-order cumulant
cum{x(t + τ1),x

∗(t + τ2),z1(t + τ3),z2(t)} can be expressed as

cum{x(t + τ1),x
∗(t + τ2),z1(t + τ3),z2(t)}

= ∑
n

C
(n)
xx∗z1z2

(τ1,τ2,τ3)e j2πβn(τ1,τ2,τ3)t (14)

where βn = β
(n)
xx∗z1z2

for notation simplicity.

2) For any choice of z1 and z2 in {x,x∗}, ∑n ‖R
(n)
z1z2

‖∞ < ∞.

3) For any choice of z1 and z2 in {x,x∗}, ∑n ‖C
(n)
xx∗z1z2

‖∞ < ∞.

4) The process x(t) has uniformly bounded fourth-order absolute
moment.

5) The data-tapering window wT (t) is nonzero in (−T/2,T/2) and

can be expressed as wT (t) = a(t/T )/T , with a(t) ∈ L1(R)∩
L∞(R), continuous a.e., and with unit area.

6) For any choice of z1 and z2 in {x,x∗},

∑
n

∫

R

∣∣∣R(n)
z1z2

(s)
∣∣∣ ds < ∞ . (15)

7) For any choice of z1 and z2 in {x,x∗} and ∀τ1,τ2 ∈ R,

∑
n

∫

R

∣∣∣C(n)
xx∗z1z2

(s+ τ1,s,τ2)
∣∣∣ ds < ∞ . (16)
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8) Let zi(t) , [x(t + τi) x(∗)(t)][∗]i , i = 1, . . . ,k, with [∗]i
optional complex conjugation. For every integer k,
the magnitude of the kth-order cumulant function
cum{zk(t),zi(t + si), i = 1, . . . ,k−1} is bounded by a
positive summable function of s1, . . . ,sk−1.

9) For every integer k, the processes zi(t) have bounded absolute
kth-order cross-moments.

Assumptions 1a and 1b are on the almost-periodic structure of
the second- and fourth-order cumulants of the process x(t) and As-
sumptions 2–4 are on the regularity of the (generalized) Fourier se-
ries expansions of such almost-periodic functions; Assumption 5 is
on the regularity properties of the data-tapering window; Assump-
tions 6–7 are on the finite or practically finite memory of the pro-
cess, which is expressed in terms of summability of its second- and
fourth-order cumulants and Assumptions 8–9 are on regularity of
higher-order statistics of x(t).

In [10], it is shown that under Assumptions 1–7 the continuous-
time cyclic correlogram is a mean-square consistent estimator of the
cyclic autocorrelation function. Moreover, its asymptotic Normality
is proved under Assumptions 1–9.

Let

xd(n) , x(t)|t=nTs
(17)

be the discrete-time sequences obtained by uniformly sampling with
period Ts = 1/ fs the continuous-time GACS processes x(t). The
(conjugate) cyclic autocorrelation function of the discrete-time se-
quence xd(n) at cycle frequency α̃ ∈ [−1/2,1/2) is defined as

R̃
xdx

(∗)
d

(α̃,m) , lim
N→∞

1

2N +1

N

∑
n=−N

E
{

xd(n+m)x
(∗)
d (n)

}
e− j2πα̃n .

(18)
The (conjugate) cyclic autocorrelation function of the sampled

process xd(n) is linked to the (conjugate) cyclic autocorrelation
function of the continuous-time process x(t) by the aliasing formula
[8]

R̃
xdx

(∗)
d

(α̃,m) =
+∞

∑
p=−∞

Rxx(∗)

(
(α̃ + p) fs,mTs

)
(19a)

=
+∞

∑
p=−∞

∑
k∈I

R
(k)

xx(∗)(mTs)δα̃ fs−αk(mTs)+p fs
(19b)

From (19a) it follows that, in general, R̃
xdx

(∗)
d

(α̃,m) 6=

Rxx(∗)(α̃ fs,mTs) due to the presence of aliasing in the cycle fre-
quency domain. However, if the GACS continuous-time signal
x(t) is such that at lag τ = mTs there is no lag-dependent cycle
frequency αk(τ), k ∈ I, such that (α̃ + p) fs = αk(mTs) for p 6= 0

then, by comparing (19b) with (6), it follows that R̃
xdx

(∗)
d

(α̃,m) =

Rxx(∗)(α̃ fs,mTs). Such an equality could be difficult to be real-

ized in the whole domain (α̃,m) ∈ [−1/2,1/2) ×Z, as a conse-
quence of the fact that GACS signals have the power spread over
an infinite bandwidth [5]. Furthermore, in [8] it is shown that the
discrete-time signal obtained by uniformly sampling a continuous-
time GACS signal is a discrete-time ACS signal. Thus, discrete-
time ACS signals can arise from uniformly sampling ACS and non-
ACS continuous-time GACS signals. Moreover, in [8] it is shown
that, starting from the sampled signal, the possible ACS or non-
ACS nature of the continuous-time GACS signal can only be con-
jectured, provided that analysis parameters such as sampling period,
padding factor, and data-record length are properly chosen. Thus,
the results for discrete-time processes cannot be obtained straight-
forwardly from those of the continuous-time case as is made in the
stationary case, e.g., in [1]. In fact, unlike the case of wide-sense
stationary and ACS processes, continuous-time GACS processes do
not a have a discrete-time counterpart. That is, discrete-time GACS
processes do not exist.

From the above facts it follows that the sampling frequency fs

cannot be easily chosen in order to avoid or limit aliasing, as it hap-
pens for bandlimited wide-sense stationary and ACS signals. How-
ever, in some cases, as for the chirp-modulated signal (9), analytical
results can be obtained (see Section 4).

Let xd(n) be the discrete-time processes defined in (17). Its
cyclic correlogram at cycle frequency α̃ is defined as

R̃
xdx

(∗)
d

(α̃,m;n0,N) ,
N

∑
n=−N

vN(n−n0)xd(n+m)x
(∗)
d (n)e− j2πα̃n

(20)

where vN(n) , a(n/(2N +1))/(2N +1) is a data-tapering window
with a(t) as in Assumption 5.

By using (2b) with t = nTs and τ = mTs into (20), we obtain the
following result, where the made assumptions allow to interchange
the order of sum and expectation operators and the order of double-
index sum operations.

Theorem 1 Under Assumptions 1a, 2, and 5 on the continuous-time
process x(t), the expected value of the discrete-time cyclic correlo-
gram (20) is given by

E
{

R̃
xdx

(∗)
d

(α̃ ,m;n0,N)
}

= ∑
k∈I

R
(k)

xx(∗)(mTs)V 1
N

(
α̃ −αk(mTs)Ts

)
e− j2π [α̃−αk(mTs)Ts]n0 (21)

where V 1
N
(ν) is the discrete Fourier transform of the data-tapering

window vN(n). �

The function V1/N(ν) has bandwidth of the order of 1/N.

Consequently, from (21) it follows that the expected value of the
discrete-time cyclic correlogram is significantly different from zero
within strips of width 1/N around the points with α̃ = αk(mTs)Ts,
k ∈ I, in the (α̃ ,m)-plane. Such points correspond to scaled sam-
ples of the lag-dependent cycle frequencies curves α = αk(τ), that
is, the support curves of the continuous-time (conjugate) cyclic au-
tocorrelation function. Since the function V1/N(ν) is periodic in

ν with period 1, aliasing occurs , as in (19b), at cycle frequencies
α̃ ∈ [−1/2,1/2) such that |(α̃ + p)−αk(mTs)Ts| < 1/N for some
integer p 6= 0 and k ∈ I. Such a phenomenon is not present for
the continuous-time estimator. Moreover, a leakage phenomenon
among lag-dependent cycle-frequency curves which are sufficiently
close each other occurs similarly to the cyclic leakage occurring in
the estimate of cyclic statistics of ACS processes [4].

By expressing the covariance of the lag-product xd(n +

m) x
(∗)
d (n) in terms of second-order moments and a fourth-order

cumulant, the following result can be proved, where the made as-
sumptions allow to interchange the order of sum and expectation
operators and the order of multiple-index sum operations.

Theorem 2 Under Assumptions 1-3, and 5 on the continuous-time
process x(t), the covariance of the discrete-time cyclic correlogram
(20) is given by

cov
{

R̃
xdx

(∗)
d

(α̃1,m1;n01,N), R̃
xdx

(∗)
d

(α̃2,m2;n02,N)
}

= T̃1 + T̃2 + T̃3 (22)

where the terms T̃1 and T̃2, whose expressions are not reported
here for sake of brevity, depend on the generalized cyclic auto- and

cross-correlation functions defined in (13) and the term T̃3 depends
on the fourth-order cumulant defined in (14). �

Theorem 3 Under Assumptions 1a, 2, and 5 on the continuous-time
process x(t), the asymptotic (N →∞) expected value of the discrete-
time cyclic correlogram (20) is given by

lim
N→∞

E
{

R̃
xdx

(∗)
d

(α̃,m;n0,N)
}

= R̃
xdx

(∗)
d

(α̃,m) (23)

©2007 EURASIP 2012

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



Theorem 4 Under Assumptions 1–3, 5–8 on the continuous-time
process x(t), the asymptotic (N → ∞) covariance of the discrete-
time cyclic correlogram (20) is given by

lim
N→∞

(2N +1)cov
{

R̃
xdx

(∗)
d

(α̃1,m1;n01,N), R̃
xdx

(∗)
d

(α̃2,m2;n02,N)
}

= T̃
′

1 + T̃
′

2 + T̃
′

3 (24)

where

T̃
′

1 , Ea ∑
k′

∑
k′′

+∞

∑
`=−∞

R
(k′)
xx∗ ((m1 −m2 + `)Ts)R

(k′′)

x(∗)x(∗)∗(`Ts)

e j2πα ′
k′
((m1−m2+`)Ts)m2Ts e− j2πα̃1`

δ[α̃1−α̃2−α ′
k′

((m1−m2+`)Ts)Ts−α ′′
k′′

(`Ts)Ts]mod 1 (25)

T̃
′

2 , Ea ∑
k′′′

∑
k′ν

+∞

∑
`=−∞

R
(k′′′)

xx(∗)∗((m1 + `)Ts)R
(k′ν )

x(∗)x∗
((`−m2)Ts)

e j2πα ′ν
k′ν

((`−m2)Ts)m2Ts e− j2πα̃1`

δ[α̃1−α̃2−α ′′′
k′′′

((m1+`)Ts)Ts−α ′ν
k′ν

((`−m2)Ts)Ts]mod 1 (26)

T̃
′

3 , Ea ∑
k

+∞

∑
`=−∞

C
(k)

xx(∗)x∗x(∗)∗((m1 + `)Ts, `Ts,m2Ts)e− j2πα̃1`

δ[α̃1−α̃2−βk((m1+`)Ts ,`Ts,m2Ts)Ts]mod 1 (27)

are bounded for the made assumptions. In (25)–(27), δα̃ mod 1 = 1

if α̃ ∈ Z and δα̃ mod 1 = 0 otherwise, and Ea ,
∫ 1/2

−1/2
|a(t)|2 dt.

In addition, for notation simplicity, α ′
n′(·) ≡ α

(n′)
xx∗ (·), α ′′

n′′(·) ≡

α
(n′′)

x(∗)x(∗)∗(·), α ′′′
n′′′ (·) ≡ α

(n′′′)

xx(∗)∗(·), and α ′ν
n′ν

(·) ≡ α
(n′ν )

x(∗)x∗
(·). �

From Theorem 3 it follows that the discrete-time cyclic correl-
ogram (20) is an asymptotically (N → ∞), unbiased estimator of the
discrete-time cyclic autocorrelation function (18). Moreover, from
Theorem 4 it follows that the variance of the discrete-time cyclic
correlogram asymptotically vanishes. Consequently, the discrete-
time cyclic correlogram is a mean-square consistent estimator of the
discrete-time cyclic autocorrelation function, that is, of an aliased
version of the continuous-time cyclic autocorrelation function (see
(19a)).

In order to obtain a discrete-time estimate of (samples of) the
continuous-time cyclic autocorrelation function, a further assump-
tion is needed in order to control the amount of aliasing in (19a) and
(19b) when the sampling period Ts approaches zero.

Assumption 10 For every α̃ and m there exists a sequence
{Mp}p∈Z of positive numbers such that

1.

∣∣∣Rxx(∗)

(
(α̃ + p) fs,mTs

)∣∣∣ 6 Mp

2.
+∞

∑
p=−∞

Mp < ∞

Every GACS process with a finite number of lag-dependent cy-
cle frequencies satisfies Assumption 10 since only a finite number
of nonzero (bounded) terms is present in the sum over p (see, e.g.,
the chirp-modulated PAM signal with Nyquist pulse in Section 4).

Lemma 1 Under Assumption 10, pointwise it results

lim
Ts→0

+∞

∑
p=−∞
p6=0

Rxx(∗)

(
(α̃ + p) fs,mTs

)
= 0 . (28)

From Lemma 1 it follows that the aliasing terms (p 6= 0)
in (19a) and (19b) can be made arbitrarily small by taking the
sampling period Ts sufficiently small. Furthermore, from The-
orems 3 and 4 it follows that, for any fixed Ts, the discrete-
time cyclic correlogram approaches in the mean-square sense the
aliased cyclic autocorrelation function (19a)–(19b) as the data-
record length T = (2N + 1)Ts approaches infinity. Consequently,
for Ts sufficiently small and T sufficiently large, the discrete-time

cyclic correlogram R̃
xdx

(∗)
d

(α̃ ,m;n0,N) can be made arbitrarily close

to Rxx(∗)(α,τ)|α=α̃ fs ,τ=mTs
in the mean-square sense. Specifically,

we have the following result.

Theorem 5 Under Assumptions 1–3, 5–7, and 10 it results that

lim
Ts→0

lim
N→∞

E

{∣∣∣R̃
xdx

(∗)
d

(α̃ ,m;n0,N)−Rxx(∗) (α,τ)|α=α̃ fs,τ=mTs

∣∣∣
2
}

= 0

(29)
where the order of the two limits cannot be interchanged. �

4. NUMERICAL RESULTS

In this section, simulation experiments are carried out, aimed at cor-
roborating the theoretical results of the previous sections.

In the simulation experiment, a GACS signal is obtained as the
output y(t) of the Doppler channel with input/output relationship
(9) when the input signal x(t) is a cyclostationary PAM signal. In
this case, the effect of the chirp modulation is to rotate by an angle
θ , where tanθ = γ , the support lines of the cyclic autocorrelation
function of x(t) (see (11)). Consequently, denoted by τcorr the max-
imum value of τ such that Rxx∗(0,τ) (and, hence, Rxx∗(α,τ) ∀α)
is significantly different from zero, we have that the maximum cy-
cle frequency exhibited by the GACS signal y(t) is 2B + τcorr sinθ .
Thus, from (19a) we have that the condition fs > 2(2B+τcorr sinθ )
is sufficient to prevent aliasing in the discrete-time cyclic autocor-
relation function of the samples of y(t). The input PAM signal has
Nyquist-shaped pulse with excess bandwidth η = 0.85, stationary
white binary modulating sequence, and symbol period Tp = 10Ts,
where Ts is the sampling period. The considered Doppler channel
produces a delay d0 = 20Ts, a frequency shift ν = 0.02/Ts, and a

chirp rate γ = 1.5 ·10−3/T 2
s .

The sample mean and the sample standard deviation, computed
by 400 Monte Carlo runs, of the cyclic correlogram of the samples
of y(t) are evaluated for different data-record lengths T = NTs and

using a rectangular data-tapering window. In Figures 2 (N = 29) and

3 (N = 212), (a) magnitude of the sample mean and (b) sample stan-
dard deviation of the discrete-time cyclic correlogram are reported
as functions of αTs and τ/Ts. The adopted data-record lengths

N = 29 and N = 212, correspond to about 52 and 411 symbols of
the PAM signal. A discrete set A of values of α̃ has been consid-
ered by taking 200 cycle-frequency values in the cycle-frequency
interval [−1/8,1/8).

The numerical results corroborate the theoretical results. In
fact, as the data-record is increased form N = 29 to N = 212, both
bias and standard deviation decrease. Specifically, as regards the
sample mean of the cyclic correlogram, the blurred region outside
the support of the cyclic autocorrelation function exhibits reduced
oscillations as N is increased (see Figs. 2a and 3a) and the sample
mean approaches the true cyclic autocorrelation function. More-
over, the sample mean is significantly different from zero within
thin strips around the true lag-dependent cycle frequencies and the
strip width becomes narrower as the data-record is increased. Fur-
thermore, the sample standard deviation decreases as N increases
(see Figs. 2b and 3b).

5. CONCLUSIONS

Continuous-time GACS processes are an appropriate model to de-
scribe the output signal of some Doppler channels excited by ACS
signals. The discrete-time cyclic correlogram of the ACS sequence
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Figure 2: (a) Magnitude of the sample mean and (b) sample
standard deviation of the discrete-time cyclic correlogram of the
(GACS) chirp-modulated signal y(t) (9), as a function of αTs and

τ/Ts, computed by a data-record length T = NTs with N = 29.

obtained by uniformly sampling a continuous-time GACS process
has been proposed as an estimator of the continuous-time cyclic
autocorrelation function. Its mean value and covariance have been
evaluated for finite data-record length. Moreover, asymptotic results
have been provided as the data-record length approaches infinity.
Specifically, the discrete-time cyclic correlogram has been shown
to be a mean-square consistent estimator of the aliased continuous-
time cyclic autocorrelation function. Moreover, sufficient condi-
tions have been provided to assure that the discrete-time cyclic
correlogram approaches the continuous-time cyclic autocorrelation
function in the mean-square sense, as the data-record length ap-
proaches infinity and the sampling period approaches zero.

REFERENCES

[1] D. R. Brillinger and M. Rosenblatt, “Asymptotic theory of es-

timates of kth-order spectra,” in Spectral Analysis of Time Se-

ries, B. Harris, Ed. pp. 153-188, New York: Wiley, 1967
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