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ABSTRACT

The reconstruction of oversampled band-limited random sig-
nals from incomplete discrete data is addressed. The pro-
posed reconstruction scheme stems from Lagrange interpola-
tion formula such as the Shannon cardinal expansion. How-
ever, the proposed formula explicitly takes into account the
possible loss of one or more samples. The formula can be
fitted to any sample loss or deterioration by a simple time
index translation. The reconstruction performance is studied
with respect to the number of lost samples, to the number
of available samples and to the oversample rate. The pro-
posed scheme, associated to specific interpolation functions,
results in a high convergence rate even in the neighborhood
of the lost samples providing an accurate sample restoration
method.

1. INTRODUCTION

LetZ ={Z(t),t € R} denote a zero mean stationary process,
with regular band-limited spectrum s (®) in (—x, 7r) defined
by:

E[Z()Z" (t—7)] :/jte"ms(w)dw M

Let consider the periodic oversampling case: the process Z
is assumed sampled above the Nyquist rate i.e. at a rate
B larger than 1. The associated sample time sequence is
{k/B,k € Z}. Z can be retrieved from a linear combination
of the samples Z (k/B),k € Z, for example by the Shannon
expansion or cardinal series:

X sinm(Br—k)_ [k
0= X5 4(5) @

An estimate of Z () from a finite number of samples can be
derived by truncation of the previous series:

N sinz (Bt —k)_ [k
D=7y Z(B) )

However, this formula performance is limited by the weak
decrease of the cardinal series and drops dramatically when
some samples are lost or deteriorated. This paper provides
appropriate formulas for the signal reconstruction in the pres-
ence of one or more missing samples. The basic idea is a
twofold process expansion from available samples on one
hand and unavailable periodically spaced samples on the
other hand. Under mild conditions on the sampling times, the

easily fitted to a sample loss or deterioration i.e. to incom-
plete data. Note that the proposed formula provides a contin-
uous time reconstruction thus it can be used to estimate any
unknown value Z (). In the following, we focus on sample
restoration. Consequently, the performance will be studied
through point-wise reconstruction error. The method is an
alternative to other well-known algorithms generally based
on recursive formulas [1]. The paper is organized as follows.
Section 2 provides the general reconstruction formula and the
conditions on the sampling scheme for convergence. Section
3 develops the particular cases of a single lost sample and
of two (adjacent or not) lost samples. Section 4 studies the
restoration performance through simulations. Conclusions
and perspectives are discussed in section 5.

2. NEW FORMULA FOR SAMPLE RESTORATION

Let {t;,k € Z*} denote the increasing sample time sequence
composed of real non-integer values from —eo to 4o with
t_1 <0<t and:

e _ 1

ke kB

N1
lim y —+—=y

where 8 > 1 and ¥ are finite. Note that this sampling se-
quence generalizes the sequence introduced in the previous
section except that the null sampling time has been removed.
This modification allows to model sample loss in the follow-
ing.

In this case, the general reconstruction formula proposed
in [8] expresses as :

Z(t)=Hu(t)| Y au(t,0)Z(t)+ Y. bu(t,k)Z (k)
I<[k|<M |k|>M
“)
with aM(t,tk), bM(l,tk) and Hj, defined by:
_ Gum (1)
am (i) = TS (ti)sinntk
_ (=D)*Gu (k)
) = =Ty
Hy ()= g;—((t))sinm

second term of the expansion can be neglected. Thus, the first ~ Where:
term provides an estimate of Z(z) [8]. The main advantage Fy(t) = H (] — L)
with respect to Shannon estimation is that this formula can be 1<|kl<M Ir
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t
Gu (t) =mt 1—-
<[k} <M -1 ( k)

Fj; denotes Fy derivative. According to (4), Z(r) can be
decomposed into two sums. The first one involves the avail-
able samples Z(#;) and the second one the unavailable regular
samples Z(k). The available samples are the measured sam-
ples and the so-called unavailable samples are not required
in real computations. Indeed, the second sum in (4) is ne-
glected in the following.

The hypotheses on the sampling sequence (2) imply the ex-
istence of the following analytic functions:

F () = lim Fy(t)

M—»o0
F'(t)= Jim Fy (1)
—yo0
H(l‘) = A/l]il)anM (t)

with H (1) = F (¢).

Moreover, the second term in equation (4) goes to 0 when M
goes to infinity. Consequently, the following general recon-
struction formula holds:

Z(t) = lim Hy (1) [

M—oo

Z aM(t,tk)Z(tk)] 5)

1<|kl<M

Note that the general formula (4) is a Lagrange interpolation
formula. Indeed, the interpolation kernels Hy;(t)ap (¢, ) and
Hy(t)ba(2,k) are such that:

Hy(t))am(tj,0) = 6; (6)
Hy (j)am(j,ti) =0 (7
Hy(j)bum (j,k) = Sk 8
Hu(tj)bu(tj,k) =0 )

where 6 denotes the Kronecker symbol (6 = 1 if j =k,
else §j; = 0). The reconstruction formula given in Eq. (5) is
also a Lagrange interpolation formula when the limit and the
sum can be inverted [14]. In this case:

Z(t)="Y, %zm) (10)

kez*

Note that the Shannon formula recalled in (2) is a particular
case of (5) for a periodic sampling sequence. However the
limit and the sum inversion is only possible under very partic-
ular conditions on the sampling scheme. Moreover, the proof
of the inversion validity is generally untractable. The most
detailed theoretical justifications are given in [9]. However,
the provided sufficient conditions can hardly be checked in
practice, particularly in a random context [5],[8]. For in-
stance, the displacement of only one sample time can call
the condition validity in question. Another case of interest is
a sample loss. The Lagrange interpolation formula applies in
the case of a periodic sampling. However, if a sample is lost,
the formula is no longer valid even if the oversampling con-
dition is still fulfilled. Such a scenario can be generalized by
considering two sampling sequences: the available and un-
available or lost samples. When one sample goes from one
sequence to the other, the required condition validity is also
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called in question. This paper thus proposes a new recon-
struction formula which applies in these cases. As shown in
the appendix, the proposed reconstruction formula is based
on the development of ¢'®" as a function of ® for each 7 € R.
Derivations are performed in the analytical function set, un-
der the hypothesis of the complex exponential completeness
in the appropriate functional space. [1] provides an overview
of the existing iterative and non-iterative reconstruction algo-
rithms. However, to our knowledge, there do not exist other
exact reconstruction formulas in the literature.

Eq. (5) provides an estimate of Z(¢) by truncation of the in-
finite sum. Indeed, for M large enough, the second sum in
(4) can be neglected. First, M is fixed to a sufficiently high
value. The corresponding functions ay(#,;) and Hy(¢) are
then derived (note that simulations provide highly variable
results for different values of M). Second, the sum in (5) is
truncated to the first 2N terms:

R F )G (%)
Zu= Y i Z(f) (11)
1<|k|<N (t—%) Fy, (%) sinn% B

with N < M. The appropriate choice of N as a function of M
is studied through simulations in section 4.
The proposed reconstruction scheme considers that the
Z(k)’s can be neglected for k large enough. As an extension
of the proposed reconstruction scheme, the unavailable sam-
ples Z(k)’s could be replaced in the formulas by the Z(k/6)’s
under the conditions that 6 > 1 (oversampling case) and that
0 < B (lower sampling rate than the observed sequence). In
this case also, the second sum can be neglected for M large
enough. However, the reconstruction formula is modified
through the definition and values of the function Fj;. The
auxiliary sampling sequence optimization is a difficult prob-
lem which is still to be addressed.
Formula (11) applies in the general frame of irregular and
possibly random sampling (jitter, additive random sampling
and skip sampling) provided that the sampling conditions (2)
can be validated. Furthermore, it provides an alternative es-
timate of Z(¢) in the regular oversampling case defined by
{tx =k/B,k € Z*} i.e. without the origin time. The origin
time suppression models any sample loss by an appropriate
time index translation.
B is assumed irrational to prevent the intersection of the two
available and unavailable sampling sequences. The formu-
las for one and two lost samples are given in the following
subsections. The formula can be easily generalized when an
arbitrary finite number of samples are suppressed. Note that
the Papoulis generalized sampling theorem does not hold in
the considered scenarios [11].

3. PARTICULAR SAMPLE LOSS

CONFIGURATIONS
This section considers the following sampling sequences:
{t0=n/B,neZ*} (12)
1
{tn:n/BaHEZ*}_{E} (13)
{tn:n/Ba’/lEZ*}{%}akl?éil (14)

which models a single sample loss, two adjacent sample loss
and two non-adjacent sample loss respectively.
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3.1 One missing sample

Consider the case of a single sample loss or deterioration.
In this case, formula (11) applies directly with the following

simplifications:
= t inmft
1 <1_ﬁ_):smn[3 (15)

F ()= lim Fy(t) =

M—eo k= —eak£0 k npBt
leading to:
S sinzpr an ()2 (5)
20 = npt 1<|k|<N (tf I%) Fy, (%) sin (n%) (1o
Particularly, for # = 0, (16) simplifies to:
o “an(h) (x
Z(O)iﬁlé%"gNkFA’,, (%) sin <n%)z(3) a7

This formula performs the lost sample restoration.

3.2 Two missing samples

Now suppose that two samples have been lost. The first one
is at the index f;,, = 0 without loss of generality and the sec-

ond one is such that 7, = %‘ The general formulas apply
with slight modifications:

F!' (t) Gy ()

Z@t) = Y 7Z()  (18)
<[k Pty te) FY (1) sin 7wy
with:
t FL(t
Fy (1) = O—%):M% (19)
1<[k| <M k##ky &
hence
FU(0) = tim F) (1) = —_Si2P! 20)
B M- M B 1— f_lt 7'[[31‘
k
. ~Gn (5)
Z(0)=8

k
lé\k\SZN,k;Ak, kEY <%> sin (n%) z <E) @2y

Now consider the particular case of two adjacent samples
with indices #;, =0 and t;,, = % =41 This configuration is
the worst scenario for sample Z (0) restoration. For simplic-
ity and without loss of generality let 7, = % The previous
formulas apply when replacing k; by 1.

4. SIMULATIONS

The restoration performance is studied through the normal-
ized mean squared error between the original lost sample and
the reconstructed sample value defined by :

[(20)-20)]
E[Z(0)?]

J(0) = (22)
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Figure 1: Original signal and associated power spectral den-
sity

J(0) is estimated through ng runs. The observed signal is
a filtered white Gaussian noise with initial spectrum strictly
contained in (—7 +a,+7 —a) with a > 0 oversampled at a
rate B > 1. Figure 1 shows a signal run and the associated
power spectrum density for « = § and = 1.225. First, the
restoration performance is studied as a function of the num-
ber of available samples for a given sampling rate . M sam-
ples are assumed available and the reconstruction formula
performance is studied using N < M samples and an order
M approximation for the interpolation functions. The pro-
posed formulas obtained for different values of M: M = N,
M=N+1,M=N+2,M =2N and M = 3N are compared.
Figures 2 and 3 show that the most powerful restoration is
obtained for M = N (use of the whole available samples) in
(4). Moreover, the proposed formula leads to a decreasing
mean square error with a very high convergence rate. The
same behavior is observed in the case of one or two lost sam-
ples, with a larger error in the second case.

Simulations reveal the numerical instability of the interpo-
lation functions for small M particularly through Fy(¢). This
results in a high normalized error for small N values. Hence
a minimum number of available samples is required. Fig.4
displays the original and reconstructed signal over [—37, 37|
for increasing values of N and for M = N. The performance
has also been studied as a function of the sampling rate 3 for
a given number of the available samples such that N =M = 8.
As B increases, the convergence rate of the proposed formula
increases.

5. CONCLUSION

The reconstruction of a random process from its sample has
been addressed in the oversampling case. The particular ap-
plication of lost sample restoration has been studied. The
proposed formula stems from Lagrange interpolation for-
mula but explicitly takes into account the possible loss of one
or more samples. The basic principle is the decomposition of
the signal expansion into two series. The first one uses the
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Loss of 2(0) - Filtered white noise f=1.225, n_=10000
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Figure 2: Case of one missing sample

Loss of z(0) and z(1) - Filtered white noise p=1.225, n=10000
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Figure 3: Case of two adjacent missing samples

available samples and the other one an auxiliary sample se-
quence. The performance has been studied through simula-
tions. The proposed scheme shows a very high convergence
rate even in the case of adjacent sample loss. This paper pro-
poses {Z (k) ,k € Z} as the auxiliary sample sequence. How-
ever, other auxiliary sample sequences could be proposed in
future works. Indeed, the optimization of the auxiliary sam-
ple sequence is a difficult problem which is beyond the scope
of this paper.

6. APPENDIX

Assume that the Fourier
E[Z(t)Z* (t — )] verifies (1).

transform  of Kz (7) =
If ¢'® can be developed
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Figure 4: Original and reconstructed signal for different val-
ues of N

Lags of 2{0) - Filltered white naise M-8, = 10000

i)
=

Normalized mean square error fort =
=
[
T
L

o
16

Y
21

15 1.7 18 1.9 2

Figure 5: Influence of the over-sampling rate

in some sense as follows:

n=-+oc

ei(ot _ Z a, (l‘) eiwtn

n=—oo

(23)

then the random process Z (¢) can be retrieved from the fol-
lowing expansion:

n=-+oc

Y, o (0)Z(t)

n=—oo

Z(t) (24)

Let consider the function yj/(z) defined for 7 ¢ Z{Jt by:

GM (Z)
z—1)sinmtz Fy (z)

em)z

T (z) = ( (25)
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The proof of the reconstruction formula stems from the
residue theorem [12]. This theorem allows to integrate Yy (z)
on a closed curve I';. Let I'; denote a square centered at the
origin which perpendicularly cuts the axes at a distance d + %
from the origin.

|
— | Y (2) = Res[ym,t] + Res[yu, k]
2ir Jr, MS%Sd
k=M
+ Y Resy,u] (26)
k=—M

Let consider dy; such that, for d > dy;, the subsequence
{tx,k <M+ 1} is strictly included in Ty for d > dy. Note

that %Z((f)) is uniformly bounded on I'; for d > djs since

Gy (z) and Fy (z) are polynomial with respective degrees
2(M — 1) and 2M. Under the additional condition that || <
7, for any M:

1
lim — = 2
Jim o /rd M (2) =0 27

Residues are easy to derive since the singular points of }j, are
poles with order 1. Finally, ¢'® can be expanded as follows:

Gu (1) Gu (1) ity
Fa (1) || figns (¢ = ) By (1) sin 7t

(=" Gu (k) o
k) Fy (k)¢

€' = sinmt

28
= 7 ( @

for - < w < w and ¢t ¢ ZJt. Since the convergence of
the infinite sum is uniform in @ on any A C [, 7], Eq.
(4) holds for each M. The second sum can be neglected for
M large enough. Indeed, for a given ¢, for instance near 0,
the condition %" goes to % assures that the time ¢ will be

surrounded by the set of #; and that the integers k will be
far away. Then the corresponding terms can be neglected.
For example, if § = 1.7, the interval (—10,10) contains 34
instants #;, and the nearest terms in the second sum is for
Z(36). These terms and the following ones have no influence
on Z(0). From a mathematical point of view, the proof can
be deduced from the inequality

_x
sup ml<n (29)
XI>M | 1<]m|<Mm - tm
Consequently, bys can be expressed as:
—1)"u(m) m 1
bM(t) = ( ) ( ) 1-m(] my(]_m
oy Lmm 1= (=)0 =)
1—m
[ o
]SI/‘SM fl+.\'gnl

where sgnl =1 for l > 0 and sgnl = —1 for/ > 0. After slight
changes in the order of t, Eq. (29) leads to:

(0l= lZM% G
m|>.
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for bounded u(7) and M > My. Consequently, |by ()| can be
viewed as the remainder of a convergent series, which leads
to:

lim |by(1)] =0 (32)
M—oo
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