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ABSTRACT 

Underwater video is being increasingly used to assess the 

impact of human activities in marine habitats, as a comple-

mentary tool for the assessment of commercial stocks. But, 

analysing video images manually to study and evaluate ma-

rine habitats is a lengthy and tedious task. This paper pro-

poses an automatic method to detect the Norway lobster 

(Nephrops Norvegicus) an important east-Atlantic and Medi-

terranean wide-distributed commercial crustacean species, 

in order to reduce the time and effort it takes marine scien-

tists to manually quantify them. Here, the detection 

procedure follows a human visual attention model. Three 

visual attention features are considered: intensity map (IM), 

edge map (EM), and motion map (MM). The work is com-

posed of two main parts: first the three feature maps are ex-

tracted; then, all candidate regions are processed and cate-

gorized in view of lobsters detection. Experimental results 

show that the proposed methodology is able to reliably detect 

candidate regions after combining the partial results. 

1. INTRODUCTION 

During the last two decades, there has been an increasing 

concern over the effects of bottom-fishing activities on the 

benthic ecosystems in all regions where commercial fishing 

is practised, with the evidence that fishing gear, particularly 

bottom trawling, may injure benthic organisms, reduce habi-

tat complexities, and reduce biodiversity [1, 2]. 

Instrumentation capable of measuring dynamic events and/or 

processes within and immediately above the seafloor has 

been developed that facilitates the collection of ecological 

information. Underwater video imaging is one of these tech-

niques, becoming increasingly useful to assess the impact of 

human activities, including fishing in marine habitats. One of 

the most studied species has been the Norway lobster, Neph-

rops Norvegicus, an important east-Atlantic and Mediterra-

nean wide-distributed commercial crustacean species. Meth-

ods for Norway lobster abundance assessment include the 

use of underwater video techniques, since lobsters live in 

burrows that can be identified and enumerated, thus resulting 

in quantified video estimates of their density [3, 4, 5]. But, 

processing video images manually to study and evaluate ma-

rine habitats are lengthy and tedious tasks. In manual opera-

tions, highly trained marine scientists scan the video for 

meaningful information such as burrows and lobsters. Also 

landings information, available from commercial fishing, can 

be used for verification purposes. Nevertheless, because wide 

varieties of marine animals have low contrast and the struc-

ture of those marine animals may be very complex, the re-

quired processing is not an easy task, and the results may 

depend on the skill and concentration of the human operator. 

The application of automatic digital image processing tech-

niques provides a valuable help on these procedures, e.g., to 

minimize the uncertainty of the results.  

Nowadays, an increasing amount of research teams are using 

underwater video imaging devices, also contributing to the 

emergence of research in the area of automatic underwater 

video image analysis, namely for detection and classification 

of the relevant organisms [6, 7]. Even though many tech-

niques have been developed and improved regularly as com-

puter-based procedures, the biggest difficulties are related to 

the illumination at high depths, low contrast of the 

underwater images and the ‘marine snow’ that often clutters 

the visual scene, making identification difficult even for 

professionals. Moreover, a lobster may move during the 

detection and tracking process, and different viewing angles 

give a different perspective with respect to its size and length.  

Among the various image analysis methods proposed in the 

literature, color-based approaches are among the more robust 

methods, providing an efficient means of detecting Norway 

lobster due to its colorful shell. However, when only 

monochrome video images are available, as it is the case, 

other visual information such as luminance, edge, motion or 

depth should be explored.  

The remainder of the paper is organized as follows: Section 2 

outlines the underwater video acquisition procedure. Section 

3 describes the proposed visual attention model and explains 

how each feature map is obtained. Section 4 discusses the 

lobster detection process. Section 5 concludes the paper and 

discusses future work. 

2. UNDERWATER VIDEO ACQUISITION 

This work explores underwater video images acquired by 

the Instituto de Investigação Agrária e das Pescas 

(INIAP/IPIMAR), along the Portuguese coast. The videos 

were taken during a research survey carried out on board the 

R/V “Noruega” within the scope of the EU Project 

“NECESSITY”, in which selective trawl gear were tested to 

minimize the capture of undersized Norway lobster. The 

camera used was a Konsgsberg Maritime OE1324 mono-
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chrome low-light SIT camera, with a light sensitivity (limit-

ing) of 2e-4 lux, associated to a recording and powering 

system able to work up to 1500 metres depth. With this 

equipment, the first sequences of these benthic habitats were 

taken at depths around five hundred meters off the Portu-

guese coast. The camera was positioned either at the 

immediate front, or further at the back, hanging on the trawl 

headline while trawling at three knots speed (see Figure 1), 

during selectivity trials. The selected position affects the 

type of images obtained. Using camera location 1, lobster 

get better illuminated as they approach the camera. At 

camera position 2 outgoing lobsters are less illuminated as 

they move away from the camera. Figure 2 shows a sample 

image captured with the available monochrome camera, 

when placed in position 1. 
 

 
Figure 1: Trawl showing both camera positions 

 

 
Figure 2: Sample input image showing a Norway lobster out 

of its burrow 

3. VISUAL ATTENTION FEATURE MAPS 

EXTRACTION 

Visual search for particular objects involves an active scan of 

the visual environment. Object recognition is frequently 

based upon features such as contrast, color, intensity, and 

orientation. Here, the concept of a saliency map, representing 

the visual attention, or saliency, at every location of the 

visual input is explored. This saliency map provides a 

reliable indication of the focus of attention by scanning the 

feature map in order of decreasing saliency. In an initial 

human analysis of the available underwater monochrome 

videos, lobster can be detected by their contrast to the 

background and higher intensity values. 

In 2003, Edgington proposed a computer vision system com-

bining a saliency-based attention module and a recognition 

module, both designed to mimic the human visual system for 

automatic recognition of mid-water organisms [8]. The pro-

posal included several visual filters sensitive to colour, inten-

sity and orientation, at different spatial scales. These features 

are combined into a single saliency map, the attention being 

directed to the area with highest activity. On the other hand, 

Walther proposed an object recognition system based on the 

biological plausible hierarchical feed-forward model of ob-

ject recognition in the cortex for detecting faces [9]. This 

work shows that using cortical feedback connections and top-

down processes, simple features such as hue and shape can 

be utilized to bias visual attention to locations with higher 

probability of containing the target object. Both techniques 

perform visual search to detect and track the salient objects in 

the images. 

In this paper, a conceptually simple visual attention model is 

proposed, exploring visual features such as intensity, shape 

and motion. The work is composed of two main parts: first 

the extraction of three visual attention feature maps is 

described in the remainder of this section; then, in section 4, 

the resulting candidate regions are processed and 

categorized in view of lobster detection, also taking into 

account the characteristics of the operating environment.  
 

3.1 Intensity Map 

The first feature exploited in this proposal is image intensity, 

leading to the creation of a visual attention intensity map 

(IM), according to the system architecture shown in Figure 3. 
 

 
Figure 3: Computation of the proposed Intensity Map 

 

The assumption made here is that lobsters correspond to 

higher intensity regions in a uniformly illuminated image 

area. In fact, visual attention tends to focus on the higher 

intensity pixels. Using a dynamic threshold, regions that 

closely model the lobsters can be selected, resulting in the 

desired intensity map. 

Since, for this type of environment, illumination is much 

stronger near the camera than further away, the first step is to 

compensate for this effect. Notice that pixels near the light 

source show very high intensities due to excessive 

illumination, which should not be part of the IM as candidate 

objects for detection. In view of the above scenario, 

illumination compensation, by subtracting the local average 

luminance from the input images is proposed. The vertical 

luminance gradient of input images, illustrated in Figure 4, is 

calculated using equation (1), where W and H are the width 

and height of the input image, respectively. The result of 

illumination compensation is illustrated in Figure 5 (a) 
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Figure 4: Luminance gradient of the input image 

 

The next step is to generate a binary map, separating candi-

date object pixels from the background. Due to the dataset 

huge variety of lighting conditions, a dynamic thresholding 

method is applied. Bernsen’s [10] dynamic thresholding of 
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gray scale images proposal uses region values and a contrast 

limit as parameters, according to equations (2) and (3). 

( )highZlowZyxT __
2

1
),( +=     (2) 

  ( ) limitcontrastlowZhighZyxC ___),( <−=      (3) 

A pixel (x,y) is marked as object if its value is higher than 

T(x,y), with Z_low and Z_high being the lowest and highest 

intensity values in a window around that pixel. However, if 

the contrast measure C(x,y) is lower than contrast_limit, then 

all pixels in the analysis window are assumed to belong to a 

single class, all pixels being labelled as object or background.  

A slightly different thresholding method is proposed here to 

simultaneously filter image noise and reduce segmentation 

errors. Instead of using the local maximum and minimum 

intensities, the second-maximum (2_max_N) and second-

minimum (2_min_N) values in the pixel’s 8-neighborhood 

are used – see equations (4) and (5).  

( )Nmin_Nmax_yxTmodified _2_2
2
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In this case, when a pixel belonging to the background has a 

contrast lower than contrast_limit, and additionally its lumi-

nance value is higher than a second local threshold, Tlow, then 

that neighbourhood is said to consist only of object pixels. 

The resulting binary image is the intensity map (IM). An 

example is shown in Figure 5 (b). 
 

    
(a)   (b) 

Figure 5: (a) Illumination compensated image, and (b) result-

ing intensity map (IM) 
 

3.2 Edge Map 

For the second feature map, the contour of the observed 

objects, in an illumination compensated image, is consid-

ered. The output of an edge detector is thresholded to obtain 

salient points creating the edge map (EM), according to the 

architecture shown in Figure 6.  
 

 
Figure 6: Computation of the proposed Edge Map 

 

The shape of lobsters can vary a lot due to its elongate struc-

ture and the viewing angle of the camera. Also, lobsters may 

appear in any area of the image. Edge information can be 

used as salient features, as lobsters often present some con-

trast with the seabed. Here, the first processing step is illumi-

nation compensation, using equation (1). Then, edges are 

identified using the Sobel detector, according to equation (6). 

I1 and I2 correspond to the vertical and horizontal edges, ob-

tained using the filters hx and hy, as shown in equation (7).  
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Finally, the edge image is thresholded to get a binary map, 

named the edge map, as illustrated in Figure 7. 
 

 
Figure 7: Resulting edge map (EM) 

 

3.3 Motion Map 

The third feature map corresponds to the analysis of the mo-

tion observed in the images. For this purpose, a change de-

tection mask is computed, which after appropriate threshold-

ing results in a motion map (MM), according to the architec-

ture shown in Figure 8.  
 

 
Figure 8: Computation of the proposed Motion Map 

 

The motion of the camera during image acquisition results in 

the variation of lobster position – as a first approach it is as-

sumed that lobsters are not moving and the camera moves at 

a constant speed. The parameters describing the motion be-

tween consecutive frames can be analysed. Szeliski and 

Coughlan [11] assumed that when image intensities are con-

served, It(x,y) can be formed locally by displacing the refer-

ence image I(x,y), according to equation (8): 
 

),,(),( yxIvyuxI ttt =++    (8) 

 

where ut and vt are the x- and y-axis components of the ob-

ject’s 2D velocity field after projection onto the image plane.  
 

    
Figure 9: Lobster displacement in three frames 

 

For the considered scenario, the aim is to detect lobsters by 

detecting their motion. Figure 9 shows a lobster and its dis-

placement towards the camera after a few frames. Because of 

the lobsters’ nature, their motion can be distinguished from 

that of other image structures such as trawl marks or bur-

rows. In the present case, taking into account that consecu-

tive images It1(x,y) and It2(x,y) are from the same source, a 

lobster 

lobsters 
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change detection analysis can be performed to gather the 

desired motion information, applying equation (9). 
 

),(),(),( 2121 yxIyxIIICD tttt −=     (9) 

 

To obtain the binary motion map, from the change detection 

result illustrated in Figure 10 (a), the dynamic thresholding 

specified by equations (4) and (5) is applied. Figure 10 (b) 

shows the final motion map. 
 

   
(a)   (b) 

Figure 10: (a) Change detection and (b) motion map images 

4. LOBSTER DETECTION 

Once the individual feature maps are available, the next step 

is to combine these maps to produce a single salient map.  

Using a training set selected from the available test videos, 

captured as described in section 2, a number of experiments 

were conducted to determine the default values for the pa-

rameters used to compute the edge map, namely con-

trast_limit and Tlow, which were set to 20 and 90, respec-

tively. 

A combined salient map was obtained by merging the three 

individual maps, thus classifying a pixel as foreground if that 

was its original classification in any of the individual maps, 

shown in Figure 11 (a). 

The lobster detection proceeds by further analysed of the 

combined map, taking into account the expected lobster re-

gions’ features, such as their area, centroid and bounding box 

positions, to decide on their suitability as candidate lobsters.  

As expected, the map may include non-lobster candidate 

regions, resulting from image acquisition noise or due to 

other limitations of the operating conditions.  

At first, a morphologic close operation, with a disk-shaped 

structuring element of radius 9, is used to remove part of the 

existing noise. The resulting 8-connected regions are identi-

fied and several features are extracted for each candidate 

region, including its area, its centroid, and its bounding box. 

An example of the regions identified on the combined map, 

together with the corresponding bounding boxes, is shown in 

Figures 11 (b) and (c), respectively.  

Further analysis allows discarding spurious regions that re-

sult from image acquisition limitations (as illustrated in Fig-

ure 12), corresponding to:  

1) the hardware containing the camera to resist to the high 

water pressure, visible on the image sides (a);  

2) the insufficiently illuminated area at the top (b), 

3) the excessively illuminated area at the bottom (c); 

The above listed regions are considered to correspond to ei-

ther contain artefacts or be of insufficient quality for analysis, 

thus being categorized as low confidence (LC) areas. With 

the videos captured as described in section 2, using the cam-

era in position 1, the LC area (or the complementary region 

of interest – ROI) is defined by the following parameters: 
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where H and W are the height and width of the image, re-

spectively. 

Also the distance between the camera and the seabed should 

be taken into account, as it impacts on the perceived size of 

the observed lobsters. As such, for lobsters detection in the 

considered operation conditions, candidate lobsters’ region 

area should be in the range [Amin, Amax], with the default val-

ues considered being Amin = 0.01% and Amax = 0.3% of the 

total image area. 

Applying the above set of restrictions the candidate regions 

after combined map analysis are as shown in Figure 11 (c). 

 

 
(a) 

   
(b)   (c) 

Figure 11: (a) Combined saliency map; (b) labelled regions 

and corresponding bounding boxes in the map (c) candidate 

regions after combined map analysis 
 

 
Figure 12: Confidence area for topographic features on lob-

ster 
 

To illustrate the behaviour of the proposed detection method-

ology, a monochrome video captured by INIAP/IPIMAR was 

considered. In particular several subsets of that video were 

analysed, of which some contained lobsters and some not.  

It should be reminded that the main target of this paper is to 

develop an automatic algorithm to quantify the lobsters 

found in the portion of the seabed analysed. As such, it is not 

essential to detect the lobsters once they enter the image area, 

as long as they are effectively detected while in the region of 

interest (ROI) part of the image (each lobster should be 

lobster 
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counted only once). An example of a final detection result is 

included in Figure 13.  
 

 
Figure 13: Final detection result 

 

From a test set consisting of 100 video samples (11 images 

each), 10 of which correspond to positions in the video where 

lobsters appear, and the remaining 90 samples not containing 

lobsters, a 90% detection rate has been achieved. This means 

that nine out of the ten lobsters present in the video were 

successfully detected. Notice that less than 10% of the im-

ages in this type of videos typically contain lobsters. 

The missed lobster was moving quite fast, thus presenting a 

somewhat undefined shape with low contrast to its surround-

ing, and sometimes being near the low confidence image area 

already showing some illumination problems, as shown in 

Figure 14. Also notice that the image acquisition was done at 

a vessel speed higher than desirable for this type of analysis, 

leading to somewhat blurred images.  
 

 
Figure 14: Missed lobster detection 

 

Looking into the individual image detections, there were a 

total of 41 false negatives (meaning undetected lobsters in a 

single image) happening mostly in the low confidence area. 

There was also one false positive, as in one image a lobster 

was falsely detected, due to an illuminated burrow that 

looked like a lobster. The importance of these false negatives 

and false positives is very low, as 90% of the lobster were 

effectively counted, while the false positive positions are not 

temporally consistent, being easy to eliminate in a post-

processing step. 

5. CONCLUSION AND FUTURE WORK 

In this paper, a simple visual attention model is proposed to 

assist marine specialists in the detection and quantification 

of Norway lobster stocks. The goal is to reduce the time 

and effort required for image analysis in stock control and 

management tasks. Detection of lobsters is based on the 

combined analysis of three different visual cues: intensity, 

edge and motion saliency maps. Currently the system is 

being developed to include a more complete temporal 

analysis of the video, namely to allow the tracking of de-

tected lobsters. It is expected that this work may become a 

valuable complementary tool for the assessment of com-

mercial stocks of Norway lobster. Future efforts will focus 

on extending analysis capabilities to include, e.g., detection 

of potential burrows and to allow assessing the impact of 

bottom trawlers in the seabed. 
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