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ABSTRACT
Soft thresholding plays a central role in the various signal
processing problems in which the ideal solution is known to
possess a sparse decomposition in some orthonormal basis.
Using convex-analytical tools, we extend this notion to that of
proximal thresholding and investigate its properties. We then
propose a versatile convex variational formulation for opti-
mization over orthonormal bases that covers a wide range of
problems, and establish the strong convergence of a proximal
thresholding algorithm to solve it. Numerical applications to
signal recovery are demonstrated.

1. INTRODUCTION

Throughout this paper,H is a separable infinite-dimensional
real Hilbert space with scalar product〈· | ·〉, norm‖ · ‖, and
distanced. Moreover,Γ0(H ) denotes the class of proper
( 6≡ +∞) lower semicontinuous convex functions fromH to
]−∞,+∞], and(ek)k∈N is an orthonormal basis ofH .

The standard signal denoising problem consists of recov-
ering the original form of a signalx∈H from an observation
z= x+v, wherev∈ H is the realization of a noise process.
If x is known to admit a sparse representation in(ek)k∈N, an
estimatex can be constructed by removing the coefficients
of smallest magnitude in the representation(〈z | ek〉)k∈N of z
with respect to(ek)k∈N. A popular method [2, 3, 9, 10, 11]
consists of soft thresholding each coefficient〈z | ek〉 at some
predetermined levelωk ∈ ]0,+∞[, namely

x = ∑
k∈N

soft[−ωk,ωk] (〈z | ek〉)ek, (1.1)

where (see Fig. 1)

soft[−ωk,ωk]
: ξ 7→ sign(ξ )max{|ξ |−ωk,0}. (1.2)

From an optimization point of view, the vectorx exhibited in
(1.1) is simply the solution to the variational problem

minimize
x∈H

1
2
‖x−z‖2+ ∑

k∈N

ωk |〈x | ek〉| . (1.3)

This formulation has been extended to the more general in-
verse problems in which the observation assumes the form
z= Tx+v, whereT is a bounded linear operator fromH to
some real Hilbert spaceG , and wherev∈ G is the realization
of a noise process. Thus, the variational problem

minimize
x∈H

1
2
‖Tx−z‖2+ ∑

k∈N

ωk |〈x | ek〉| (1.4)

has been considered in several studies, along with the soft
thresholding iterations

xn+1 = ∑
k∈N

soft[−ωk,ωk]

(
〈xn +T∗(z−Txn) | ek〉

)
ek (1.5)

to solve it (see [7] for background). The strong convergence
of this algorithm was first formally established in [8] (in [7],
(1.4) was analyzed in a broader framework and extended).

Theorem 1.1 [8, Theorem 3.1]Suppose that x0 ∈ H ,
infk∈N ωk > 0, and‖T‖< 1. Then the sequence(xn)n∈N gen-
erated by(1.5)converges strongly to a solution to(1.4).

Various considerations have led researchers to consider
alternative thresholding strategies in (1.1); see, e.g., [1, 11,
12]. Is is therefore natural to ask whether such thresholding
rules can be used in more general algorithms. This question
is significant because the current theory of iterative thresh-
olding [7, 8] can tackle only problems described by the vari-
ational formulation (1.4), which offers limited flexibility in
the penalization of the coefficients(〈x | ek〉)k∈N and which
is furthermore restricted to standard linear inverse problems.
The aim of the present paper is to bring out general answers
to these questions. Our analysis will revolve around the fol-
lowing variational formulation, whereσΩ denotes the sup-
port function of a setΩ (see Section 2).

Problem 1.2 Let Φ ∈ Γ0(H ), let K ⊂ N, let L = N r K,
let (Ωk)k∈K be a sequence of closed intervals inR, and let
(ψk)k∈N be a sequence inΓ0(R). The objective is to

minimize
x∈H

Φ(x)+ ∑
k∈N

ψk(〈x | ek〉)+ ∑
k∈K

σΩk(〈x | ek〉), (1.6)

under the following technical assumptions:

i) Φ is differentiable onH , infΦ(H ) > −∞, and∇Φ is
1/β -Lipschitz continuous for someβ ∈ ]0,+∞[ ;

ii) for every k∈ N, ψk ≥ ψk(0) = 0;
iii) for every k∈ N, ψk is differentiable at 0;
iv) the functions(ψk)k∈L are finite and twice differentiable

onRr{0}, and

(∀ρ ∈ ]0,+∞[)(∃θ ∈ ]0,+∞[) inf
k∈L

inf
0<|ξ |≤ρ

ψ ′′
k (ξ ) ≥ θ ;

v) the function ϒL : ℓ2(L) → ]−∞,+∞] : (ξk)k∈L 7→
∑k∈L ψk(ξk) is coercive;

vi) 0 ∈ int
⋂

k∈K Ωk.

Problem 1.2 reduces to (1.4) whenΦ : x 7→ ‖Tx−z‖2/2,
K = N, and, for everyk ∈ N, Ωk = [−ωk,ωk] andψk = 0.
We shall see (Proposition 4.1) that Problem 1.2 admits at
least one solution and that it covers important scenarios (Sec-
tion 5.1). In addition, it lends itself to the use of a forward-
backward splitting strategy (Algorithm 4.3), which consists
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of alternating a forward (explicit) gradient step onΦ with a
backward (implicit) proximal step on

Ψ: H → ]−∞,+∞] : x 7→ ∑
k∈N

ψk(〈x | ek〉)+ ∑
k∈K

σΩk(〈x | ek〉).

(1.7)
Our main result (Theorem 4.5) concerns the convergence of
this algorithm to a solution to Problem 1.2. Another contri-
bution of this paper (Remark 3.3) shows that the function dis-
played in (1.7) is quite general in the sense that the operators
on H that perform nonexpansive (as required by our con-
vergence analysis) and nonincreasing (as imposed by prac-
tical considerations) thresholdings on the closed intervals
(Ωk)k∈K of the coefficients(〈x | ek〉)k∈K of a pointx ∈ H

are precisely those of the form proxΨ, i.e., the proximity op-
erator ofΨ. Furthermore (Proposition 3.4 and Lemma 2.4)
such an operator can be decomposed as

proxΨ : H → H : x 7→ ∑
k∈K

proxψk

(
softΩk 〈x | ek〉

)
ek +

∑
k∈L

proxψk
〈x | ek〉ek, (1.8)

where we define the soft thresholder relative toΩ ⊂ R as

softΩ : R→R: ξ 7→






ξ −ω, if ξ < ω ;
0, if ξ ∈ Ω;
ξ −ω, if ξ > ω ,

with

{
ω = inf Ω,

ω = supΩ.

(1.9)
The remainder of the paper is organized as follows. In

Section 2, we provide an account of the theory of proximity
operators. In Section 3, we introduce and study the notion of
a proximal thresholder. Our algorithm is presented in Sec-
tion 4. Numerical results are presented in Section 5.

2. PROXIMITY OPERATORS

Let us first introduce some basic notation (for a detailed ac-
count of convex analysis, see [14]). LetC be a subset ofH .
The indicator function ofC is

ιC : x 7→

{
0, if x∈C;
+∞, if x /∈C,

(2.1)

its support function isσC : u 7→ supx∈C 〈x | u〉, and its distance
function isdC : x 7→ inf ‖C−x‖.

Example 2.1 Let Ω ⊂ R be a nonempty closed interval, let
ω = inf Ω, let ω = supΩ, and letξ ∈ R. Then

σΩ(ξ ) =






ωξ , if ξ < 0;
0, if ξ = 0;
ωξ , if ξ > 0.

(2.2)

We now provide some some essential facts on proximity
operators and refer the reader to [7] for complements.

Definition 2.2 Let f ∈ Γ0(H ). The proximity operator off
is the operator proxf : H →H which maps everyx∈H to
the unique minimizer of the functiony 7→ f (y)+‖x−y‖2/2.

Lemma 2.3 Let f ∈ Γ0(H ). Then the following hold.
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Figure 1: Ω = [−1,1]. Graphs of softΩ (dashed line) and proxφ
in Proposition 3.4 withψ = | · |4/3 (top), ψ = 0.1| · |3 (center), and
ψ = ι[−2,2] (bottom).

i) (∀x∈ H ) x∈ Argmin f ⇔ proxf x = x.

ii) prox f is nonexpansive: (∀(x,y) ∈ H 2) ‖proxf x −

proxf y‖ ≤ ‖x−y‖.

Lemma 2.4 [7, Example 2.19]Let (bk)k∈N be an orthonor-
mal basis ofH and let

f : H → ]−∞,+∞] : x 7→ ∑
k∈N

φk(〈x | bk〉), (2.3)

where(∀k ∈ N) Γ0(R) ∋ φk ≥ φk(0) = 0. Then f∈ Γ0(H )
and(∀x∈ H ) proxf x = ∑k∈N proxφk

〈x | bk〉bk.

Proposition 2.5 [5] Let R: R → R. Then R is the proximity
operator of a function inΓ0(R) if and only if it is nonexpan-
sive and nondecreasing.

Let us now provide an important example (see Fig. 1 in
the case whenΩ = [−1,1]). Additional examples can be
found in [5] and [7].

Example 2.6 Let Ω ⊂ R be a nonempty closed interval, let
ω = inf Ω, let ω = supΩ, and letξ ∈ R. ThenproxσΩ

ξ =

softΩ ξ , wheresoftΩ is the soft thresholder defined in(1.9).
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3. PROXIMAL THRESHOLDING

The standard soft thresholder of (1.1) was seen in Exam-
ple 2.6 to be a proximity operator. As such, it possesses
attractive properties (see Lemma 2.3) in terms of iterative
methods [7]. This remark motivates the following definition.

Definition 3.1 Let R: R → R and letΩ ⊂ R be a nonempty
closed interval. ThenR is a proximal thresholderon Ω if
there exists a functionφ ∈ Γ0(R) such that

R= proxφ and (∀x∈ R) Rx= 0 ⇔ x∈ Ω. (3.1)

The following theorem characterizes all the functionsφ ∈
Γ0(R) for which proxφ is a proximal thresholder.

Theorem 3.2 [5] Let φ ∈ Γ0(R) and let Ω ⊂ R be a
nonempty closed interval. Then the following are equivalent.
i) proxφ is a proximal thresholder onΩ.

ii) φ = ψ + σΩ, whereψ ∈ Γ0(R) is differentiable at0 and
ψ ′(0) = 0.

Remark 3.3 A standard requirement for thresholders onR

is that they be nondecreasing functions [1, 11, 12]. On the
other hand, nonexpansivity is a key property to establish the
convergence of iterative methods [7]. As seen in Proposi-
tion 2.5 and Definition 3.1, the nondecreasing and nonex-
pansive functionsR: R → R that vanish only on a closed in-
tervalΩ ⊂ R coincide with the proximal thresholders onΩ.
Hence, it follows from Theorem 3.2 and Lemma 2.4 that the
operators that perform a componentwise nondecreasing and
nonexpansive thresholding on(Ωk)k∈K of those coefficients
of the decomposition in(ek)k∈N indexed byK are precisely
of the form proxΨ, whereΨ is as in (1.7).

Next, we provide a convenient decomposition rule for
implementing proximal thresholders (see Fig. 1).

Proposition 3.4 [5] Let φ = ψ + σΩ, whereψ ∈ Γ0(R) and
Ω ⊂ R is a nonempty closed interval. Suppose thatψ is dif-
ferentiable at0 with ψ ′(0) = 0. Thenproxφ = proxψ ◦softΩ .

4. ITERATIVE PROXIMAL THRESHOLDING

Let us start with some basic properties of Problem 1.2.

Proposition 4.1 [5] Problem 1.2 has at least one solution.

Proposition 4.2 [5] Let Ψ be as in(1.7), let x∈ H , and let
γ ∈ ]0,+∞[. Then x is a solution to Problem 1.2 if and only
if x = proxγΨ(x− γ∇Φ(x)).

Here is our algorithm for solving Problem 1.2.

Algorithm 4.3 Fix x0 ∈ H and set, for everyn∈ N,

xn+1 = ∑
k∈K

(
proxγnψk

(
softγnΩk 〈xn− γn∇Φ(xn) | ek〉

))
ek

+ ∑
k∈L

(
proxγnψk

〈xn− γn∇Φ(xn) | ek〉
)

ek, (4.1)

where(γn)n∈N is a sequence in]0,+∞[ such that infn∈N γn > 0
and supn∈N

γn < 2β .

Remark 4.4 In Algorithm 4.3, the setK contains the indices
of those coefficients of the decomposition in(ek)k∈N that are
thresholded. The parametersγn provide added flexibility and
can be used to improve the convergence profile. Finally, the
operator softγnΩk is given explicitly in (1.9).

Theorem 4.5 [5] Every sequence generated by Algo-
rithm 4.3 converges strongly to a solution to Problem 1.2.

Remark 4.6 Let T be a nonzero bounded linear operator
from H to a real Hilbert spaceG , let z∈ G , and letτ and
ω be in ]0,+∞[. Specializing Theorem 4.5 to the case when
Φ : x 7→ ‖Tx−z‖2/2 and either
• K = ∅ and(∀k ∈ L) ψk = τk| · |

p, wherep ∈ ]1,2] and
τk ∈ [τ,+∞[; or

• L = ∅ and(∀k ∈ K) ψk = 0 andΩk = [−ωk,ωk], where
ωk ∈ [ω ,+∞[,

yields [7, Corollary 5.19]. If we further impose‖T‖ < 1 and
γn ≡ 1, we obtain [8, Theorem 3.1].

5. APPLICATIONS TO SPARSE SIGNAL
RECOVERY

5.1 A special case of Problem 1.2

In certain problems,q noisy linear observations are available,
say zi = Tix+ vi (1 ≤ i ≤ q), which leads to the weighted
least-squares data fidelity termx 7→ ∑q

i=1 µi‖Tix− zi‖
2. Fur-

thermore, signal recovery problems are typically accompa-
nied with convex constraints that confinex to some con-
vex sets(Si)1≤i≤m. These constraints can be aggregated via
the cost functionx 7→ ∑m

i=1 ϑid2
Si
(x) [4]. On the other hand,

a common approach to penalize the coefficients of an or-
thonormal basis decomposition is to use power functions,
e.g., [1, 3, 8]. Moreover, we aim at promoting sparsity of
a solutionx ∈ H with respect to(ek)k∈N in the sense that,
for everyk in K, we wish to set to 0 the coefficient〈x | ek〉
if it lies in the intervalΩk. Altogether, these considerations
suggest the following formulation.

Problem 5.1 For everyi ∈ {1, . . . ,q}, let µi ∈ ]0,+∞[, let
Ti be a nonzero bounded linear operator fromH to a real
Hilbert spaceGi , and letzi ∈ Gi . For everyi ∈ {1, . . . ,m},
let ϑi ∈ ]0,+∞[ and letSi be a nonempty closed and con-
vex subset ofH . Furthermore, let(pk,l )0≤l≤Lk be distinct
numbers in]1,+∞[, let (τk,l )0≤l≤Lk be in [0,+∞[, and let
lk ∈ {0, . . . ,Lk} satisfypk,lk = min0≤l≤Lk pk,l , where(Lk)k∈N

is a sequence inN. Finally, letK⊂ N, letL = NrK, and let
(Ωk)k∈K be closed intervals inR. The objective is to

minimize
x∈H

1
2

q

∑
i=1

µi‖Tix−zi‖
2 +

1
2

m

∑
i=1

ϑid
2
Si
(x)

+ ∑
k∈N

Lk

∑
l=0

τk,l |〈x | ek〉|
pk,l + ∑

k∈K

σΩk(〈x | ek〉), (5.1)

under the following assumptions: infk∈L τk,lk > 0;
infk∈L pk,lk > 1; supk∈L

pk,lk ≤ 2; 0∈ int
⋂

k∈K Ωk.

Proposition 5.2 [5] Problem 5.1 is a special case of Prob-
lem 1.2.
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Figure 2: Original signal – Example 1.
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Figure 3: Degraded signal – Example 1.

5.2 First example

Our first example concerns the simulated X-ray fluorescence
spectrumx displayed in Fig. 2. The measured signalzshown
in Fig. 3 has undergone blurring by the limited resolution
of the spectrometer and further corruption by addition of
noise. In the underlying Hilbert spaceH = ℓ2(N), this
process is modeled byz = Tx+ v, whereT : H → H is
the operator of convolution with a truncated Gaussian ker-
nel. The noise samples are uncorrelated and drawn from a
N (0,0.0225) Gaussian population. The original signalx has
support{0, . . . ,N−1} (N = 1024), takes on nonnegative val-
ues, and possesses a sparse structure. These features can be
promoted in Problem 5.1 by letting(ek)k∈N be the canonical
orthonormal basis ofH , and settingK = N, τk,l ≡ 0, and

(∀k∈ N) Ωk =

{
]−∞,ω ] , if 0 ≤ k≤ N−1;
R, otherwise,

(5.2)

where the one-sided thresholding level is set toω = 0.01.
Using the methodology described in [13], the above in-
formation about the noise can be used to construct the
constraint setsS1 =

{
x∈ H

∣∣ ‖Tx−z‖ ≤ δ1
}

and S2 =
⋂N−1

l=1

{
x∈ H

∣∣ |T̂ x(l/N)− ẑ(l/N)| ≤ δ2
}

, where â: ν 7→

∑+∞
k=0 〈a | ek〉exp(−ı2πkν) designates the Fourier transform

of a ∈ H . The boundsδ1 andδ2 have been determined so
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Figure 4: Signal restored by Algorithm 4.3 – Example 1.

as to guarantee thatx lies in S1 and inS2 with a 99 percent
confidence level (see [13] for details). Finally, we setq = 0
andϑ1 = ϑ2 = 1 in (5.1). The solution produced by Algo-
rithm 4.3 is shown in Fig. 4. It is of much better quality than
the restorations obtained in [6, 13] via alternative methods.

5.3 Second example

We provide a wavelet deconvolution example inH =
L

2(R). The original signalx is the classical “bumps” signal
displayed in Fig. 5. The degraded version shown in Fig. 6 is
z1 = T1x+ v1, whereT1 models convolution with a uniform
kernel andv1 is a realization of a zero-mean white Gaussian
noise. The basis(ek)k∈N is an orthonormal wavelet symlet
basis with 8 vanishing moments. Such wavelet bases are
known to provide sparse representations for a wide class of
signals such as this standard test signal. Note that there ex-
ists a strong connection between Problem 5.1 and maximum
a posteriori techniques for estimatingx in the presence of
white Gaussian noise. In particular, settingq = 1, m = 0,
K = ∅ andLk ≡ 0, and using suitably subband-adapted val-
ues ofpk,0 andτk,0 amounts to fitting an appropriate general-
ized Gaussian prior distribution to the wavelet coefficients in
each subband [1]. Such a statistical modeling is commonly
used in wavelet-based estimation, where values ofpk,0 close
to 2 may provide a good model at coarse resolution levels,
whereas values close to 1 should be used at finer resolutions.
The setting of the more general model we adopt here is the

following: in Problem 5.1,K andL are the index sets of the
detail and approximation coefficients [10], respectively,and

• (∀k ∈ K) Ωk = [−0.0023,0.0023], Lk = 1, (pk,0, pk,1) =
(2,4), (τk,0,τk,1) = (0.0052,0.0001).

• (∀k∈ L) Lk = 0, pk,0 = 2, τk,0 = 0.00083.

In addition, we setq = 1, µ1 = 1, m = 1, ϑ1 = 1, and
S1 =

{
x∈ H

∣∣ x≥ 0
}

. The solutionx produced by Al-
gorithm 4.3 is shown in Fig. 7. The estimation error is
‖x− x‖ = 8.33. For comparison, the signalx̃ restored via
(1.4) with Algorithm (1.5) is displayed in Fig. 8. In Prob-
lem 5.1, this corresponds toq = 1, m= 0, K = N, τk,l ≡ 0,
ωk ≡ 2.9 for the detail coefficients, andωk ≡ 0.0062 for the
approximation coefficients. This setup yields a worse error
of ‖x̃−x‖ = 14.14. These results have been obtained with a
discrete implementation of the wavelet decomposition over4
resolution levels using 2048 signal samples [10].
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Figure 5: Original signal – Example 2.
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Figure 6: Degraded signal – Example 2.
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