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ABSTRACT

The performance of Independent Component Analysis (ICA)
methods significantly depends on the choice of the contrast
function and the optimisation algorithm used in obtaining
the demixing matrix. It has been shown that nonparametric
ICA approaches are more robust than its parametric counter-
parts. One basic nonparametric ICA contrast was developed
by approximating mutual information using kernel density
estimations. In this work we study the kernel density esti-
mation based linear ICA problem from an optimisation point
of view.

Two geometric methods are proposed to optimise the
kernel density estimation based linear ICA contrast func-
tion, a Jacobi-type method and an approximate Newton-like
method. Rigorous analysis shows that both geometric meth-
ods converge locally quadratically fast to the correct demix-
ing. The performance of the proposed algorithms is investi-
gated by numerical experiments.

1. INTRODUCTION

In the past decade, Independent Component Analysis (ICA)
has become a standard statistical tool for solving the Blind
Source Separation (BSS) problem. It has received consider-
able attentions in various communities. Generally, the per-
formance of an ICA method depends significantly on the
choice of the contrast function measuring statistical indepen-
dence of signals and on the appropriate optimisation tech-
nique as well.

Approaches to designing ICA contrasts can be classified
into two categories: parametric and nonparametric. Para-
metric approaches construct the ICA criterion according to
certain hypotheses of distributions of the source signals by
some parameterised families of density functions. Since the
distributions of sources are generally unknown, incorrect hy-
pothesis on these distributions can lead to poor separation
performance, and may even cause parametric ICA methods
to fail completely in many real applications. For these rea-
sons, there has been an increasing interest in developing non-
parametric ICA methods. One of such nonparametric ICA
approaches is to minimise the empirical mutual information
between recovered signals by employing the Kernel Density
Estimation (KDE) technique to deal with the unknown dis-
tributions of the sources, such as [14, 20, 2]. There also ex-
ist other sophisticated nonparametric ICA approaches, which
do not work with the probability density, refer to [6, 1, 9]
and references therein. In this work we only focus on the

nonparametric linear ICA problem based on the kernel den-
sity estimation proposed in [2] from an optimisation point of
view.

From an optimisation point of view, development of effi-
cient geometric ICA methods has been very active ever since
the early work of Comon [5]. Jacobi-type methods are one of
the prominent methods, including Joint Approximate Diago-
nalisation of Eigenmatrices (JADE) [3], Extended Maximum
Likelihood (EML) [21], MaxKurt [3], Jacobi optimised Em-
pirical Characteristic Function ICA (JECFICA) [6], RAD-
ICAL [14], and so on. Although the efficiency of these
Jacobi-type ICA methods has been verified by numerical ex-
periments, the convergence properties of most Jacobi-type
ICA algorithms are still theoretically unclear. Recently with
a complete understanding of the FastICA algorithm [12, 18],
the so-called approximate Newton-like method on manifolds,
which is locally quadratically convergent, has been success-
fully applied to the problems of parallel parametric linear
ICA [17] and one-unit KDE based linear ICA [19]. The fo-
cus of this work is on the development of efficient geometric
methods, namely a Jacobi-type method and an approximate
Newton-like method, for solving the KDE based linear ICA
problem. Rigorous analysis shows that both methods are lo-
cally quadratically convergent to a correct demixing matrix
under reasonable assumptions.

The paper is organised as follows. Section 2 introduces
the KDE based linear ICA problem and gives a critical point
analysis of the contrast function followed by a study of the
Hessian. In Section 3, we present a Jacobi-type method and
an approximate Newton-like method for optimising the KDE
based linear ICA contrast. The local convergence properties
of both methods are studied as well. Finally in Section 4,
several numerical experiments are provided to investigate the
performance of the proposed algorithms.

2. THE KDE BASED LINEAR ICA PROBLEM

2.1 Linear ICA Model and the KDE Based Contrast

The standard instantaneous noiseless linear ICA model is
stated as the following relation, see [11] for details,

Z = AS, (1)

where S = [s1, . . . ,sn] ∈ Rm×n is a data matrix of n samples
of m sources (m� n), which are mutually statistically inde-
pendent and drawn independently and identically, A ∈Rm×m

is the mixing matrix of full rank, and Z = [z1, . . . ,zn] ∈Rm×n
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represents the observed mixtures. Note that, the mutual sta-
tistical independence can only be ensured if the sample size
n tends to infinity. Nevertheless, for our theoretical analysis
in Section 2.2, we assume that the complete independence
holds even if the sample size is finite. The task of the linear
ICA problem is to recover the source signals S by estimat-
ing the mixing matrix A based only on the observed mixtures
Z. After the so-called whitening process of the mixtures, the
corresponding demixing model of (1) can be stated as fol-
lows

Y = X>W, (2)

where W = [w1, . . . ,wn] = V Z ∈ Rm×n is the whitened
observation (V ∈ Rm×m is the whitening matrix), X ∈
Rm×m is an orthogonal matrix being the demixing ma-
trix, and Y = [y1, . . . ,yn] ∈ Rm×n contains the reconstructed
signals. It has been shown in [4], that the whiten-
ing process is statistically

√
n-consistent. Let SO(m) :={

X ∈ Rm×m|X>X = 1,det(X) = 1
}

denote the special or-
thogonal group of order m. In this work, we study the linear
ICA problem of finding an X = [x1, . . . ,xm] ∈ SO(m) which
reconstructs the sources via the model (2) based only on the
whitened observations.

Minimisation of the mutual information between the re-
covered signal is a common criterion for ICA. In absence
of knowing the true distribution of the sources, an empiri-
cal mutual information between the extracted signals can be
computed by employing the kernel density estimation tech-
nique, refer to [2] for more details,

f : SO(m)→ R, X 7→
m

∑
k=1

Ei

[
log
(

1
hE j

[
φ

(
x>k wi j

h

)])]
, (3)

where wi j := wi−w j ∈Rm represents the difference between
the i-th and j-th sample, φ : R→ R is an appropriate kernel
function, and h ∈ R+ is the kernel bandwidth. In this work
we specify φ as the Gaussian kernel φ(t) = exp(−t2/2).

2.2 Analysis of the KDE based linear ICA contrast
Before analysing the KDE based linear ICA contrast defined
in (3), we recall the tangent space of SO(m) at X as

TX SO(m) :=
{

Ξ ∈ Rm×m∣∣Ξ = XΩ, Ω ∈ so(m)
}

, (4)

where so(m) := {Ω ∈Rm×m|Ω =−Ω>} denote the set of all
m×m skew-symmetric matrices.

Let Ω = [ω1, . . . ,ωm] = (ωkl)m
k,l=1 ∈ so(m) and define

yi j(xk) := (x>k wi j)/h. By the chain rule, the first derivative
of the contrast f in direction XΩ ∈ TX SO(m) is calculated as

D f (X)(XΩ) =
m

∑
1≤k<l≤m

ωkl (ukl(X)−ulk(X)) , (5)

where
ukl(X) := Ei

[
Ej [φ ′(yi j(xk))yi j(xl)]

Ej [φ(yi j(xk))]

]
∈ R. (6)

It can be shown that if X∗ ∈ SO(m) is a correct demixing
matrix, by the whitening properties of the sources, the term
ukl(X∗) is equal to zero for all k 6= l. Thus it follows that the
first derivative of f vanishes at X∗, i.e., D f (X∗)(X∗Ω) = 0.
Therefore a correct demixing matrix X∗ is indeed a critical
point of f .

Now computing the second derivative of f , one gets the
following quadratic form

d2

d t2 f (XetΩ)
∣∣∣
t=0

=
m

∑
k=1

ω
>
k H(k)(X)ωk

−
m

∑
1≤k<l≤m

ω
2
kl (ukk(X)+ull(X)) ,

(7)

where H(k)(X) = (h(k)
pq (X))m

p,q=1 ∈Rm×m with the pq-th entry

h(k)
pq (X) =Ei

[
Ej [φ ′′(yi j(xk))yi j(xp)yi j(xq)]

Ej [φ(yi j(xk))]

]
−Ei

[
Ej [φ ′(yi j(xk))yi j(xp)]Ej [φ ′(yi j(xk))yi j(xq)]

(Ej [φ(yi j(xk))])2

]
.

(8)

Let X = X∗. Using the properties of the whitened signals,
tedious but straightforward computations lead to

d2

d t2 f (X∗etΩ)
∣∣∣
t=0

=D2 f (X∗)(X∗Ω,X∗Ω)

=
m

∑
1≤k<l≤m

ω
2
kl (ûkk(X∗)+ ûll(X∗)) ,

(9)

where

ûkk(X) := 2
h2 Ei

[
Ej [φ ′′(yi j(xk))]
Ej [φ(yi j(xk))]

]
− 1

h2 Ei

[(
Ej [φ ′(yi j(xk))]
Ej [φ(yi j(xk))]

)2
]

−Ei

[
Ej [φ ′(yi j(xk))yi j(xk)]

Ej [φ(yi j(xk))]

]
.

(10)

Consequently, the Hessian of f at X∗ is indeed diagonal. It is
important to notice that the properties in (9) hold true only if
the complete statistical independence can be ensured for the
sources.

It is known already that the global minimum of the ac-
tual mutual information between reconstructed signals gives
the correct separation. However there is still no proof show-
ing that the global minimum of the nonparametric empirical
mutual information defined in (3) yields the best estimation
of the sources. Nevertheless, in this work, we assume that
the best estimation of the sources is attained at the global
minimum of the KDE based contrast defined in (3). In other
words, we assume that any correct demixing matrix X∗ is a
nondegenerate critical point of the contrast f , i.e., for a given
set of sources, the term ûkk(X∗) defined in (10) is nonzero.

3. GEOMETRIC METHODS FOR THE KDE BASED
LINEAR ICA PROBLEM

3.1 Jacobi-type ICA Method
Jacobi-type methods are well-known tools for solving matrix
eigenvalue problems or singular value problems [7]. They
can also be considered as optimisation procedures. The lo-
cal convergence properties of Jacobi-type methods have been
recently discussed in [10, 13]. In this section, we develop a
Jacobi-type method to optimise the ICA constrast (3).

A Jacobi-type method consists of iterating so-called
sweeps. Within a sweep, the Jacobi-type method uses prede-
termined directions, which reduce the computational burden.
Once fixing a predetermined direction, a step size is chosen
to yield either a local or a global optimum of the restricted
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cost function. However, this is often unfeasible for general
cost functions. In this work, we follow a different approach
that is based on a one dimensional Newton optimisation step.
Similar approximations of the optimal step size have already
been used in [15, 8].

Now let us denote a basis matrix of so(m) by Ωkl ∈ so(m)
with ωkl = −ωlk = 1 and zeros anywhere else. We define a
set of directions in so(m) as ∆ := {Ωkl ∈ so(m)|1≤ k < l ≤
m}. Recall the formula for a geodesic in SO(m) emanating
from a point X in direction XΩ ∈ TX SO(m)

γX : R→ SO(m), t 7→ X exp(tΩ). (11)

That is γX (0) = X and γ̇X (0) = XΩ. By fixing a direction
Ω ∈ so(m), we constrain the ICA contrast function f defined
in (3) to a geodesic, such that in each step, a one dimensional
optimisation problem

f ◦ γX : R→ R, t 7→ f (X exp(tΩ)) (12)

has to be solved. Having chosen a predetermined direction
Ωkl , we compute the first and second derivatives of f ◦ γX as
follows

d
d t f (X exp(tΩkl))

∣∣
t=0 = ukl(X)−ulk(X),

d2

d t2 f (X exp(tΩkl))
∣∣
t=0 = ĥkl(X)+ ĥlk(X),

(13)

where ĥkl(X) := h(k)
ll (X)− ukk(X). Hence, a Newton step

λkl ∈ R for a fixed direction Ωkl can be computed by

λkl := λkl(X) :=− ukl(X)−ulk(X)
ĥkl(X)+ĥlk(X)

. (14)

Now by the special structure of Ωkl , the matrix Φ =
(φpq)m

p,q=1 := exp(λklΩkl) is computed as being a Jacobi ro-
tation, i.e., it is equal to the identity matrix except for the kk,
ll, kl and lk entries with

φkk = φll = cos(λkl),
φkl =−φlk = sin(λkl).

(15)

To ensure the one dimensional Newton direction to point
downhill, one can force the denominator defined in (14) to be
positive by taking the absolute value of the Hessian of f ◦γX .
A Jacobi-type method for optimising the KDE based linear
ICA contrast function can be summarised as follows:

Jacobi-type KDE based linear ICA method

Step 1: Given an initial guess X ∈ SO(m) and a set
of predetermined directions ∆⊂ so(m);

Step 2: Let Xold = X . For 1≤ k < l ≤ m;
(i) Calculate a Newton stepsize λkl ∈ R

λkl =− ukl(X)−ulk(X)
|ĥkl(X)+ĥlk(X)| ;

(ii) Update X ← X exp(λklΩkl);
Step 3: If ‖Xold−X‖ is small enough, Stop.

Otherwise, goto Step 2.

To show the local convergence properties of the Jacobi-
type KDE based linear ICA method, we first state the fol-
lowing theorem regarding the local quadratic convergence of
a Jacobi-type method, which employs a Newton step rota-
tion, for optimising a general cost function on SO(m). This
result can be proven by similar arguments explored already
in [10, 13]. Due to the page limits, the proof will be omitted
here.

Theorem 1 Let f : SO(m)→ R be a smooth cost function,
X∗ ∈ SO(m) be a local minimum of f and {Ω1, . . . ,ΩN} be
a basis of so(m). If the Hessian H f (X∗) is nondegenerated
and if X∗Ωi,X∗Ω j ∈ TX∗SO(m) are orthogonal with respect
to H f (X∗) for all 1≤ i < j≤ N, then the Jacobi-type method
using a Newton step converges locally quadratically fast.

The local convergence properties of the Jacobi-type KDE
based linear ICA method can be stated as follows

Corollary 1 Let X∗ ∈ SO(m) be a correct demixing matrix
of a linear ICA problem. Then the Jacobi-type KDE based
linear ICA method is locally quadratically convergent to X∗.

Sketch of proof. Let ∆ be a standard basis of so(m). It can be
shown that D2 f (X∗)(X∗Ωkl ,X∗Ωpq) = 0 for any Ωkl 6= Ωpq.
Then by the assumption that X∗ is a nondegenerate critical
point, the result follows. �

3.2 Approximate Newton-like ICA Method

For a Newton type method, computing the Hessian is gener-
ally too expensive to evaluate at each iteration. Therefore we
propose a cheap approximation of the true Hessian according
to the explicit structure of the Hessian at a correct demixing
matrix.

As suggested in (9), the Hessian of f at a correct
demixing matrix X∗ is indeed diagonal. We therefore
might approximate the Hessian of f considered now as
the linear operator TX SO(m)→ TX SO(m) by approximating
d2

d t2 f (XetΩ)
∣∣
t=0 using the expression

m

∑
1≤k<l≤m

ω
2
kl (ûkk(X)+ ûll(X)) . (16)

It is easily seen that the approximation (16) gives the true
Hessian of f as in (9) if X = X∗. Hence, for an approx-
imate Newton method, the approximate Newton direction
Ω = (ωkl)m

k,l=1 ∈ so(m) can be cheaply computed by

ωkl = ukl(X)−ulk(X)
ûkk(X)+ûll(X) . (17)

Now, an approximate Newton iteration can be closed by pro-
jecting the Newton direction Ω back onto SO(m) using the
matrix exponential.

However, in contrast to the Jacobi-type update, the ma-
trix exponential of an arbitrary Ω ∈ so(m) requires an eigen-
value decomposition being an unnecessarily expensive itera-
tive process [16]. However, one can overcome this issue by
using a first order approximation of the matrix exponential
via a QR decomposition, which is still orthogonal as follows.
Let

I +Ω = Q(Ω)R(Ω), (18)

be the unique QR decomposition of the matrix I + Ω with
Ω ∈ so(m). Note that, the determinant of I + Ω is always
positive. Therefore the QR decomposition is indeed unique
with diagonal entries of R(Ω) being positive and detQ(Ω) =
1.

To summarise, we construct the Approximate Newton-
like KDE based linear ICA method as follows:
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Approximate Newton-like KDE based linear ICA method

Step 1: Given an initial guess X ∈ SO(m);
Step 2: Let Xold = X . Compute the direction Ω =

(ωkl)m
k,l=1∈so(m) by

ωkl = ukl(X)−ulk(X)
ûkk(X)+ûll(X) ;

Step 3: Update X ← XQ(Ω);
Step 4: If ‖Xold−X‖ is small enough, Stop.

Otherwise, goto Step 2.

Finally, the local convergence properties of the approx-
imate Newton-like KDE based linear ICA method are sum-
marised in the following result.

Theorem 2 Let X∗ ∈ SO(m) be a correct demixing matrix
of a linear ICA problem. Then the approximate Newton-like
KDE based linear ICA method is locally quadratically con-
vergent to X∗.

Sketch of proof. Since the approximate Newton direction de-
fined in (17) is locally a smooth map on SO(m) around X∗.
Each iteration of the approximate Newton-like KDE based
linear ICA method is then locally a smooth map on SO(m)
around X∗ as well. It can be shown that the first derivative
of the algorithm considered now as locally a smooth map
around X∗ vanishes at X∗. The result follows by a Taylor
series argument. �

4. NUMERICAL EXPERIMENTS

In this section, we compare our new methods with an exist-
ing parallelised approximate Newton linear ICA algorithm,
PANNICA proposed in [19], which can be considered as an
nonparametric version of FastICA. Firstly, the local conver-
gence properties of all algorithms are investigated by apply-
ing them to an ideal dataset and a simple speech dataset. The
performance are further compared in terms of both separa-
tion quality and convergence speed. Without fine tuning the
kernel bandwidth h, we set h = 1.

4.1 Convergence Properties
The convergence is measured by the distance of the accumu-
lation point X∗ to the current iterate Xk, i.e., by the Frobenius
norm ‖Xk −X∗‖F . All three methods are initialised by the
same demixing matrix. It is worthwhile to notice that, by
the nature of the linear ICA problem, all algorithms can con-
verge to different correct demixing matrices, where one is a
column-wise permutation of the other. Here we only study
the cases where they converge to the same demixing matrix.

First, we construct an ideal dataset where the properties
of the Hessian given in (9) hold true. It consists of two simple
signals, one being a square wave and the other a sine wave.
The numerical results shown in Figure 1 verify the local
quadratic convergence properties of both methods presented
in Corollary 1 and Theorem 2. It also indicates that PAN-
NICA is locally quadratically convergent as well. Based on
our implementations, all algorithms have comparable com-
putational burden.

Now, let us study the local convergence properties of
these methods on a real speech dataset, which consists of
three signals with n = 5,000 samples. The results in Figure 2
suggest that all three algorithms appear to converge only lin-
early fast. This is most likely caused by the fact that, for
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Figure 1: Convergence on an ideal dataset.
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Figure 2: Convergence on a simple speech dataset.

this speech dataset, the ideal properties of the Hessian shown
in (9) are not fulfilled. Nevertheless from this experiment,
one can still conclude that the Jacobi-type method converges
much faster than the other two approximate Newton based
algorithms within a real environment.

4.2 Comparison of performance
In this experiment, all methods are tested on the bench-
mark speech signal dataset from the Brain Science Institute,
RIKEN, see http://www.bsp.brain.riken.jp/data. The dataset
consists of 200 natural speech signals sampled at 4 kHz.

The task of this experiment is to separate m = 3 signals
which are randomly chosen out of 200 sources, with a fixed
sample size n = 1,000. The separation performance is mea-
sured by the average Signal-to-Interference-Ratio (SIR) in-
dex, refer to [2] for the definition. Usually, a large SIR in-
dex indicates a better separation. The convergence perfor-
mance is compared by the number of iterations/sweeps re-
quired by each algorithm to reach the same level of error,
e.g., ‖Xk−X∗‖ < 10−13. Each method is initialised by the
same randomly generated demixing matrix.

By replicating the experiment 100 times, Figure 3 and
Figure 4 present the quartile based boxplots of the SIR in-
dex and the number of iterations/sweeps for each method
to converge respectively. In Figure 3, it is shown that both
the Jacobi-type method and the approximate Newton-like
method reach almost identical accuracy, while the paral-
lelised approximate Newton method performs slightly worse
than the others. By comparing the convergence performance
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Figure 3: Comparison of separation quality.
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Figure 4: Comparison of convergence speed.

in Figure 4, the Jacobi-type method outperforms the other
two methods. In average, it converges about 3 times faster
than the others.
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