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ABSTRACT

Recent laser technology provides accurate measures of the
dynamics of fluids and embedded particles. For instance, the
laser-extinction measurements (LEM) use a laser beam pass-
ing across the fluid and measure the residual laser light inten-
sity at the fluid output. Some particle and fluid properties are
estimated from these measurements such as concentration or
velocity. However, the flow is submitted to fluctuations. The
received intensity is more appropriately modeled by a ran-
dom process. This paper first models the particle flow by a
queueing process. The measured intensity statistics are de-
rived according to this model. A particular case is the scin-
tillation index which is independent of the emitted intensity.
The proposed model allows to define higher order scintilla-
tion indices with the same property. Alternative estimates of
the fluid and particle properties can be deduced from these
quantities.
Index Terms: laser measurements, queueing analysis,

higher order statistics.

1. INTRODUCTION

Laser techniques such as the laser-induced incandescence
(LID) [10], the laser-induced scattering (LIS) [10], the laser
doppler anemometry (LDA) [1] or the laser-extinction mea-
surements (LEM) [13] are currently used to study the dy-
namics of fluid and embedded particles. This paper deals
more specifically with the LEM technique. An application
is the observation of emitted particles for in situ monitoring
of combustion effluents by measurement of the soot volume
fraction [3]. Such measurements are motivated by the need
to reduce pollutant emissions for environmental purposes all
the more that legislated emission limits are imposed by envi-
ronmental protection agencies worldwide [13].

The LEM system is composed of a laser beam crossing the
flow and embedded particles (Fig.1). When the laser beam
crosses the fluid, the light is partially absorbed by the parti-
cles. Residual light intensity measurements in the emission
direction provide estimates of the particle concentration, size
and/or velocity. An optical device thus measures either the
received beam intensity power for opacity monitors or its
temporal variation for more recent scintillation monitors [3].
The measurements of the first and second order moments of
the intensity lead to the so-called scintillation index. How-
ever, it has been shown that the autocorrelation function and
the power spectrum of the light intensity provide additional
information on the observed medium [8], [9]. This paper
generalizes these results to higher order statistics of the re-
ceived intensity. This generalization provides alternative es-
timates for the fluid and particle properties. Moreover, the
particular behavior of the higher order scintillation indices
should allow to check the model validity through practical
measurements.
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Section 2 models the physical phenomenon as an appropriate
queueing process. Section 3 proposes measurements based
on higher order statistics of the received intensity. Section
4 studies the particular cases of a fluid with constant veloc-
ity and a rectangular laser profile, of small and/or identical
particles and of a circular cylindrical laser beam. The proofs
(provided in appendix) are based on the properties of Poisson
processes and of the multinomial distribution.

2. PHYSICAL PHENOMENON MODEL

Figure 1 displays the measurement apparatus in the particular
case of a rectangular laser beam profile developed in section
4. However, the model presented in this section is indepen-
dent of the profile. Indeed, optics allows to build a large va-
riety of profiles (see for instance http://www.ophiropt.com).
The intersection between the laser beam and the particle flow
is a piece of cylinder ¥* with constant cross-section ..
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Figure 1: Laser extinction measurement system

According to Mie theory, a given particle scatters and ab-
sorbs a small amount of light. From [3] and others, the re-
ceived intensity / can be expressed by:

&
1 =1 A with Ay =1— — 1
Okle—[J, k k 57 (D

where Iy denotes the incident laser beam intensity.

For a given particle with index &, &} denotes the so-called
extinction cross-section. Uncertainties on the particle shape
and orientation result in a random model for &. According
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to [4], in some practical cases the particle sizes follow a log-
arithmic normal or a Rosin-Rammler distribution. The factor
Ay such that 0 < A; < 1 models the laser beam attenuation
induced by this particle. Note that this model assumes a con-
stant beam intensity in the emission surface. This hypothesis
is currently made in the literature. However, if the intensity
is not constant, which is the case for Gaussian Schell-model
beams [16], the extinction cross-section &} distribution de-
pend also on the place where the particle enters the laser
beam.

The LII and LIS problems admit similar models. In the
case of the LII, the laser heats the particles up to incandes-
cence: laser-heated soot particles originate near-blackbody
emissions [14]. Then measurement of the light produced
by combustion is performed. Indeed, for a sufficient laser
pulse, LII emission in the visible wavelength range is ap-
proximately proportional to the local soot concentration [14],
[17]. The LIS rather measures the light scattered by the en-
countered particles [2]. In both cases, the received intensity
I’ is the sum of all the particle contributions:

I'=n Y A )
ked;

Note that this expression appears as the logarithm of (1).
Though the logarithm of the spectral density of 7 is not the
spectral density of the logarithm of 7 (the same holds for the
autocorrelation functions), the method proposed in this pa-
per can be applied to the LII and LIS problems. The LDA is
based upon a different principle [1]: the laser beam is split
into two beams which create an interference region inside the
fluid. When crossing this region, a given particle modulates
the light at a given frequency. This frequency is a function
of the particle celerity i.e. a parameter to be measured. The
measurement accuracy requires that at most one particle is
in the interference region at a time. Consequently, the LDA
cannot be treated with the same mathematical models than
LII, LIS and LEM.

Let J; denote the set of illuminated particle indices at time z.
If a particle of index k enters the beam at time #; and goes out
at the time 7, then

J ={kt <t,f;, >t} 3)

The particle flow in the illuminated volume ¥ can be de-
scribed by a queueing process with service times Ly = 1, — 1
corresponding to the lightening or beam crossing duration
[51, [8], [9]. Ly depends on . and on the possibly time-
varying particle velocity .

For a reasonably weak particle concentration p, the arrival
time sequence t = {#;k € Z} can be modeled by a Homo-
geneous Poisson Process (HPP) with parameter A [15]. The
Poisson parameter A is a function of p.

Now, let |F| denote the cardinal number of a given set F.
Then, N (¢, ) defined by

N(t,7) = {k;t <t <t+ 7} 4

denotes the number of particles entering the beam in the in-
terval [¢t,¢+t[. N(#,7) is a Poisson random variable with
parameter At. For non-overlapping intervals [¢,7+ 7| and
[¢',¢' 4+ T'[, the random variables N (¢,7) and N (¢',7') are as-
sumed independent. Moreover, the probability distribution
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of N(z,7) is assumed independent of ¢ and thus stationary.
Finally, N (¢, ) verifies:

o PrIN(1,7) > 2)

7—0 T =0 (5)

Moreover, if the L;’s are independent and identically distrib-
uted, the process is a M /G /oo queue. According to queueing
notations, M is for an HPP for particle arrival times, G de-
notes the unspecified cumulative distribution of the indepen-
dent service durations:

G(x) =Pr[L; < x] (6)

G depends on the particle velocity V and on . geometric
properties. Finally, o is for an infinite number of servers. An
unlimited number of servers i.e. “the service is instantaneous
and equivalent for each customer” means that the particle is
not stopped when entering the volume 7.

According to this model, the number of illuminated particles
at time ¢ i.e. |J,| is Poisson distributed independently of the
distribution G. Note that the independence with respect to G
holds only when t = {#;;k € Z} is a HPP.

A Poisson distribution for |J,| justifies the results obtained in
[2], [3] and allows to derive the higher order moments of the
received intensity leading to extensions of the scintillation
index.

3. HIGHER ORDER SCINTILLATION INDICES

Particle emission is classically monitored with opacity sys-
tems: the particle concentration is directly measured through
the light beam intensity power attenuation on the fluid path.
However, the major drawback of opacity monitors is their
sensitivity to dust accumulation on the lens. The opacity sys-
tem reliability can only be achieved at the cost of a high level
of maintenance. The scintillation index has been recently in-
troduced because of its insensitivity to the optical receiver
contamination [3], [4]. Scintillation monitors rather mea-
sure the temporal variation of the light beam intensity power.
Measurements during an extended period without mainte-
nance is thus possible. A linear relationship between scin-
tillation and particle concentration has been verified through

experiments.
The scintillation index is defined as:
2
a erll@] _EPQ)] -
E2[I(r)]  E*[(r)]

where E|[..] denote the mathematical expectation and var
denotes the variance. A similar index called coefficient of
variation is used in acoustics [12]. A is independent of [
which prevents sensitivity to dust accumulation and to slow
variations of the laser intensity. In practice, scintillation
monitors provide the empirical variance of the intensity
measurements normalized by their squared empirical mean
measured over a given time period.

Let define the generalized scintillation index by:

E[IP(£)I9(t + 7))

Ew@Em Pt ®

Apg(7) =

This index is also independent of the laser beam intensity o.
The classical scintillation index is a particular case obtained
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by A= A;;(0). Note that, whatever the integers p and g:
lim E[IP()19(t + )] = E[IP(t)|E[I(t)]

T—ro0

&)

Let m, = E [A}]. The appendix proves the following for-
mula:

Ap(T) = exp[/wpq/ (1-GW)du)—1  (10)
T
with:
Upg = Mpyg—mp—mg+1>0. an
Indeed, since 0 < A; < 1:
AP Al AP+ 1= (1-AD)(1-A]) >0 (12)

A remarkable property of A,,(7) is that its second order
derivative is positive for all T > 0. A,,(7) is a positive con-
vex function. As such, A,,(7) belongs to the class of Polya-
type characteristic functions [11] whatever the integers p and
q. As a result, its Fourier transform (related to higher order
spectra) is positive whatever the integers p and g. Moreover,
the shape of the higher order scintillation indices only de-
pends on G (u) i.e. on the particle velocity and on the laser
beam geometry. Consequently, for a given system, the gen-
eralized scintillation indices measured for different integers
p and g, A,q (1), only differ by the factor p,, and have the
same shapes and thus same Fourier transform shapes. These
shapes as functions of the delay 7 provide useful informa-
tion on the parameters of interest. Moreover, plotting these
curves for different p and g values should allow to validate
the queueing process model through experimental measure-
ments. The generalized scintillation index is function of A
and hence of the laser profile provided by constructors.

Note that the main drawback of higher order statistics is
the usually higher mean square error of their empirical es-
timates. Hence, high p and ¢ values will lead to poor esti-
mates. Consequently, since the increasing order scintillation
indices should provide the same information, relatively small
p and g values should be preferred for parameter estimation.
The following section considers particular cases of interest
leading to simplified expressions. In such cases, estimates of
the system parameters are proposed. In general, there exists
a closed form expression of A, (7) leading to estimates of v
and p when the Poissonian property and model (1) hold i.e.
for small p values.

4. PARTICULAR CASES
4.1 Constant fluid velocity and rectangular laser profile

The formula (10) holds even when the particle velocity is
random or variable during the lightening duration. This hap-
pens when the fluid is turbulent or when edge effects cannot
be neglected. However, formula (10) leads to a simplified
expression when the fluid velocity is constant. When the
celerity V of the particles can be assumed constant and is
perpendicular to the laser beam profile, the Poisson parame-
ter A can be expressed as

A =pv|| (13)
where v = | /| and .%' is the beam projection on a plane
perpendicular to v (Fig.1).
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Consider a rectangular beam as displayed in Fig. 1 such that
&' = l11,. The lightening duration L; = h/v of particle k is
constant, so that, using (10) and taking into account that the
arrivals are uniformly distributed on .#"':
ex Lb(h/v—T1)|—1 7T<h/v
Apy (T) = { 0 p[pl:clpg lh;\() / )] /

(14)
Equation (14) provides estimates of the celerity v and of the
product pll,g. Upy depends on the particles and on the laser
wavelength through the & in (1). p,, has to be determined
by an appropriate device calibration before measurements.
Indeed it depends only on the particle size which is part of
the required a priori knowledge on the physical phenomenon.
The concentration p can then be measured from the shape of
the higher order scintillation index as a function of 7. In par-
ticular, the slope of the higher order scintillation index loga-
rithm is proportional to p.

There exist various laser beam profiles, but which do not
generally lead to a simplified expression of (10). However,
whatever the profile, A, (7) exhibits an angular point for
T =1 > 0. 79 corresponds to the maximum service time
and varies like 1/v. This provides an estimate of the fluid
and particle velocity.

Figure 2 displays the higher order scintillation index pro-
vided in Eq. (14) for different values of p and ¢ and a given
concentration p = 10. The distribution of the laser beam at-
tenuation induced by a given particle Ay is determined from
the particle size distribution. This distribution is log-normal
in many applications (see [10] for instance). However, the
proposed measurement method only requires the first and
second order statistics of the laser beam attenuation. The
simulations have been performed with mean E[A;] = 0.1 and
standard deviation 04, = 0.01 . The parameter (i, is esti-
mated through 1000 runs. The area .’ = [, 1, is normalized.
The curves, displayed in logarithmic scale, show the approx-
imately linear variation of the higher order scintillation index
up to the point T = h/v = 0.8. This point position provides
an estimate of the particle velocity. The line slopes are pro-
portional to the particle concentration p.

—p=1.g=1
o pe2ge2

r=r=p=50=5

== =p=10,9=10

Figure 2: Higher order scintillation indices
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4.2 Small particles

Formulas (10) and (14) depend on the embedded particle
geometrical properties through parameter (,,. When par-
ticles are small with respect to the beam section (A; =~ 1 for
all k), the following approximation holds :

Hpg = E[(1-AD)(1—AD)] ~ pgE[(1—Ar)*]  (15)

Furthermore, if the particle are identical, the attenuation Ay
can be identified to a constant a. Then m,, = @" and parameter
Upg can be approximated as follows:

Hpg = (1-a?)(1~a”) = pg(1 -~ a)® (16)
4.3 Circular cylindrical laser profile

As shown previously, a rectangular laser profile perpendicu-
lar to the constant particle velocity, leads to a constant light-
ening duration. However, for a constant velocity but a non
rectangular laser profile, the lightening duration is a random
variable. The case of a circular cylindrical beam is the most
ubiquitous. In this case, the lightening duration is determined
by the place where the particle enters the beam. This dura-
tion is maximum when the particle trajectory cuts the cylin-
der axis and is minimum at a distance equal to the cylinder
radius r. Assume that the particle with index k crosses the
beam at the distance x; of the cylinder axis (—r < x; < r),
the lightening duration is:

L= z—v’ 1— (ﬁ)2 (17)

r

Now suppose that the particle density p is uniform. The
lightening duration probability density function is given by:

2 2
g =y/1=(5.) " lul < = (18)

The lightening duration distribution can be obtained what-
ever the laser beam profile but the derivations are generally
not straightforward.

5. CONCLUSION

In this paper, particles crossing a laser beam have been mod-
eled as customers in a queueing process with an infinite num-
ber of stations and Poissonian system inputs. The service
time is the time spent by the particle in the beam. This time
depends on the fluid velocity and on the beam profile. If
the entering times are Poissonian, the queueing process is
M /G /oo, and associated statistics are well-known.

This paper relates these statistics to the physical phenom-
enon and proposes extinction measurements based on the
higher order statistics E [I” (¢) 17 (¢ + t)] and the generalized
scintillation indices A,, (7) which are related to these mo-
ments. We have shown that the A,, (7) belong to the same
class and are positive definite functions with positive Fourier
transforms. Moreover, simplified expressions have been pro-
vided in some cases of interest. The properties of the gener-
alized scintillation index may allow to check the model va-
lidity from practical measurements. This paper is theoretical
as an extension of papers [2] and [3]. It provides a general
framework that can be applied to many different measure-
ment problems. Indeed, a similar queueing model has been
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used for LII and LDA [8] and could be extended to more
complex systems. Higher order statistics could be studied in
those cases as well.

6. APPENDIX

1) This appendix demonstrates the relation (10). Some use-
ful properties are recalled in the second part of the appendix.
Recall that J; is the set of illuminated particles at time t. Let
define the following sets:

B=JNJ={kn<t,n>t+1} (19)
C=J NI ={kn<t, i<y <t+7} (20)

D=J NI ={kt<g<t+t4>t+1t} (1)

Let K, 4 (7,7) denote E[I? ()17 (t + t)]. With the previous
definitions:

E\[TA7 T]47 IT A%

keB jec meD

Kpq(t,7) = (22)

A basic property of the HPP is the independence of N (0,¢)
and N (z,7). This implies the independence of |B| and |C|
with respect to |D].

Using conditional expectations, (2

Kpy(1,7) = E[ Bl m'C‘} E [m‘qD'}

where m,, = E[A"]. Conditionally to the event “N (0,7) = n”
the random variables #; in the interval (0,¢) are 1ndepen-
dent and uniformly distributed (when the indices k take val-
ues in {1,...,n} with probability 1). Consequently, the two-
dimensional random variable (|B|,|C||N (0,¢) = n) follows
a trinomial distribution with respective parameters [6]:

2) leads to

/Pr h— > 1+ T—u] du

l/1— (u+1)]du (23)

~

and

1 !
:;/ Pr[t7u<t,'<—tk>t+f—u]a’u
0

_ ;/O' (G(u+7)—G(w)]du (24)

Also, (|D]|N (¢,t) = n) is binomial with parameter:

t+1
d= ;/ Prif—te>t+7—u|du
t ] .
_ —/ (=G w)]du. ©5)
TJo
The multinomial generating function yields [7],[15]:

Kpq(1,7) = 1§ E [(mp+f/bt +mpe,+1—b,— cr)N(O,r)}

X E [(mgd+1-d)"“?]  6)
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Since N (0,7) and N (t, T) are Poisson distributed with respec-
tive parameters Ar and A7, equation (26) leads to:

Kp g (t,7) = 15" exp[At (mpsgby +mpc, — by — c) +
Atd(mg—1)] (27

The stationary limit is obtained when t — co. Then

Kpq(7) = limK}, 4 (2,7)

t—ro0

oo

— Pexp [(x + Al /T [1— G (u)] du] (28)

with:
o = AE [t — 1] (mp+mg —2) (29)

2) The previous proofs use properties of the Poisson process
and multinomial probability distribution [6], [15]. The HPP
definition is recalled in section 2 [5]. The main hypothe-
sis is the independence of the random variables N (¢,7) and
N (¢',7") when the set (¢,7) N (¢',7") is empty. The properties
of the particle queueing process are closely dependent of this
hypothesis validity. The hypothesis of stationarity as well as
property (5) may be unnecessary. Note that the stationarity
hypothesis can be questioned for periodic excitation as gas
emission in diesel engines [18]. However, the cycle is gener-
ally short with respect to the measurement duration. Conse-
quently, the non-stationarity can be neglected.

The property (5) can be also discussed because of the pos-
sible particle aggregation. However, this phenomena mainly
lead to the particle dimension modification. As highlighted
in this paper, the use of higher order statistics allows to vali-
date the basic hypotheses implied in the HPP definition.

The trinomial distribution generalizes the binomial distribu-
tion which concerns experiments with two probabilities [7].
For instance, let consider n independent experiments with
three possible issues /, J and K with respective probabili-
ties py, py and px = 1 — p; — py. If X (respectively Y and Z)
is of issues in I (respectively J and K), then a straightforward
counting leads to:

n! i
= mpflﬁpl} @0

where 0 < i+ j <n.

The binomial and trinomial distributions are particular cases
of the multinomial distribution, where the number of issues
is arbitrary. The generating function can be deduced from the
previous definition using the generalization of the binomial
formula

n! . S
E [y = ————(px)'(psy) Pg "’

[ } OS’;}.SHHJ!(n—t—])! K
= (pix+psy+pk)" (31)

This formula is used above in the particular case where:

X= |B|aY = |C|ap1 = Mptq,PJ = Mp. (32)
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