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ABSTRACT hibit a significantly increased convergence with applaati

Adaptive Volterra filters are a popular model for compen—t0 NLAEC' Lo - :

sating distortions caused by nonlinear structures with mem, 1 Nis contribution proposes an efficient, fast version of the
ory such as low-quality loudspeakers. This paper proposes 4erated coefficient update mechanism by exploiting recur-
fast version of the recently investigated repeated coefftci V€ relations of the repeated filtering and update stepst, Fi
updates for the partitioned block frequency-domain adegpti S€C: 2 introduces the notation for this paper and preseets th
Volterra filter. Exploiting inherent recursions of the istion ~ 2asic definitions of the PBFDAVF before the iteration algo-
procedure yields an efficient realization with a very low ad-fithm is outlined in Sec. 3. The derivation of the essential
ditional complexity compared to the usual LMS adaptation/€cursion properties and the resulting fast realizatiolius-
Experimental results for both noise and speech demonstrafgited in Sec. 4 whereas Sec. 5 discusses the computational
a significant acceleration of the filter convergence and evercOMmPplexity of the regarded algorithms. Finally, experirtaén

all echo cancellation for realistic nonlinear AEC scenaxio  'esults for both noise and speech input can be found in Sec. 6.

1. INTRODUCTION 2. PRELIMINARIES

In this section, we will briefly introduce the PBFDAVF in an
xplicit notation and a matrix notation. For more detailed i
ormation, the reader is referred to [5]. Note that all espre

sions using bold, underlined fonts dengiectors whereas

pold fonts refer tamatrices. Moreover, uppercase letters are
reserved for DFT domain quantities and constants whereas
lowercase letters denote time-domain signals.

The partitioned block second-order Volterra filtering in

X(K) the DFT domain reads

Adaptive Volterra filters are a well-known model for identifi
cation and compensation of signal distortions caused by no
linear structures with memory. A typical application scema

is given by nonlinear acoustic echo cancellation (NLAEC)
as depicted in Fig. 1, where an adaptive second-order Vo
terra filter is used to compensate for the nonlinear a¢kp
recorded by the microphone sigrifk).

N B-1 By—1Bp—1
= / YV(m) = Z Yl,v,b(m)+ Z Z YZ,V,bj_,bg(m) (1)
PBFDAVF b=0 b1=0b3=0
y(k)
9(K) wherev refers to the processed signal frammeepresents the
e(k) - d(k) n(k) f_requency_bin an@,B, de_not_e the corr_esp_onding number of
< filter partitions [5]. The binwise contributions to the outp
spectra are given by
Figure 1: NLAEC scenario where the nonlinear egtlo is ~ .
to be compensated by an adaptive Volterra filter (PBFDAVF) ~ Yiv.b(M) = Hayp(M) Xy p(m) 2)
M-1
Commonly, standard NLMS updates are employed as Yzvbib (M) = 17 > Haw by b, (M [M— M)
adaptation algorithm in order to keep the costs for the ad- m=0

justment of the filter within a tolerable range. Howevergsin Xy by (M) Xy b, ([M—mMm)  (3)
the nonlinear components are in general only weakly excited

the convergence of the corresponding coefficients is usuallyhereH; , ,(m) andH,,, byb, (M1, Mp) specify the DFT co-
slowed down and thus not satisfactory. Therefore, an extersfficients of the linear and the quadratic kernel respelgtive
sion of iterated coefficient updates as they are known fronpye to the symmetry of the 2D-DFT,.Jy denotes a modulo

linear adaptive filtering [1, 2, 3] has recently been investi gperation w.r.t. the DFT lengthl. Moreover, the spectra of
gated in [4]. There, an adaptive partitioned block freqyenc the input frames correspond to
domain \Volterra filter (PBFDAVF) has been modified to in-

corporate such an iteration procedure and was shown to ex-
P P Xy5(m) = DFTy {vab(K)} (4)
This work was supported by the Deutsche Forschungsgenheiftisc L

(DFG) under contract number KE890/2. where XV,b(K) T X(V L+k— (M - L) -b N) ®)
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and wherec € {0,...,M —1}. Here,L < N is the shift of the  for adaptive linear filtering scenarios and already outliime
overlap-save processing which relates to the partitiomi&iz  [4] for adaptive Volterra filters.

via an overlap factop = % Hence, the DFT coefficients in (12) are replaced by their
. . iterated versionﬁ(ltz,,b,:gl,blibz where the bracketed su-
Matrix Notation perscriptindicates the current iteration numbero< R—1.

For convenience, a matrix formulation of (1) to (5) will be As a consequence, the residual error in tHa iteration is
employed in the following. Defining the vector of the time- based on the corresponding filter outg?lfjjt) and can be cal-
domain input frames of the filter partitions as culated as -

el = w(a,-30) (14)

where the frame vectad, of the microphone reference is
. ) ) defined as in (5), (6) fdo = 0 and contains the same data for
we may write theM x M matrix of the corresponding DFT | of the repetitions. Additionally, a windowing matrix

spectra as
. | Ou—L O
W o= [ S ] (15)

is introduced which accounts for the time-domain constrain

which utilizes theM-point DFT matrixF. TheM x M2input  Of the overlap-save method [6]. Her, denotes thé x L

matrices of the quadratic kernel are then given by identity matrix wherea®v-. specifies a square “all-zero”
matrix of the given size.

T
Xyb = [Xv,b(o)v B} Xv,b('\/I - 1) (6)

Xiyp = diag{X; 5} where X;up = Fxyp (7)

X L diag{X } ®) Since the DFT-domain \olterra filter is implemented
2Vbyby - =2,v.by.by adaptively, we apply a standard LMS stochastic gradient al-
. gorithm [7] with a separate normalization and joint itera-
using the concatenated column vector tions of both filter kernels (SNLMS-JIJhe achieved filter
1 T updates are thus given by
X ::—[XT 0),.... X} Mfl} _ R
A2 ybyby M _2,v,b1,b2( ) —2,v,b1,b2( ) o ﬂ(lrjklj) _ ﬂ(lr,z,,bJrCl‘I’lXiv,ngw (16)
. . ~ (r+1 ~ (r
where theX, , ,, ,,(m) comprise all DFT bin products of the E(Z,v,b)l,bz _ E;,l’bl’bz n C2‘I’2X2v,b1,b2F§9) (17)

input partitions that contribute to a particular output trim o i _
(3) Furthermore, the Corresponding vectors of the adaptivfor all partitions of the linear and the quadratlc \olterexk

\olterra filter are given as nel respectively. Note that the superscfiptienotes a Her-
mitian conjugate, the diagonal matricds,, ¥, apply the
H — Fh (10) kernel-dependent step sizes of the SNLMS algorithm [4] and
==Lv,b =Lvb . the constraint matrice€1, C, are used to enforce the zero-
~ ~T ~T . . . - .
o 0), ..., M—1 } 11 padding of the time-domain kernel partitions. For the linea
=22,V,bybp H2v105(0): - By py )| @D case, théVl x M matrix C; reads
where the elements oﬁz\,’bbbz(m) are arranged analo- Cy:=F [ I(’)\‘ 0 0 } F1 (18)
M—N

gously to (9). Note that both the time-domain vecthis, ,,
of the linear kernel and the corresponding matrices of thevhereas for the quadratic case, the corresponilifigy M?2

quadratic kernel are zero-padded to the DFT lemdtim or-  constraint matrixC, has a more sophisticated structure
der to preserve the partitioned structure of the Voltermra ke which is due to the construction of the input vectors by (8),

nels [5]. (9). Hence, the definition analogously to (18)
Employing the above definitions, the filtering operations o
of (2), (3) may be expressed by inner products of the involved Cz := Faps Cops - Fyp g (19)

matrices. Thus, the \Volterra filtering of (1) reads requires the formulation of 2D-DFT matricé&p s with

scrambledelements in each row in order to provide the ap-
o = = propriate frequency transform along with an intermedi&e 2
Y, = bZO Xlﬂ"’bﬂlv"vbJrbZObZOXZ*"’bl’bZHZvvalvbz windowing operationCzp s according to the time-domain
B e (12) kernel partitioning [5]. We will, however, skip the explici
and yields the resulting time-domain output frame as ?heg'un;r']otrr‘];‘; :theerisveatrirg)arl]tE;C:tsrat%rhi?;s\;\?;r% of compactness, al-

Bi—1 Bp,—1By—1

a1l Note that a continuous usage of the filter coefficients re-
y, =FY,. (13) quires a defined “hand-over”, i.e.
3. METHOD OF ITERATED ADAPTATION g%, =8>, (20)
Based on the provided matrix notation, we will now in- £(0) ~(R)
o Hjyi1bb, = Hovpy b, (21)

vestigate the effect of iterated coefficient updates for the
frequency-domain adaptation of the PBFDAVF according tcholds throughout all processed frames. Obviously, usieg th
(12). This means that the conventional LMS algorithm is re-SNLMS-JI algorithm with onlyR = 1 iterations corresponds
peatedr times on the same frame data as proposed in [1, Zp a standard SNLMS algorithm as given in [4, 5].
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4. FAST ITERATION ALGORITHM Analogously,
Although the o_utIined iteration method provides s_ignifit:an ~(r+1) = (0) L Cow, X o - 29)
improvements in the convergence speed of adaptive \olterra==2,v.by,b, = =2,v.by b, 2%232v.by.by _209\/
1=

filters [4], it is highly desirable to develop a more efficient

version of the straightforward iteration approach of Sec. 3holds for the partitions of the quadratic DFT-domain kernel
In particular, it is imperative to avoid the costs of repdate o

quadratic filtering and updating due to the large number oEfficient Realization

second-order kernel coefficients. In the following, we will Hayving developed these recursive formulations for thedresi
thus utilize the matrix formulation of the PBFDAVF to ex- yal error block and the update of the DFT domain Volterra
ploit the inherent recursions of the iterated update proced  coefficients, we seek an implementation which allows for an
Starting from the a-priori error framgf,o), any further efficient calculation of (28), (29). However, as the DFT ma-
iteration tends to improve the minimization of the residualtricesF in (24) are likely to be evaluated by FFT operations
error block w.r.t. the current input frame and the referencén practice, the matrix-based recursion of (27) cannot be ap
data[1, 4]. All subsequent filter outputs forlr < R—1are  plied straightforwardly. Regarding (23), we neverthefess

therefore characterized by that any additional refinement of the filter output can be ob-
o) _ =1 | A tained by multiplication of the recent error block with the
y, =y, t4y, (22)  gain matrix Gy, rather than by a complete filtering in all

. ~() i , \olterra kernels and partitions. Note that in this case|ithe
with Ay, * as the refinement of the filter output due to theys|yeq DFTs may be replaced efficiently by appropriate FFT
already updated Volterra coefficients from the preceding ita|gorithms.

eration. Using (12), (13) and taking (16), (17) into account ~ Fyrthermore, the computational demands of the iteration

this refinement reads method are greatly reduced by allowing for unconstrained
Ais,r) _ Gvg\(,r*l) (23) updates for all intermediate coefficient adjustmentsifi.e.
whereG,, denotes aM x M iteration gain matrix Ci=1Iv and Cz = Iy (30)
holds for the constraint matrices. Despite the huge savings
I H in complexity, this simplification still yields attractiveon-
Gy =F Z X1vpC1¥1Xy, vergence behaviour as will be demonstrated by the results of
b=0 Sec. 6. Additionally regarding the kernel-dependent sandba
Bx—1Bp-1 H normalization of the applied DFT-domain LMS algorithm,
+ 3 D> Xovbb, CoW2Xy, b, |F (24)  the step size matrices are represented by
b1=0b;=0

which is constant throughout all performed iterations for a %1 = diag{ﬂl,v} and ¥y = diag{ﬂz,v,aug} (31)
given input frame. Where
Furthermore, inserting (22) into (14), we observe a recur-

. : : T
sive relation for the residual error block by, = {HZ,V(O); e 2 (M — 1)} (32)

of) = W(d, -3V -a3))) = eV -ae) (25) . T
N o Hoyasg = [Hov©OLh - boy(M =11 | . (33)
where the additional error reduction is given by s
" ~(0) (1) Note that thel,, denote “all-one” vectors of lengthl, as
Aey’ == WAy, = WGyey ™. (26)  required for the definition of the augmented step size vector

Considering (26) reveals that both right-hand side terms o&)or the quadratic filter partitions. The scalar step sizes fo
(25) depend on the error block of the previous iteratienl. oth Volterra kernelp = 1,2 are moreover given by

Since this recursion may be traced back for all previous it- (m) = Up
eration steps as well, the a-posteriori error of any iterais Hpv(Im) = Spv(M) +Jp
yielded by

(34)

where thea, represent user-specified control parameters, the
el — (Tw —WGv)rem) (27) 9 denote regularization constants and 8 (m) refer to

=V
. . . . the recursively averaged spectral powers of the kerneksnpu
which merely relies on the a-priori error itself. On the athe ;4 o tlined in [4, 5].

h?nhd, }he comelete eﬁ' olutilofn of Itlh.e DFT-domain partitions gy oiting the above modifications, the iteration gain ma-
of the linear Volterra ernel for a iterationsOr <R-1 trix is reduced to the form
can be expressed recursively as

G, = F'P,F (35)
S — ' ’
Hive = Hipp+Cr¥aXy,pFey where the power matrix
~(r-1) -1
=Hjup +Cl‘I’1XT,v,bF (Eg )+§\(zr)) By -1
P, =y X1vp 1 XY,
b=0
) P By—1By—1
= Hy,, +C ¥ XY, F- %g\()). (28) + 5 > Xovbb, ¥2XE b, (36)
i= b1=0by=0
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collects the weighted energy of all kernels and partitiansc  having calculated the power matrix wittB2M and B3 M?
tributing to each DFT bin. Due to the matrices involved inCMUL for each frame, there is only need for another 2 FFTs
(36), the resulting®, exhibits anM x M diagonal structure and a weighting of alM DFT bins in order to obtain the out-

as well and is constant for a given frameHence, it may be ;¢ refinements and the accumulatiafy throughout each

computed framewise prior to the repeated adaptation with a5 the remainingR — 1 iterations. Finally, we have only one

arbitrary number of iterations. ) , direct update of the Volterra coefficients, requiring thmea
Consequently, the influence of alliterations t <R—1  computations as each of tReupdates for the SNLMS-JI.

on the a-posteriori error can be computed successively by Assuming a standard radix-2 implementation, we have a

(N (r—1) G complexity of% M Id(M) CMUL per FFT operatioh Thus,
ey’ =e " -WGuey (B7)  the aforementioned calculations yield a total of
a)) =a) Y tel (38)

2R+1

[3R51+§B%+T Id(M)| M +2RBM?

where gff) denotes the corresponding accumulated error
block and is initialized by an “all-zero” vector of lengii,

ie. gs,o) = 0y. Thus, the effective adaptation of the DFT- CMUL for the straightforward SNLMS-JI algorithm and
domain Volterra coefficients can be carried out in a single,
direct update and yields

HY)p, = Hy)pt+ Cr¥: XY, Falt ™ (39)
IO _ 79 H (R-1) complex multiplications for its fast version. As can be seen
Hovoe, = Hovpyp, + C2¥2 X500, Fatv (40) by these expressions, the term governed\Wwy is scaled
which is governed by the total accumulation of all interme—byf f%r the straightforward approach whereas it is fixed at
diate errors. Accordingly, this algorithm is referred tdfast ~ 3B>M* for the fast SNLMS-FI adaptation method. This re-
iterated adaptation (SNLMS-Fue to its remarkable com- flects th_e fact that an increasing refinement and |t_erat«mi err
putational savings. It should be mentioned here that for thé@lculation as outlined by (35) to (40) can be achieved with-
coefficient adjustments of (39), (40), the constraint ncai out using a rep_eated qgadrahc filtering of conmderablecom
C.,C; are not restricted as given by (30). This implies that?!exity. In particular, this is due to the mapping of thve?
the actually performed filter update may as well fulfill the cOmplexity of an explicit second-order kernel filtering {8)
zero-padding constraint of the time-domain partitionisy [ & cOmplexity of ordeM by multiplication with the diagonal
power matrix (36).
5. COMPLEXITY CONSIDERATIONS To provide a more illustrative example, we evaluate these
) ) ) algorithmic demands for a scenario of nonlinear AEC where
In this section, we present a short analysis of the proposeq — 64, M = 128, the lengths of the Volterra kernels are
algorithm in terms of complex _multlpllcat|ons (CMUL_) and specified such thaB, = 5, B, = 1 and an adaptation with
Comp_are thlS to the Computatlonal burden of a StralghtforR =4 1is performed_ The number of operations for over]ap_
ward iteration method. _ _ ~ ping frames p = 4) is also given, in order to complete the
For these evaluations we investigate a non-overlappingange of comparable processing methods [4]. In this case, th
processing with. = N, which requires only one transformfor effort for transforming the input data is noticeably incsed,
the new input data, o of the first partition as all other block since no DFT spectra from previous frames can be re-used
spectra may be acquired by shifting previous input spegtra band hence the computational demands are slightly dispropor
one partition. A typical implementation is considered, evhi  tionate. Comparing the corresponding CMUL with those of a

exploits the symmetries of the second-order Volterra Kernenon-overlapping SNLMS, the resulting workload w.r.t. com-
and thus the number of necessary quadratic filter coeffiienp|ex multiplications per second is listed in Table 1.

is roughly halvened [5]. Moreover, we neglect the efforts fo
computing the power estimates contained in the normalized

1
581+§B§+Rld(M)+(Rfl) M +3B3M?

. . . | Algorithm || CMUL/sec || add. effort ]
step sizes (34) and restrict ourselves to unconstrained ver
sions of the adaptation according to (30), in order to cover SNMLS (p = 4) 18,944,000 11 +319.9%
only the core calculations of these algorithms. SNMLS-JI R= 4) 17,880,000 +296.3 %
After the input frame has been transformed, the com- SNLMS-FI R=4) 7,048,000 +56.2 %
plexity of a straightforward SNLMS-JI algorithm [4] is de- | SNLMS (p=1) || 4,512,000 || na |

termined by the loop oR iterations in total, each of which . _
contributesB; M and% BZM (2M -+ 1) CMUL by filtering, 2 Table 1: Comparison of workload for several algorithms
FFTs by overlap-save processing and error calculation and
another B; M andB3M? CMUL by updating all kernel par- From these figures, the benefit of the SNLMS-FI in terms
titions. Thus it can be seen that the overall complexity ofof computational complexity is obvious, since this fast-ver
the straightforward iterated coefficients updates haseppr sion consumes only approximately 50% more calculations
imately R times the complexity of the single-update casefor R = 4 iterations per update step. On the other hand, the
whereR= 1. demands of the straightforward SNLMS-JI are roughly pro-
Up to the calculation of the a-priori error block, the cor- portional to the number of iterations.
responding fast implementation (SNLMS-FI) requires the
same operations as the straightforward approach. However, ! 1d(...) denotes the logarithmus dualis (i.e. base-2 logarithm)
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6. ADAPTATION BEHAVIOUR 0
Contemporary to the analysis of the computational complex- 35)
ity we now demonstrate the effectiveness of this mecha- 30f

nism w.r.t. to an acceleration of the adaptation for freaqyen
domain Volterrafilters. Therefore, an NLAEC scenario as de- aht
picted in Fig. 1 is evaluated, where the nonlinear path of the 15 S
acoustic echg(k) is given by a second-order \Volterra filter N
with memory lengths according té=64 andB; =5,B, =1 ‘
and a corresponding power ratio of 20 dB for the linear-to- v
nonlinear signal components k). For the task of echo
cancellation, a PBFDAVF of the same size is utilized which o 1 2 3 4 5

applies an FFT sizél = 128 and a frame shift according time [s]

to the specified overlap factor. All adaptations are perim ) ) )
using the parametenrs, = 0.3 andd, = 0.001. Moreover, Figure 3: ERLE results for speech input (various algorithms
the generated echo is subjected to additive white Gaussian

noisen(k) such that an SNR of 30 dB is obtained for the mi-

crophone signal in order to investigate a realistic siriglk- 7. CONCLUSIONS

situation for NLAEC in a noisy environment. We have presented a fast version of the iterated NLMS adap-
At first, the ERLE measure [5] w.r.t. the referemb)  54i0n for%FT—domain \olterra filters. By exploiting the-re P
and the residual erroe(k) is evaluated for a speech-like ¢, jve relations inherent to repeated Volterra filterimgl a
coloured, Laplacian noise input. As illustrated in Figre -, eficient updates, this method has been shown to yield sig-
is a significant increase in convergence speed for an adapiagicant computational savings which are even more apparent
tion with iterated coefficient updates compared to the 8ingl yhap i the case of linear filtering. Nevertheless, our tesul

update case using either non-overlapping frames or procesg, 4t noise and speech inputs demonstrate the same gain

ing with p = 4. Furthermore it can be seen that this en-, ¢onvergence speed and steady state performance as for the

hﬁr:cemhent ig also maiptaiped ay the S';'LMS'H algoeri;hmstraightforward iteration procedure which readily jussfthe
although its derivation implies the use of unconstrained upy,o4erate increase in complexity over a conventional single
dates for the intermediate iterations. The missing comgtra

fast algorithm in fact yields a slightly better echo caratidin
than the straightforward algorithm. Note that this effsani
accordance with experiments where the SNLMS-JI has been

extensible to higher order structures as well.
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Figure 2: ERLE results for noise input (various algorithms)
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