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ABSTRACT

In this study, an optimum wavelet transform-based ECG 
compression technique is proposed and its noise 
performance analysis is investigated. The major addressed 
issue is guaranteeing an error limit as small as possible 
measured by the percent root mean square difference 
(PRD) for the reconstructed ECG signal at every segment 
while keeping the compression ratio (CR) as large as 
possible with reasonable implementation complexity. For 
this purpose, an optimum wavelet transform-based 
compression algorithm is developed. Noise effects on the
normal and the arrhythmia signal is analyzed based on the 
compression ratio (CR) and the reconstruction distortion. 
The similarity measurement is used as a criterion to 
analyze how much the original signal is similar or closer 
to the reconstructed one. Two numerical metrics PRD and 
CR are used as the major performance evaluation 
parameters to analyze the results of the implemented 
method quantitatively. Using the developed technique, 
different types of orthonormal wavelets are compared.

1. INTRODUCTION

The aim of electrocardiogram (ECG) data compression is 
to reduce the amount of digitized ECG data as much as 
possible, so that reasonable implementation complexity is 
kept while maintaining clinically acceptable signal quality. 
In recent years, many schemes for ECG compression have 
been proposed, which can be grouped into two categories: 
Direct methods and transform methods [1-5]. In direct 
methods, the compression is performed directly on the 
ECG samples, i.e., AZTEC (Amplitude Zone Time Epoch 
Coding), TP (Turning Point), CORTES (Coordinate 
Reduction Time Encoding System), SAPA (Scan-Along 
Polygonal Approximation), PP (Peak-Picking), CC (Cycle-
to-Cycle) are the examples of the direct methods. In 
transform methods, the original samples are transformed to 
another domain with the hope of achieving better 
compression performance. Some examples of transform 
methods include Fourier descriptors, Walsh transform, 
Karhunen-Loeve transform, and recently developed 

Wavelet transform [2]. In most cases, direct methods are 
superior to transform methods with respect to two reasons: 
System complexity and error control mechanism. However, 
transform methods usually achieve higher compression 
ratios (CR).

The major issue addressed in this paper is to guarantee 
an error limit measured by the percent root mean square 
difference (PRD) of the reconstructed ECG signal to be 
controlled at every signal segment, while keeping the CR
as large as possible.

In this study, at first, a discrete orthonormal wavelet 
transform based ECG coding system is proposed. In order 
to achieve the goal, an optimum wavelet selection method 
is introduced. Optimum wavelets are selected based on the 
energy included in the approximation part of the wavelet 
coefficients in the first level. The proposed method is
supported by the results of high CR and low PRD values.

Moreover, a composite noise model is simulated and 
noise is added to normal ECG and arrhythmia signals. The
performance analysis based on CR and PRD parameters are
investigated in detail. The relationship between the signal 
to noise ratio value (SNR) and the reconstruction distortion 
is determined.  

In the first part of the algorithm, decomposition, 
uniform quantization, and entropy coding are applied to 
compress the digital ECG signal, successively. In the 
second part, i.e., the decoder part, entropy decoding, and 
inverse transformation are applied to reconstruct the 
original signal with minimum error.

Optimum wavelet search for ECG data compression 
among orthogonal wavelet families is one of the 
distinguishing aspects of this study. In the simulations, 
more than 25 wavelet functions are taken into account.  
The evaluation parameters, namely PRD and CR are used 
to compare the performance of the method implemented. 
Two different ECG signals, normal and arrhythmia signals 
are analyzed, and the results are reported.

The organization of the paper is as follows. In Section 
2 discrete orthonormal wavelet transform (DOWT) scheme 
is given. In Section 3, optimum wavelet selection algorithm 
is introduced and Section 4 is about the noise modeling.
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Dissimilarity model is presented in Section 5 and  
Experimental results are submitted in Section 6. Finally, 
Section 7 concludes the paper.

2. DISCRETE ORTHONORMAL WAVELET 
TRANSFORM METHOD

The ECG data compression method is based on optimum 
wavelet transform strategy. DOWT based coding

Figure 1 - DOWT based coding system

system is shown in Figure 1. The input discrete signal, 0a

is decomposed into a set of subsignals successively, where 

Ja  is a smoothed version of 0a  where J represents the 

decomposition level. The differential subsignals, jd , 

Jj 1  are evaluated between the original signal and its 

smoothed versions at different resolutions [2].
The decomposed subsignals are then quantized and 

entropy-encoded in order to be transmitted to a receiver. If 
the transmission is error-free, the quantized subsignals of 

'
Ja and '

jd , Jj 1  are used to reconstruct the original 

signal progressively by the discrete orthonormal wavelet
reconstruction (DOWR) transform [2]. 

When the decomposed subsignals of   jJ da , , 

Jj 1  are quantized, reconstruction error between the 

original signal 0a  and the reconstructed signal 
'

0a occurs.

Let d
j  and J  denote the mean square errors (MSE) 

occurred in the quantization of dj  and Ja , respectively, 

then the reconstruction MSE (RMSE)   between the 

original signal 0a  and its reconstructed signal 
'

0a  is 

given by,




J

j

d
jj

1
 (1)

The expected quantization MSE’s of  d
j  and J  can 

be approximated as in the Equation (2). 

         
JJ

2

1
 , 

j
d
j

2

1
     (2)

The reference wavelet model is as follows. The first 
stage of decomposition results in 1CA and 1CD . This 
process is repeated to get the successive approximation and 
detail coefficients. Based on the decomposition level, i.e., 
for 5J , 5CA  in the 5th level and CDi ’s )5:1( i  are 

produced. Uniform quantization is applied for the 
approximation and detail coefficients. Therefore, the 
quantization step size,  , is different from one another. 
Due to the coefficients decomposed in different levels, 
each sample is represented by 8 bits. The quantization bin 
size is defined as:

)2/().2( max
nA (3)

For the approximation and detail coefficients   is 
calculated as,

)2/(|)5max(|.2( n
j CAa 

)2/(|)max(|.2( n
j CDid                    (4)

In Equation (3) and (4), 8n  bits and maxA  is changing 

for all coefficients at different layers [4-7]. In case of 

5J , maxA  is the maximum value of 5CA , and CDi , 

)5:1( i , respectively.
Implementation of the coding algorithm consists of 

two parts, namely encoder and decoder parts. The first part 
comprises the following items [8]:

1. Segmenting input samples,
2. Wavelet decomposition,
3. Uniform quantization,
4. Entropy coding (LZW encoder is used).

The second part is the decoder part:
1. Entropy decoding (LZW decoder used),
2. Wavelet reconstruction.

In order to make the results quantitatively comparable, 
the most widely used numerical indexes, namely PRD and 
CR will be employed in this paper.

The CR is used to measure the compression 
efficiency, which is defined by the ratio of the bits of the
original data to those of the compressed data.

    
sizebitsdatacompressed

sizebitsdataoriginal
CR (5)

PRD is taken as a reference indicating the 
performance of the compression algorithm and formulized 
in Equation (6). PRD also gives the information of the 
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distortion rate of the reconstructed signal waveform and 
how the reproduced signal is compatible with the original
one [5].
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In the equation above, the definitions of the 
parameters are as follows.

 nx : Samples of the original signals,

 nx~ : Samples of the reproduced signal,

:N Length of the analyzed signal segment.

The rest of the paper makes use of the PRD and CR 
parameters. In the following section, optimum wavelet 
selection algorithm is explained. Then, the noise model is 
examined in detail.

3. OPTIMUM WAVELET SELECTION

While selecting an optimal wavelet function, the objective 
is to minimize the reconstructed error variance and 
maximize the signal to noise ratio (SNR) simultaneously. 
In general, optimum wavelets can be selected based on the 
energy content of the approximation part of the wavelet 

coefficients [9]. Signal energy in the thk  level based on 
approximation and detail coefficients are as follows.
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where, kN  is the number of the samples in the thk  level.

As a result, the signal with N discrete samples could 
store most of its energy in N/2 approximation coefficients 
by employing optimum wavelets. The optimum wavelet 
search will be achieved by including noise. Section 4
describes the noise model in detail.

4. NOISE MODELING

The sources of noise in ECG data recordings may be 
modeled by following alternatives [10]. Electromyographic 
interference may be simulated by adding uniformly 
distributed random noise. The power line interference is 
another artifact where 60 Hz component is considered as 
an interferer, which can be generated by using a sinus
function. Respiration effects can also be taken into account
as a noise component. Besides all of these, electrode 
motion artifact may be simulated by adding a DC
component and assumed to be another noise source. The 

overall noise model that has been focused in this study is 
the composite noise, which has been constructed by 
combining all of the noise types described above.

The composite noise is added to a normal ECG at four 
different levels: 25%, 50%, 75%, 100% of the maximum 
amplitude. 

When noise is added to the original signal, distortion 
criteria for the performance evaluation is the parameter of 
SNR which is expressed as in the following equation [11-
13].

)(log.2040 10 PRDSNR    (8)

In the simulations, normal ECG and the arrhythmia 
ECG signals are taken from the MIT-BIH database [14]. 
Dissimilarity measure model is presented in the next 
section.

5. DISSIMILARITY MODEL 

In this study, the similarity measurement is used as a 
criterion to analyze how much the original signal is similar 
or closer to the reconstructed one.

For this purpose, using the Gaussian Density function 
(GD) based on KLD distance (Kullback-Leibler Distance, 
KLD) gives the information about the similarity between 
the original ECG signal and the reconstructed version of it, 
the performance of the compression method and how 
successful the reproduced signal is obtained. 

In the calculation of dissimilarity measurement, 
wavelet subband coefficient histogram of the normal ECG
signal is modeled by Gaussian function and defined as in 
the following equation.

)22/(2)(

2

1
)( 


 xexp (9)

In Equation (9),  represents the variance and   is the 

mean value.
The KLD distance defines the similarity between the 

original signal and the reconstructed one uses the Gaussian
model and calculated as follows [15].
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The 2  and 1  parameters mentioned in Equation (10)

are the variances of the histogram, belongs to the 
reconstructed signal and the original one, respectively. In  
general, if the distance D, is close to 1 or equal to 1, means 
that the original signal is not similar to the reconstructed 
one. If D is smaller then 1, both signals are approximately 
similar to one another. In case of normal ECG signal 
compression, the distance D, in other word dissimilarity 
parameter is calculated as 0.00035. The result is so 
important in terms of supporting the experimental results.

Experimental results are presented in Section 6.
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6. EXPERIMENTAL RESULTS

In this paper, an optimum wavelet transform-based ECG 
compression is determined by employing different wavelet 
families. The original and the reconstructed ECG signal 
provided after the synthesis process is shown in Figure 2-
(a) and (b), respectively. The compression performance, 
namely the CR value is obtained as 12.91. A widely used 
quantitative distortion measure for ECG coding is the PRD 
and is calculated as 2.38% [16].

At the end of the synthesis process, it is observed that 
the distortion in the original signal seems to happen along 
the P and T waves. The error between the original signal 
and the reconstructed one is displayed in Figure 2-(c).

In the simulations, we observe that the reconstruction 
distortion measure for the arrhythmia ECG signal is higher 
than the result obtained from the normal ECG signal. CR 
value is calculated as 16.28, whereas PRD is 43.01%. The 
compression process for the arrhythmia signal causes loss 
of information for the diagnosis  purposes. When  the

Figure 2 - (a) The original ECG signal, (b) the 
reconstructed signal, and (c) error between the original and 
the reconstructed one is presented. In optimum wavelet 
transform based ECG signal compression, CR and PRD 
values are calculated as 12.91 and 2.38%, respectively

Figure 3 - Optimum wavelet transform based 
arrhythmia ECG signal compression concluded with the 
CR value of   16.28 and PRD value of 43.01%

optimal wavelet transform based compression algorithm is 
applied to the arrhythmia signal the reconstructed 
waveform is shown in Figure 3 [17]

By using Equation (7), the energy of the original 

signal and the 
st1  level approximation and detail 

coefficients is calculated as shown in Table 1. Table 1 
summarizes the energy contributions of the approximation 
and detail coefficients. Db20 wavelet function is shown 
that it includes the highest energy in the first level 
approximation part, therefore decided as the “optimum 
wavelet”. In order to find the optimum one, orthogonal 
wavelet families including DbN, coifN, and symN  is tested.
[18]

The effect of the additive noise to the reconstructed
signal at the end of the synthesis process is depicted in 
Figure 4. In the compression procedure, optimum Db20
wavelet is employed. 

Using the similarity measure model, how the original 
signal is similar to the reconstructed one is calculated with 
KLD distance defined in Equation (10) and found as 
0.00035.

7. CONCLUSIONS AND DISCUSSIONS

In this paper, optimum wavelet transform-based ECG 
signal compression is investigated by searching the 
performances among different orthogonal wavelet families.
Normal and arrhythmia ECG signals are both taken into 
account. Based on the energy inclusion properties in the 
approximation part of the wavelet coefficients in the first 
level decomposition, Db20 is determined as the optimum 
wavelet. The parameters of PRD, CR and SNR are used to 
compare the performance of the method implemented. The 
algorithm is noticeably successful for normal ECG signals.
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TABLE 1 - Signal energy distribution

Figure 4 - Reconstructed signal is depicted when the 
realistic noise is added to the original ECG signal
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