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ABSTRACT 
It is well known that HPAs (High Power Amplifiers) are 
inherently nonlinear devices. Hence, many researches have 
focused on the pre-distortion of memoryless stationary HPAs. 
 However HPAs can no longer be considered as stationary 
in a real satellite system. In fact, if the amplifier exhibit 
nonlinear characteristics constant in time, which is a 
reasonable assumption in many low power cases, a fixed pre-
distorter is enough to achieve a good linear performance. 
However, power amplifiers operating under more stringent 
conditions may undergo slow but significant changes in their 
AM/AM and AM/PM characteristics basically due to factors 
like temperature, age of components, power level, biasing 
variations, frequency changes and so on.  
 In this paper, we present an adaptive pre-distortion 
technique based on a feed-forward neural network that makes 
it possible to compensate the nonlinearities of an HPA with 
taken into consideration the time variations of HPA 
characteristics. We use an indirect approach that calculates a 
post-distortion system applied as a pre-distortion. The 
performance of the proposed scheme is examined through 
computer simulations for 16-QAM OFDM signals. 

1. INTRODUCTION 

Orthogonal frequency division multiplexing (OFDM) was 
initially presented in 1966 [1]. A transmission channel is 
divided into a great number of parallel, low-rate subchannels. 
In this way every subchannel has relatively flat channel 
response, which is conventionally called nondispersive 
channel. With the increasing demand of multimedia services, 
various emerging telecommunication systems make use of this 
technique capable of providing a broadband access to such 
services. Hence, OFDM potentially plays a considerably vital 
pole in the future communication. 

Power amplifiers are indispensable components in a 
communication system and are inherently nonlinear. To 
reduce the nonlinearity, the power amplifier can be backed off 
to operate within the linear portion of its operating curve. 
However, newer transmission formats, such as wideband code 
division multiple access (WCDMA) and orthogonal frequency 
division multiplexing (OFDM), have high peak to average 
power ratios, i.e., large fluctuations in their signal envelopes. 
This means that the power amplifier needs to be backed off far 
from its saturation point, which results in very low 
efficiencies, typically less than 10% [8]; i.e., more than 90% 
of the dc power is lost and turns into heat.  

Among all linearization techniques, digital pre-distortion 
is one of the most cost effective. It adds a digital pre-distorter 
in the baseband to create an expanding nonlinearity that is 
complementary to the compressing characteristic of the power 
amplifier. Ideally, the cascade of the pre-distorter and the 
power amplifier becomes linear and the original input is 
amplified by a constant gain. With the pre-distorter, the power 
amplifier can be utilized up to its saturation point while still 
maintaining a good linearity, thereby significantly increasing 
its efficiency. In reality, the power amplifier characteristics 
may change over time because of temperature drift, 
component aging, etc. Therefore, the pre-distorter should also 
have the ability to adapt to these changes. 

In this paper, we present a preliminary implementation 
of a data pre-distortion system using a multilayer perceptron 
neural network which forms an adaptive nonlinear device 
whose response approximates the inverse function of the HPA 
nonlinearity. We attempt to design a pre-distorter which is 
adaptive, robust, and requires only a moderate amount of 
storage and computational resources by taking advantage of a 
neural network’s ability to estimate a nonlinear function. In 
fact, we have developed an adaptive and iterative algorithm 
which the main advantage is its fast initialization 
characteristic. Secondly, an adaptive estimation post-distortion 
for HPA time-varying properties is proposed that is applied as 
a pre-distortion. 

The organization of the paper is as follows. Section II 
describes the modeling of an HPA. Section III describes the 
adaptive pre-distortion scheme and the initialization and 
adaptation algorithms. In Section IV, the proposed scheme is 
then evaluated using computer simulations and Section V 
presents some final conclusions. 

2. SYSTEM DESCRIPTION 

Figure 1 shows a simplified block diagram for compensation 
of the HPA nonlinearity for an OFDM system presented in [2].  

 
Figure 1 –Simplified OFDM transmitter with PD and HPA 

The pre-distorter (PD) of figure 1 is a nonlinear zero memory 
device that precomputes and cancels the nonlinear distortion 
present in the zero memory HPA which follows the PD. 
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2.1  TWTA Model 
For the HPA model, we have chosen Saleh’s well-established 
TWTA model [3]. In this model, AM/AM (amplitude 
modulation to amplitude modulation) and AM/PM (amplitude 
modulation to phase modulation) conversion of the TWTA can 
be represented as                                           

     .raA (r) = 21+ ra

α

β

    and     2
( ) 21

rpP r
rp

α

β

⋅
=

+

            (1)                                       

where r is the input modulus of the TWTA and αa, βa , αp, βp 
are four adjustable parameters. The behavior of (1) is 
illustrated in Figure 2. In this figure, we use αa=2, βa=1, αp=4 
and βp=9 as a typical TWT model used in satellite 
communications [4,8]. The output of the TWTA without the 
PD can be represented as 
         ( )( ) ( ) e x p ( ( ) ( ) )z t A r j w t t P rc φ= ⋅ + +             (2) 

Where φ(t)  is the phase of the input signal. 

 
Figure 2 –Nonlinear amplitude and phase transfer function of Saleh’s 

TWTA model 

3. ADAPTIVE PREDISTORTER FOR TWTA 

3.1 Time-invariant case 
The basic idea proposed is to identify the TWT inverse 
transfer function with a feed-forward neural network. 
Therefore, by using this structure, we aim at obtaining direct 
estimation of the amplitude and phase nonlinearities. 
3.1.1 Training and generalization 
Figure 3 shows the detailed scheme of pre-distortion system. 

 
Figure 3 –Block diagram for training of the PD with TWTA 

Training: where NN1 aims to identify the TWTA inverse 
transfer function, the error sent to “learning algorithm” bloc 
that reacts on coefficients of NN1. 
Generalization: coefficients of the NN1 are recopied on the 
NNPD that achieves the pre-distortion. 
3.1.2 Neural networks structure 
The multi-layer [5] feed forward neural network (MLNN), 
called also multi-layer perceptron (MLP), is one of the most 

popular neural network architectures used in digital 
communications. Its basic unit, the neuron (Fig. 4), is 
composed of a linear combiner followed by an activation 
function. The neuron receives inputs from other processors. 
The linear combiner output is the weighted sum of the inputs 
plus a bias term. The activation function gives then the neuron 
output: 

               ( )z g d=      where       
1

N
d w z bj jj
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=

             (3) 

where zj is the jth input value of the neuron, wj the 
corresponding synaptic weight, and b the bias term. {wj} and 
{b} form the free parameters of the neuron.  

 
Figure 4 –Basic architecture of one neuron 

A multi-layer neural net (see Fig. 5) is composed of neurons 
connected to each other.  

 
Figure 5 –A multi-layer neural network: The network has two 

layers, two input signals, one hidden Layers, 2 neurons in the output 
layer, and 2 output signals. (Indexes R and I refer to the real and 

imaginary parts, respectively) 

The layer index is denoted by i . zli  is the output of neuron 

i of layer l . wlji  is the weight that links the output  zi lj−  

to neuron i of layer l . ( )N l is the number of neurons in 

layer l . With these notations, the output zli of neuron ( , )l i  

is given by: 
                                         ( )z g dli li=                                     (4) 

where 

                               ( 1)
1

1

N l
d w z bli lji l j li

j

−
= +∑ −

=

                        (5) 

3.1.3 Learning algorithm 
The neural network is used to identify the TWTA inverse 
transfer function using supervised learning. At each iteration, 
a pair of TWTA input - TWTA output signals is presented to 
the neural network.  
Gradient-based training algorithms, like back-propagation, are 
most commonly used by researchers. They are not efficient 
due to the fact that the gradient vanishes at the solution. 
Hessian-based algorithms used as reported in [6], allow the 
network to learn more subtle features of a complicated 
mapping. The training process converges quickly as the 
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solution is approached, because the Hessian does not vanish at 
the solution. To benefit from the advantages of Hessian based 
training, we focused on the Levenberg-Marquardt Algorithm 
reported in [6,7]. The LM algorithm is basically a Hessian-
based algorithm for nonlinear least squares optimization. 
In the LM method, the change ( )∆ in the weights ( )w  is 
obtained by solving 
                                          1

2
Eα∆=− ∇                                     (6) 

where E  is the mean-squared network error 
                               21 ( )

1

Na
E y z yk kNa k

⎡ ⎤= −∑ ⎣ ⎦=

                       (7) 

Na
is the number of samples, ( )y zk is the network output 

corresponding to the sample zk and yk is the desired output for 
that example. 
The elements of the α matrix are given by 

                    ( ) ( ) ( )
1

1 1
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           (8) 

where sN is the number of outputs of the network and ijδ is 

the learning rate. 
Starting from initial random weights, both α and E∇ are 
evaluated, and solving (6), a correction for the values of the 
weights is obtained ( ) ( )( )1w k w k+ = + ∆ . This is known 
as an LM learning cycle. Each iteration of this cycle reduces 
the error until the desired goal is achieved or a minimum is 
found. The λ variable in (8) is a parameter that is adjusted at 
each cycle, according to the error evolution. If it is very small 
the α matrix becomes an approximation of the Hessian, and 
the method is the inverse-Hessian method. If 1λ , the 
method becomes analogous to steepest descent. 
3.2   Time-varying adaptive case 
We now extend this solution to the time-varying case as 
follows. As a time varying model, we assume that the four 
parameters αa, βa , αp, βp are changing with time. 
Previously, we took into account the convenience of 
performing the estimation of the inverse HPA characteristics 
in a post-distortion stage rather than in a simple pre-distortion 
one. According to this, the pre-distortion architectures 
presented here are basically derived from a post-distortion 
adaptive structure which may employ two general alternatives 
for its operation. These alternatives are: 
1st Alt: Loading the pre-distorter with completely trained 
coefficients after a complete learning stage. (Fig. 3)  
2nd Alt: Simultaneous updating of the pre-distorter during the 
adaptation at the post-distortion loop.  (Fig. 6) 

 
Figure 6 –Simultaneous PD updating 

Fig. 6 shows the detailed scheme of an adaptive pre-distortion 
system based on feedforward neural network. Where ( )x t  

denotes the input signal to the pre-distorter, ( )y t  denotes the 
signal coming out from the pre-distorter and sent as input to 
the TWTA and ( )z t  denotes the TWTA output signal. 
The weights of the neural network pre-distorter (NN PD) are 
determined by the fixed pre-distortion presented previously 
and are adjusted using an adaptive algorithm based on 
Levenberg -Marquardt method. A summary of this algorithm 
is given bellow: 
=============================================== 
% Initialize the algorithm by setting 
x(0)=[w1(i,j)  w2(j,k)  bj]  ;      
net : neural network, X : Network weight and biases values vector 
w1(i,j): is the weight that links the output zi-1j  to neuron i of layer 1 
w2(j,k): is the weight that links the output zj-2k to neuron j of layer2 
For each sampling time : 0,1,2,….,n 

Determination of the performance of the MLP at sampling time n 

( ) ( ) ( ( ) ( ))2 1y n w n g w n z nNN
⎡ ⎤= ⎣ ⎦

; 

2
( ) ( )Perf n y z yNN n n

⎡ ⎤= −⎣ ⎦
;                                                                       

dw = - [JTJ + µI]-1 JTe;    
J is the Jacobian matrix that contains first derivatives of the 
network errors with respect to the weights and biases, e is a 
vector of network errors and I is the identity matrix.  
x(n+1) = x(n) + dx; 
New estimated values of the weights for each layer of the 
network. 
net2 =net(x(n+1)); 
Determination of the performance of net at sampling time n+1 

[ ]2 1( 1) ( 1) ( ( 1) ( 1))NNy n w n g w n z n+ = + + + ;  

[ ]2
1 1( 1) ( )NN n nPerf n y z y+ ++ = − ; 

if (Perf(n+1)<Perf(n))  
 net=net2;     The new parameters of the MLP calculated 
previously are accepted.  
end 

end 
============================================= 

4. SIMULATION RESULTS AND DISCUSSION 

In this section, the validity of the proposed pre-distortion 
technique for compensation of the HPA nonlinear distortion is 
demonstrated with computer simulations followed by a 
discussion of the results. The Additive white Gaussian noise 
(AWGN) channels were assumed to clearly observe the effect 
of nonlinearity and performance improvement by the 
proposed PD. An OFDM system with 64 subcarrier and 16 
QAM is considered. In the operation of the HPA, a relative 
level of power back-off is needed to reduce distortion. 
However, this power back-off is not so desirable because it 
reduces the power efficiency. 
In our work, a compensation solution always exists in the 
range r < A0, where A0 is the maximum output amplitude. So, 
if the input average power is the same as 2

0A , we get 

maximum power efficiency, but it is highly nonlinear. 
Thus, we need a criterion to show how much power back-off 
is needed for optimum power efficiency. In the simulations, 
we define the input back-off (IBO) as 

                                
2
010log10

A
IBO

pin

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

                              (9) 

where Pin is the input average power . 
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4.1 Fixed pre-distortion 
We now present OFDM simulation results with the 
assumption that parameters αa, βa, αp, βp are time-invariant 
with the suitable neural network pre-distorter presented in [2] 
which allows the linearization of the power amplifier 
presented previously.  
The neural pre-distorter consists of two inputs and two outputs 
(R and I), one hidden layer of 9 neurones. Activation functions 
of hidden layer are hyperbolic tangent, while output layer is 
linear. 
In the training phase using a Levenberg Marquardt algorithm, 
only 200 training iterations and the MSE was lower than 
1,5.10-5, resulting an accurate estimation of the coefficients for 
the neural pre-distorter. 
The symbol error rate (SER) performance curve, in Figure 7, 
shows that the PD can significantly reduce nonlinear 
distortion in an OFDM system. 

 
Figure 7 –SER performance of PD in OFDM, with time-invariant 

TWTA. 

4.2 Adaptive pre-distortion 
As we mentioned previously, the HPA can be a time-varying 
system. In this subsection, we assume that the four parameters 
αa, βa, αp, βp are time varying; thus, the pre-distorter must 
track variations of αa, βa, αp and βp. We assume that these four 
parameters change linearly with time according to the 
following conditions. 
• four parameters change in the following ranges: 

                                 1.01 ≤  αa ≤ 2                                       (10) 
                                 0.01 ≤  βa ≤ 1                                       (10) 
                                   2.5 ≤  αp ≤ 4                                       (12) 
                                   7.5 ≤  βp ≤ 9                                       (13) 
• Input and output normalization condition, βa = αa − 1. 
• Saturation condition, signal is clipped above 1. 

The reason why we have chosen these conditions on the 
amplitude and phase is to maintain normalization constraints 
in both input and output and the saturation condition in the 
above range (r > A0), even if the amplitude is changed. 
In this paper we use the following function to define the 
temporal variation for each parameter while respecting the 
conditions shown previously. 
                                 ( )f t A t C= ∗ +                                 (14) 
where A is the constant that defines the speed of the temporal 
variation and C is the constant that defines the initial value. 
The following figure presents the temporal variation of αa and 
βa with various speeds. 

 
Figure 8 –Variation of αa and βa versus time with various speeds 

The following figure represents the variation of AM/AM and 
AM/PM in order to show the extent variations of HPA used in 
this work. 

 
Figure 9 –Modulus and phase variation 

The following figure shows the curve of the performance of 
neural network used as an adaptive pre-distorter. We note that 
the adaptive neural network converges still better towards the 
good solution and the MSE is decreased to less than 3.10-6 

after 50 iterations, resulting to an accurate estimation of the 
coefficients for the neural pre-distorter. It can also be noticed 
that after the 5th iteration, the MSE does not decrease almost 
any more.  

 
Figure 10: MSE vs Iterations number with adaptive training 
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The SER performance of the adaptive pre-distortion structure 
in OFDM system is compared to the fixed pre-distortion 
which has determined the inverse transfer function of the 
initial HPA with   (αa=2, βa=1, αp=4, βp=9). 
The following figures show the SER performance of the 
proposed adaptive pre-distortion compared to the one of the 
fixed pre-distortion with a varying time HPA where (αa=1.5, 
βa=0.5, αp=2.5, βp=7.5). 
We note from Figure 11, that if the variation of the HPA is not 
tracked, the performance is much worse than when it is 
tracked with the adaptive PD. The simulation results thus 
show that this ability to use an adaptive pre-distortion adds 
value to the system performance.  

 
Figure 11 –SER performance of PD in OFDM, with time-varying 

TWTA, IBO = 7 dB. 

In this section we study the variation of SER versus time with 
an adaptive and fixed pre-distortion with various speeds of the 
variation of the HPA characteristics.  

 
  (a) 

  

 
(c) 

Figure 12 –SER of PD in OFDM versus time in seconds, with time-
varying TWTA, IBO = 7 dB, SNR = 15dB. 

(a) A = 1.33 (b) A=0.81 (c)  A=0.016 

Looking at figure 12, we can see that the SER for the adaptive 
pre-distortion remains almost constant when varying the 
characteristics of the amplifier, on the contrary with the fixed 
pre-distortion the SER increase. 

5. CONCLUSION 

We have proposed a new adaptive baseband pre-distortion 
based on a feed forward neural network for eliminating or 
mitigating nonlinear distortion in time-varying HPAs used in 
OFDM-based wireless communications. We have proposed an 
adaptive and iterative algorithm to estimate the weights of the 
proposed adaptive pre-distortion. The preliminary results 
presented here indicate that neural networks have potential use 
in the pre-distortion of nonlinear HPAs. Their nonparametric 
approach, combined with the fact that the algorithm performs 
as a universal approximator should allow its successful use in 
a variety of conditions and amplifier designs. 
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