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ABSTRACT

A high quality model of newborn EEG background can
aid in the analysis of newborn EEG. This paper proposes an
improvement to the current time–varying, power–law spec-
trum model for newborn EEG background by using a band–
limited fractional Brownian process with time–varying Hurst
exponent. This model provides a more detailed definition of
newborn EEG background than current models. The advan-
tages of using a fractional Brownian process is that devel-
opment of features for analysing newborn EEG background
is inherent in the model and simulation of continuous new-
born EEG background with variable spectral characteristics
is simplified. The model is validated by showing that a frac-
tional Brownian process is indeed a suitable model for new-
born EEG background using the statistical properties of a
fractional Brownian process and a database of 1080 epochs
of newborn EEG background. A newborn EEG background
simulation algorithm, based on discrete time–varying FIR fil-
tering, is then presented.

1. INTRODUCTION

The electroencephalograph (EEG) measures the electrical ac-
tivity on the surface of the brain. It is a useful tool in the
diagnosis of central nervous system (CNS) dysfunction in the
newborn [1]. In particular, it is highly suitable for detecting
seizure [2].

The EEG of the newborn exhibits characteristics that dif-
fer from that of the adult. The EEG tends to contain lower
frequency content than the adult and exhibits different deter-
ministic patterns that are more complex and varied [1].

Newborn EEG is generally understood to be composed of
a stochastic or chaotic background with a spectrum consisting
of an inverse power law, [3], from which several determinis-
tic patterns such as seizure, delta brushes and theta bursts or
modulations such as tracé discontinu, tracé alternant and burst
suppression, emerge [1]. Furthermore, the newborn EEG is
usually contaminated with physiological and environmental
artifacts [1].

There has been much research into classifying the deter-
ministic patterns of EEG, in particular seizure, but little work
has been done regarding the classification of newborn EEG
background [3, 4]. The ability to accurately determine back-
ground behaviour in the EEG permits detection of determin-
ism or artifacts in the newborn EEG. This reformulates the
seizure detection problem as one in which periods of non–
background are first isolated and then analysed for the pres-
ence of seizure.

A model of newborn EEG background is an important
step towards developing a standard framework for evaluating
seizure detection methods without requiring large databases
of newborn EEG which are costly and time–consuming to
build. In addition, a high quality model can lead to the devel-
opment of features that respond to subtle changes in newborn
EEG background. These subtle changes may be an indication
of CNS health [5].

This paper builds on the model developed in [3] by using
an alternate method for generating the 1/ f α spectrum. This
method is based on a fractional Brownian process, [6], and
provides a strict definition of the properties of the waveforms
being used. This model also appeals as it accounts for the
self–similarity property which is a feature regularly encoun-
tered in biological signals, [6, 7].

Fractional Brownian motion (fBm), B(t), is a nonstation-
ary stochastic process that can be categorised by a Hurst ex-
ponent, H, [6]. It is has an increment that is stationary and
Normally distributed with zero mean and a variance propor-
tional to |t − s|α−1 for s ≤ t [7]. The covariance function of
B(t) is [8],

C(t,s) = Γ(1−2H)
cos(πH)

2πH

[

|t|2H + |s|2H −|t − s|2H
]

. (1)

The spectrum of B(t) is defined in [8] as,

S( f ) =
1
f α (2)

where α = 2H + 1. It is the spectral properties of fBm that
appeal when modelling newborn EEG background.

The advantages of such a model is that its statistical prop-
erties can be defined, [7], discontinuities can be avoided when
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appending epochs of newborn EEG together to form a long
duration trace and only a single filter is required as opposed
to the 15 level filter bank used in [3]. The main problem is
that nonstationary random process are difficult to categorise
and additional band–limiting increases the difficulty [7]. In
this paper, several techniques are used to test if a filtered frac-
tional Brownian process can be used to model newborn EEG
background.

The model is tested with 1080, 8–second epochs of new-
born EEG background taken from three newborns using the
probability density function (pdf) of the fractional increment
and an estimate of the covariance function via the Wigner–
Ville spectrum (WVS). These features are also used to com-
pare the fractional Brownian model to the Normal model, de-
fined in [2], the coloured Normal model, defined in [4], and
the time–varying coloured noise model, defined in [3], for
newborn EEG background. A method for simulating the frac-
tional Brownian process with time–varying Hurst exponent
using a time–varying FIR filter is then detailed.

2. DATA ACQUISITION

The EEG data were acquired and labelled by a neurologist
at the Royal Brisbane and Women’s Hospital, Brisbane, Aus-
tralia. The EEG used in this analysis was bandpass filtered
with cutoff frequencies at 0.5Hz and 30Hz to remove low fre-
quency physiological artifacts and high frequency electrical
and muscular artifacts. The EEG was then sampled at 64Hz.
A total of 1080, eight second epochs (blocks of time) were
selected from the EEG background of 3 newborns.

The tested epochs were selected from four separate re-
gions of the brain (frontal/parietal and left/right temporal) as
these regions can be considered as uncorrelated [9] (see Table
1 where the linear correlation coefficient squared value, ρ2, is
averaged across the three babies).

Table 1. Regional correlation in the neonatal brain

ρ2 F4–T4 F3–T3 P3–T5 P4–T6
F4–T4 1 0.12 0.00 0.01
F3–T3 – 1 0.00 0.01
P3–T5 – – 1 0.02
P4–T6 – – – 1

3. THE NEWBORN BACKGROUND MODEL

The proposed model is based on a high pass filtered, discrete
fractional Brownian process, with a time–varying Hurst expo-
nent to account for the long term nonstationary nature of the
EEG. The model is given as,

eeg(n;q) = B(n,H(q))∗hpf(n) (3)

where n is discrete time, q is the epoch number which can
be considered a subsampled version of n, H(q) is the Hurst
exponent, and hpf(n) is an FIR high–pass filter with cutoff
frequency of 0.5Hz.

The newborn EEG background generated by this model
has a nonstationary power spectrum of the form,

EEG(n,k;q) =
1

kα(q)
(4)

where k is discrete frequency and α(q) = 2H(q)+1.

4. TESTING FOR FRACTIONAL BROWNIAN
MOTION

Two criteria are used to test the hypothesis that fBm can model
newborn EEG background. These criteria are the covariance
function (via the WVS) and the distribution of the increment
of the process [7]. The similarity between an estimate of the
covariance function of the data and (1) is measured using the
correlation and the similarity of the distributions is measured
using the Kolmogorov–Smirnov (KS) test, [10]. The covari-
ance function is defined as,

E[B(n)B(m)] = E[K(n,m)−M(n)M(m)] (5)

where E is the expectation operation, M is the mean, [n,m]
are discrete time, and can be estimated using the time–varying
correlation function defined as [11],

K(n,m) =
N/2−1

∑
m=0

B(n+m)B(n−m) (6)

where N is the length of the EEG epoch in samples (assumed
to be even), as B(n) is a zero mean process [7]. The Fourier
transform of the expectation of K(n,m) is the WVS and it is
the correlation between the WVS of the data and (2) that is
used to assess the model fit to the data.

The database is separated into epochs of similar Hurst ex-
ponent to provide an accurate estimate of the WVS. It is as-
sumed that epochs of similar Hurst exponent are realisations
of the same underlying fractional Brownian process, therefore
the WVS is can be estimated by averaging the Wigner–Ville
distribution of these epochs together, [11, pp. 37].

The Hurst exponent is indirectly estimated by using the
fractal dimension (FD) of a time series. The Higuchi method
for estimating the FD is used as it has been shown to be su-
perior for short duration nonstationary signals, [12]. The re-
lationship between α, FD and H is given as

α = 5−2FD = 2H +1 (7)

Therefore, the Hurst exponent, H = 2−FD.
The KS test statistic is defined as,

KS = max
(

F(x)− F̂(x)
)

(8)
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where F(x) is the standardised cumulative pdf of the data x,
and F̂(x) is the cumulative pdf of the standard Normal ran-
dom variable. The null hypothesis is that the data are from a
Normal distribution [10].

These criteria are then applied to other competing mod-
els; the Normal model of Roessgen et al. [2], the coloured
noise model of Celka and Colditz [4] and the time–varying
coloured model of Rankine et al., [3]. A plot of example
outputs of each model and an epoch of newborn EEG back-
ground is shown in Fig. 1.
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Fig. 1. Sample outputs of the models under test

5. RESULTS

The distribution of H over the three babies is shown in Fig. 2,
with a maximum likelihood estimate of the Beta distribution.

The results of the comparison of newborn EEG and a frac-
tional Brownian process are shown in Table 2 as ρ(WVS(n,k)).

Table 2. Results of various models when tested against new-
born EEG background. The results are presented as mean
(variance)

model ρ(WVS(n,k))
Roessgen et al. 0.02 (0.00)
Celka & Colditz 0.73 (0.10)
Rankine et al. 0.82 (0.12)

fBm 0.81 (0.13)
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Fig. 2. The distribution of H (◦ estimated using a histogram,
– estimated using a Beta distribution)

It can be seen that the fractional Brownian model for new-
born EEG more closely fits the raw data and the WVS of the
data than the model of Roessgen et al and Celka and Cold-
tiz. The level of improvement gained by using a fractional
Brownian model over that of Celka and Colditz is similar to
that noted in [3] (i.e. 8%). The results are similar between
the fractional Brownian model and the model of Rankine et
al.. This implies that the inclusion of the properties of self–
similarity and fractional increment into the model do not af-
fect its validity.

The increment of the data is tested using the fractional
derivative of the data based on an estimate of the Hurst ex-
ponent. The fractional derivative is applied according to the
inverse of (10). The KS test is used to test whether the pdf of
the increment is Normally distributed. The null hypothesis is
that the newborn EEG background increment and the simu-
lated fractional Brownian increment are drawn from the same
random process. The results show that 93% of all epochs
(1001/1080) cannot be rejected as having a fractional incre-
ment with a Normal distribution at the 0.5% level of signif-
icance. The low level of significance is chosen as only an
estimate of H is used and the epoch is bandwidth limited.

6. SIMULATION

The simulator is based on the fact that an epoch of fractional
Brownian motion can be considered a fractional anti–derivative
(running integration) of a Normal random process. A frac-
tional anti–derivative in time is the equivalent of a multipli-
cation by ( j2π f )−α in frequency, so it is assumed that a frac-
tional anti–derivative can be approximated as,

D−αx(t) = F −1
{ F {x(t)}

( j2π f )α/2

}

(9)

where, x(t) is the signal (in this case it is a realisation of a
Normally distributed random process), D−α is the fractional
anti–derivative with respect to time and F is the Fourier trans-
form, [11].
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In discrete time, D−1 can be considered a filter with an
impulse response equal to the unit step function. Generalising
for α results in a filter defined in the z–domain, for epoch q,
as (see [7] for details),

H(z;α(q)) =
1

(1− z−1)α(q)/2 . (10)

In the discrete time–domain the impulse response is [7],

h(n;α(q)) =

{

1 n = 0
(

α(q)
2 +n−1

)

h(n−1;α(q))
n n ≥ 1 (11)

This filter is well–defined at n = 0, causal, and provides sta-
ble responses at both the low–frequency and high–frequency
ends of the spectrum, [7]. In the case of newborn EEG back-
ground simulation where the frequency content is limited, the
frequency response of H(z;α(q)) is f −α(q)/2 and the phase
response is approximately linear.

Therefore, a simulated epoch of EEG can be defined as,

eeg(n;q) = x(n;q)∗h(n;α(q))∗hpf(n) (12)

where ∗ is the convolution operation, x(n;q) is the qth reali-
sation of a Normal random process, h(n;q) is the fractional
anti–derivative operation and hpf(n) is the high–pass filter
mentioned above. In order to synchronise epochs when ap-
pending them together to generate a long duration trace of
EEG data the discrete Normal random process, x(n;q), used
to generate the fractional Brownian motion is given the fol-
lowing condition; x(0;q) = x(N;q− 1) when q > 1 where N
is the length of the epoch in samples. The simulation process
is outlined in Fig. 3.

It must also be noted that when simulating newborn EEG
the Hurst exponent does not appear to be entirely random as it
exhibits signs of determinism. This slow variation over time is
evidenced when observing the autocorrelation function, Fig.
4, and is also noticed in the EEG records of other newborns.
It can be seen that there are clear dependencies on epoch lag
values of [1,2,3,5] samples. However, its direct characterisa-
tion is beyond the scope of this work.

This change in Hurst exponent may correspond to changes
in the state of the newborn brain. The distribution and rate
of change of the Hurst exponent at various times may also
provide valuable features when analysing newborn EEG.

A simulated trace of newborn EEG is shown in Fig. 5(a)
sampled at 64Hz with the actual and estimated values of the
time–varying Hurst exponent. A histogram of the distribution
of the estimated value of H is shown in Fig. 5(b). Note the
similarity to Fig. 2.

7. DISCUSSION

The evolution of a newborn EEG background model with
respect to seizure detection in the newborn started with the
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Fig. 3. The newborn EEG background simulation process,
where y(n;α(q)) = x(n;q)∗h(n;α(q))

work of Roessgen et al. in [2]. The idea of using a coloured
stochastic Normal model was improved by using a Wiener
filter in [4] and the time–varying nature of the newborn EEG
background was incorporated in the model presented in [3].
The model presented in this paper assumes the time–varying
stochastic 1/ f α behaviour outlined in [3] and places further
the restrictions of a Normally distributed fractional increment
and self–similarity [7]. The properties of fBm can be used to
generate features that can be used when analysing newborn
EEG background.

The self–similarity of a fractional Brownian process also
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Fig. 5. A simulated trace of 24 minutes of newborn EEG
background with the inputted and estimated values for H(q),
and a histogram, p(H), of the estimated values of the Hurst
exponent with fitted Beta distribution.

is highly relevant for biological signals and many other sig-
nals seen in nature, [6]. It also provides some justification for
using nonlinear and fractal analysis techniques when analysing
newborn EEG. In addition, the use of fBm results in simplifi-
cation when simulating newborn EEG background compared
to the technique outlined in [3].

8. CONCLUSION

This paper presents further refinement of a time–varying spec-
tral model of newborn EEG background using band–limited
fBm with a time–varying Hurst exponent. The use of fBm
provides similar modelling performance compared to current
models with further specification of the statistical properties
and self–similarity of the data. This provides some justifica-
tion for fractal analysis of newborn EEG and suggests sev-
eral features that can be used in the analysis of newborn EEG
background. The use of fBm also simplifies and improves the
simulation of large traces of newborn EEG background.
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