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ABSTRACT
Situations in many fields of research, such as digital communi-

cations, nuclear physics and mathematical finance, can be modelled
with random matrices. When the matrices get large, free probability
theory is an invaluable tool for describing the asymptotic behaviour
of many systems. It will be shown how free probability can be used
to aid in source detection for certain systems. Sample covariance
matrices for systems with noise are the starting point in our source
detection problem. Multiplicative free deconvolution is shown to
be a method which can aid in expressing limit eigenvalue distribu-
tions for sample covariance matrices, and to simplify estimators for
eigenvalue distributions of covariance matrices.

1. INTRODUCTION

Random matrices, and in particular limit distributions of sample co-
variance matrices, have proved to be a useful tool for modelling sys-
tems, for instance in digital communications [1], nuclear physics [2]
and mathematical finance [3]. A typical random matrix model is the
information-plus-noise model,

Wn =
1
N

(Rn +σXn)(Rn +σXn)H . (1)

Rn and Xn are assumed independent random matrices of dimension
n×N throughout the paper, where Xn contains i.i.d. standard (i.e.
mean 0, variance 1) complex Gaussian entries. (1) can be thought of
as the sample covariance matrices of random vectors rn +σxn, with
rn a vector containing the system characteristics (direction of arrival
for instance in radar applications or impulse response in channel es-
timation applications)a, and xn additive noise, with σ a measure of
the strength of the noise. Throughout the paper, n and N will be
increased so that limn→∞

n
N = c, i.e. the number of observations is

increased at the same rate as the number of parameters of the sys-
tem. This is typical of many situations arising in signal processing
applications where one can gather only a limited number of obser-
vations during which the characteristics of the signal do not change.

The situation motivating our problem is the following: Assume
that N observations are taken by n sensors. Observed values at each
sensor may be the result of an unknown number of sources with
unknown origins. In addition, each sensor is under the influence of
noise. The sensors thus form a random vector rn + σxn, and the
observed values form a realization of the sample covariance matrix
Wn. Based on the fact that Wn is known, one is interested in infer-
ring as much as possible about the random vector rn, and hence on
the system (1). One would like to connect the following quantities:
1. The eigenvalue distribution of Wn,
2. The eigenvalue distribution of Γn = 1

N RnR
H
n ,

3. The eigenvalue distribution of the covariance matrix Θn =
E

(
rnr

H
n

)
.

In [4], Dozier and Silverstein explain how one can use 2) to esti-
mate 1) by solving a given equation. However, no algorithm for
solving it was provided. In fact, many applications are interested in
going from 1) to 2) when attempting to retrieve information about

the system. Unfortunately, [4] does not provide any hint on this
direction. Recently, in [5], it is shown that the framework of [4] is
an interpretation of the concept of multiplicative free convolution.

3) can be adressed by the G2-estimator [6], which provides a
consistent estimator for the Stieltjes transform of covariance matri-
ces. G-estimators have already shown their usefulness in many ap-
plications [7] but still lack intuitive interpretations. In [5], it is also
shown that the G2-estimator can be derived within the framework
of multiplicative free convolution. This provides a computational
algorithm for finding 3).

Interestingly, multiplicative free convolution admits a conve-
nient implementation; [8] describes two implementations of free
convolution. An implementation of of one of these, called combi-
natorial computation of free convolution in [8] (an exact implemen-
tation of free convolution based solely on moments), will be used
for simulations in this paper to address several problems related to
signal processing. For communication systems, estimation of the
rank of the signal subspace, channel correlation and noise variance
will be addressed.

This paper is organized as follows. Section 2 presents the ba-
sic concepts needed on free probability, including multiplicative and
additive free convolution and deconvolution. Section 3 states the re-
sults for systems of type (1). In particular, finding quantities 2) and
3) from quantity 1) will be addressed here. Section 4 will explain
through examples and simulations the importance of the system (1)
for digital communications. In the following, upper (lower bold-
face) symbols will be used for matrices (column vectors) whereas
lower symbols will represent scalar values, (.)T will denote trans-
pose operator, (.)� conjugation and (.)H =

(
(.)T )� hermitian trans-

pose. I will represent the identity matrix.

2. FRAMEWORK FOR FREE CONVOLUTION

Free probability [9] theory has grown into an entire field of research
through the pioneering work of Voiculescu in the 1980’s. The basic
definitions of free probability are quite abstract, as the aim was to
introduce an analogy to independence in classical probability that
can be used for non-commutative random variables like matrices.
These more general random variables are elements in what is called
a noncommutative probability space. This can be defined by a pair
(A,φ), where A is a unital ∗-algebra with unit I, and φ is a normal-
ized (i.e. φ(I) = 1) linear functional on A. The elements of A are
called random variables. In all our examples, A will consist of n×n
matrices or random matrices. For matrices, φ will be the normalized
trace trn, defined by (for any a ∈ A) trn(a) = 1

n Tr(a) = 1
n ∑n

i=1 aii.
The unit in these ∗-algebras is the n× n identity matrix In. The
analogy to independence is called freeness:

Definition 1 A family of unital ∗-subalgebras (Ai)i∈I will be called
a free family if

{ a j ∈ Aij

i1 �= i2, i2 �= i3, · · · , in−1 �= in
φ(a1) = φ(a2) = · · · = φ(an) = 0

}
⇒ φ(a1 · · ·an) = 0. (2)
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A family of random variables ai is called a free family if the algebras
they generate form a free family.

Definition 2 We will say that a sequence of random variables
an1,an2, ... in probability spaces (An,φn) converge in distribution
if

lim
n→∞

φn(am1
nk1

· · ·amr
nkr

)

exists for any m1, ...,mr ∈ Z, k1, ...,kr ∈ {1,2, ...}. If also

lim
n→∞

φn(a
m1
nk1

· · ·amr
nkr

) = φ(am1
k1

· · ·amr
kr

)

for some noncommutative probability space (A,φ) and free ran-
dom variables a1,a2, ... ∈ (A,φ), we will say that the an1,an2, ...
are asymptotically free.

Asymptotic freeness is a very useful concept for our purposes,
since many types of random matrices exhibit asymptotic freeness
when their sizes get large. For instance, consider random matrices

1√
nAn1,

1√
nAn2, ..., where the Ani are n× n with all entries inde-

pendent and standard Gaussian (i.e. mean 0 and variance 1). Then
it is well-known [9] that the 1√

nAni are asymptotically free.
When sequences of moments uniquely identify probability

measures (as for compactly supported probability measures), the
distributions of a1 +a2 and a1a2 give us (when a1 and a2 are free)
two new probability measures, which depend only on the probabil-
ity measures associated with the moments of a1, a2. Therefore we
can define two operations on the set of probability measures: Addi-
tive free convolution μ1 � μ2 for the sum of free random variables,
and multiplicative free convolution μ1 � μ2 for the product of free
random variables. These operations can be used to predict the spec-
trum of sums or products of asymptotically free random matrices.
For instance, if an1 has an eigenvalue distribution which approaches
μ1 and an2 has an eigenvalue distribution which approaches μ2, one
has that the eigenvalue distribution of an1 +an2 approaches μ1 �μ2.

We will also find it useful to introduce the concepts of additive
and multiplicative free deconvolution: Given probability measures
μ and μ2. When there is a unique probability measure μ1 such
that μ = μ1 � μ2 (μ = μ1 � μ2), we will write μ1 = μ � μ2 (μ1 =
μ �μ2 respectively). We say that μ1 is the additive (respectively
multiplicative) free deconvolution of μ with μ2.

One important measure is the Marc̆enko Pastur law μc [10],
characterized by the density

f μc(x) = (1− 1
c
)+δ (x)+

√
(x−a)+(b−x)+

2πcx
, (3)

where (z)+ = max(0,z), a = (1 −√
c)2 and b = (1 +

√
c)2. It

is known that μc describes asymptotic eigenvalue distributions of
Wishart matrices. These have the form 1

N RRH , where R is an
n×N random matrix with independent standard Gaussian entries.
μc appears as limits of such when n

N → c when n → ∞.
An important tool for our purposes is the Stieltjes trans-

form [10]. For a probability measure μ , this is the analytic function
on C+ = {z ∈C : Imz > 0} defined by

mμ (z) =
∫ 1

λ − z
dFμ (λ ), (4)

where Fμ is the cumulative distribution function of μ .

3. INFORMATION PLUS NOISE MODEL

In this section we will indicate how the quantities 2) and 3)
can be found through free convolution. By the empirical eigen-
value distribution of an n × n random matrix X we will mean
the random atomic measure 1

n (δ (λ1(X))+ · · ·+δ (λn(X))), where
λ1(X), ...,λn(X) are the (random) eigenvalues of X. In [5], the fol-
lowing was shown:

Theorem 1 Assume that the empirical eigenvalue distribution of
Γn = 1

N RnR
H
n converges in distribution almost surely to a com-

pactly supported probability measure μΓ. Then we have that the
empirical eigenvalue distribution of Wn also converges in distri-
bution almost surely to a compactly supported probability measure
μW uniquely identified by

μW �μc = (μΓ �μc)� μσ2I . (5)

Theorem 1 addresses the relationship between 1) and 2), through
deconvolution of (5) to μΓ = ((μW � μc)� μσ2I) � μc and μW =
((μΓ �μc)� μσ2I)� μc.

To estimate the covariance matrices 3), general statistical anal-
ysis of observations, also called G-analysis [7], will be used. This
is a mathematical theory for studying complex systems, where the
number of parameters of the considered mathematical model can
increase together with the growth of the number of observations
of the system. The mathematical models which in some sense ap-
proach the system are called G-estimators. We use N for the number
of observations of the system, and n for the number of parameters
of the mathematical model. The condition used in G-analysis ex-
pressing the growth of the number of observations vs. the number
of parameters in the mathematical model, is called the G-condition.
In this paper this is limn→∞

n
N = c.

We restrict our analysis to systems where a number of i.i.d. ran-
dom vector observations are taken. If a random vector has length n,
we will use the notation Θn to denote the covariance. Girko calls
an estimator for the Stieltjes transform of covariance matrices a G2-
estimator. In chapter 2.1 of [6] he introduces a candidate G2,n(z) for
a G2-estimator through a complex equation of functions, and shows
that it in some cases approaches the true Stieltjes transform of the
involved covariance matrices. We will not state this equation here,
but instead use the following result from [5]:

Theorem 2 the following holds for real z < 0:

G2,n(z) = mμΓn � μc
(z) (6)

Theorem 2 shows that multiplicative free convolution can be used
to estimate the covariance of systems, and also explains the impor-
tance of the Marc̆enko pastur law in terms of free (de)convolution.
The implementation used by simulations in this paper works only
for the case of (de)convolution with the Marc̆enko pastur law, as
the implementation is simplest in this case. How to implement
(de)convolution for the more general case is unknown to the au-
thors, and may be much harder. Note that the G2-estimator appears
in (5) in theorem 1.

In this paper, the difference between a probability measure, μ ,
and an estimate of it, ν , will be measured in terms of the Mean
Square Error of the moments (MSE). If the moments of

∫
xkdμ(x),∫

xkdν(x) are denoted by μk, νk, respectively, the MSE is defined
by

∑
k≤n

|μk −νk|2 (7)

for some number n.

4. APPLICATIONS TO SIGNAL PROCESSING

In this section, we provide several applications of free deconvolu-
tion and show how the framework can be used.

4.1 Estimation of power and the number of users
In communication applications, one needs to determine the number
of users in a cell in a CDMA type network as well the power with
which they are received (linked to the path loss). Denoting by n the
spreading length, the received vector at the base station in an uplink
CDMA system is given by:

yi = WP
1
2 si +bi (8)
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where yi, W, P, si and bi are respectively the n×1 received vec-
tor, the n ×N spreading matrix with i.i.d zero mean, 1

n variance
Gaussian entries, the N ×N diagonal power matrix, the N × 1 i.i.d
gaussian unit variance modulation signals and the n × 1 additive
white zero mean Gaussian noise.

Usual methods determine the power of the users by finding the
eigenvalues of covariance matrix of yi when the signatures (matrix
W) and the noise variance are known.

Θ = E

(
yiy

H
i

)
= WPWH +σ2I (9)

However, in practice, one has only access to an estimate of the co-
variance matrix and does not know the signatures of the users. One
can solely assume the noise variance known. In fact, usual methods
compute the sample covariance matrix (based on L samples) given
by:

Θ̂ =
1
L

L

∑
i=1

yiy
H
i (10)

and determine the number of users (and not the powers) in the cell
by the non-zero eigenvalues (or up to an ad-hoc threshold for the
noise variance) of Θ̂−σ2I. This method, referred here as classical
method, is quite inadequate when L is in the same range as n. More-
over, it does not provide a method for the estimation of the power
of the users.

The free deconvolution framework introduced in this paper is
well suited for this case and enables to determine the power of the
users without knowing their specific code structure. Indeed, the
sample covariance matrix is related to the true covariance matrix
Θ = E

(
yiy

H
i

)
by

Θ̂ = Θ
1
2 XXHΘ

1
2 (11)

with X is a n×L i.i.d Gaussian zero mean matrix. Combining (11),
(9), with the fact that WHW, 1

LXXH are Wishart matrices with
distributions approaching μ N

n
, μ n

L
respectively, and using that

μWPWH =
N
n

μWHWP +
(

1− N
n

)
δ0,

we get due to asymptotic freeness the approximation((
N
n

(μ N
n

� μP)+
(

1− N
n

)
δ0

)
� μσ2I

)
� μ n

L
= μΘ̂ (12)

If one knows the noise variance, one can use this approximation in
simulations in two ways:
1. Estimate the power distribution μP of the users (and de facto

the number of users) by isolating μP on one side in (12).
This can be done by performing additive and multiplicative
(de)convolution on both sides: For instance, we need to perform
multiplicative free deconvolution with μ n

L
, and additive free de-

convolution with μσ2I .
2. Estimate the numbers of users N through a best-match proce-

dure: Try values of N with 1 ≤ N ≤ n. Choose the N which
gives a best match between the left and right side in (12) in
terms of mean square error of the moments.

To solve (12), the combinatorial computation of free convolution as
described in [8] was used. In the following, a spreading length of
n = 256 and noise variance σ2 = 0.1 have been used.

4.1.1 Estimation of power

We use a 36×36 (N = 36) diagonal matrix as our power matrix P,
and use three sets of values, at 0.5, 1 and 1.5 with equal probability,
so that

μP =
1
3

δ0.5 +
1
3

δ1 +
1
3

δ1.5. (13)
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Figure 1: CDF of powers estimated from multiplicative free decon-
volution from sample covariance matrices with different number of
observations.

There are no existing methods for estimating such a μP from the
sample covariance matrices: To our knowledge, existing methods
estimate the power with non-zero eigenvalues of the sample covari-
ance matrix up to σ2. In our case, the powers are all above σ2.

In figure 1, the CDF of μP was estimated by solving (12),
using the combinatorial computation of free convolution from [8]
with three moments. The resulting moments were used to compute
a characteristic polynomial, from which estimates of the eigenval-
ues were obtained, and the CDF was computed by averaging these
eigenvalues for 100 runs for each number of observations. When L
increases, we get a CDF closer to that of (13).

4.1.2 Estimation of the number of users

We use a 36×36 (N = 36) diagonal matrix as our power matrix P
with μP = δ1. In this case, a common method that try to find just
the rank exists. This method tries the number of eigenvalues greater
than some threshold above σ2. We will set the threshold at 1.5σ2.
There are no general known rules for where the threshold should be
set. Choosing a wrong threshold can lead to a need for a very high
number of observations for the method to be precise.

We will compare this classical method with a free convolution
method for estimating the rank, following the procedure sketched
in 2). The method is tested with varying number of observations,
from L = 1 to L = 4000, and the number N which gives the best
match with the moments of the SCM in (12) is chosen. Only the
four first moments are considered. In figure 2, it is seen that when
L increases, we get a prediction of N which is closer to the actual
value 36. The classical method starts to predict values close to the
right one only for a number of observations close to 4000. The
method using free probability predicts values close to the right one
for a less greater number of realizations.

4.2 Estimation of Channel correlation
In channel modelling, the modeler would like to infer on the cor-
relation between the different degrees of the channel. These typi-
cal cases are represented by a received signal (assuming that a unit
training sequence has been sent) which is given by

yi = wi +bi (14)
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Figure 2: Estimation of the number of users with a classical method,
and free convolution L = 1024 observations have been used.

where yi, wi and bi are respectively the n×1 received vector, the
n×1 zero mean Gaussian impulse response and n×1 additive white
zero mean Gaussian noise with variance σ . The cases of interest can
be:
• Ultra-wide band applications [11, 12] where one measures in

the frequency domain the wide-band nature of the frequency
signature wi

• Multiple antenna applications [1] with one transmit and n re-
ceiving antennas where wi is the spatial channel signature at
time instant i.

Usual methods compute the sample covariance matrix given by
Θ̂ = 1

L ∑L
i=1 yiy

H
i . The sample covariance matrix is related to the

true covariance matrix of wi by:

Θ̂ = Θ
1
2 XXHΘ

1
2 (15)

with Θ = R + σ2I and X is an N × n i.i.d Gaussian zero mean
matrix. Hence, if one knows the noise variance (measured without
any signal sent), one can determine the eigenvalue distribution of
the true covariance matrix following:

μR = (μΘ̂
�μ n

L
)� μσ2I . (16)

μR can thus be estimated with our free convolution framework.
We use a rank K covariance matrix of the form R =

diag[1,1, ..,1,0, ..,0], and variance σ2 = 0.1, so that σ ∼ 0.3162.
For simulation purposes, L vectors wi with covariance R have been
generated with n = 256 and K = 128. We would like to observe the
p.d.f.

1
2

δ0 +
1
2

δ1 (17)

in our simulations. In figure 3, (16) has been solved, using L =
128 and L = 512 observations, respectively. The same strategy as
in section 4.1 was used, i.e. the CDF was produced by averaging
eigenvalues from 100 runs. 4 moments were computed. Both cases
suggest a p.d.f. close to that of (17). It is seen that the number of
observations need not be higher than the dimensions of the systems
in order for free deconvolution to work.

It may also be that the true covariance matrix is known, and
that we would like to estimate the noise variance through a lim-
ited number of observations. In figure 4, L = 128 and L = 512
observations have been taken. In accordance with (16), we com-
pute (μR � μη2I) � μ n

L
for a set of noise variance candidates η2,

and an MSE of the four first moments of this with the moments of
the observed sample covariance matrix is computed. Values of η
in (σ − 0.1,σ + 0.1) ∼ (0.2162,0.4162) have been tested, with a

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

(a) L = 128
−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

(b) L = 512

Figure 3: CDF of eigenvalues estimated from multiplicative free de-
convolution from sample covariance matrices with different number
of observations.
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Figure 4: Estimation of the noise variance. L = 128 and L = 512
observations have been used.
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spacing of 0.001. It is seen that the MMSE occurs close to the value
σ =

√
0.1 = 0.3162, even if the number of observations is smaller

than the rank. The MMSE occurs closer to σ for L = 512 than for
L = 128, so the estimate of σ improves slightly with L. It is also
seen that the MSE curve for L = 512 lies lower than the MSE curve
for L = 128. An explanation for this lies in the free convolution
with μ n

L
: As L → ∞, this has the effect of concentrating all energy

at 1.

5. FURTHER WORK

In this work, we have only touched upon a fraction of the potential
of free deconvolution in the field of signal processing. The frame-
work is well adapted for any problem where one needs to infer on
one of the mixing matrices. Interestingly, although the results are
valid in the asymptotic case, the work presented in this paper shows
that it is well suited for sizes of interest for signal processing appli-
cations. The examples draw upon some basic wireless communi-
cations problems but can be extended to other cases. In particular,
classical blind methods [13] which assume an infinite number of
observations or noisyless problems can be revisited in light of the
results of this paper.

5.1 Other types of sample matrices

One topic of interest is the use of free deconvolution with other
types of matrices than the sample covariance matrix. In fact, based
on a given set of observations, one can construct higher sample mo-
ment matrices than the sample covariance matrix (third product ma-
trix for example). These matrices contain useful information that
could be used in the problem. The difficult issue here is to prove
freeness of the convolved measures. The free deconvolution frame-
work could also be applied to tensor problems [14] and this has not
been considered yet to our knowledge.

5.2 Colored Noise

In this work, the noise considered was supposed to be temporally
and spatially white with standard Gaussian entries. This yields the
Marc̆enko pastur law as the operand measure. However, the analysis
can be extended, with the assumption that freeness is proved, to
other types of noises: the case for example of an additive noise with
a given correlation. In this case, the operand measure is not the
Marc̆enko pastur law but depends on the limiting distribution of the
sample noise covariance matrix.

5.3 Parametrized distribution

In the previous example (signal impaired with noise), the Marc̆enko
Pastur law μc was one of the operand measures, while the other was
either estimated or considered to be a discrete measure, i.e. with
density f μ (x) = ∑n

i=1 piδλi
(x). It turns out that one can find also

the parameterized distribution (best fit by adjusting the parameter)
that deconvolves up to certain minimum mean square error. For
example, one could approximate the measure of interest with two
diracs (instead of the set of n diracs) and find the best set of diracs
that minimizes the mean square error. One can also approximate
the measure with the Marc̆enko pastur law for which the parameter
c needs to be optimized. In both cases, the interesting point is that
the expressions can be derived explicitly.

6. CONCLUSION

In this paper, we have shown that free probability provides a neat
framework for estimation problems when the number of observa-
tions is of the same order as the dimensions of the problem. In par-
ticular, we have introduced a free deconvolution framework which
is very appealing from a mathematical point of view and provides
an intuitive understanding of some G-estimators. Moreover, an im-
plementation of free convolution was used in classical signal pro-
cessing applications.
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