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ABSTRACT

Endosomes are structures located in a biological cell
and their movement can be interesting for studying the ef-
fect of pharmaceutical substances on cell processes. The
movement of endosomes can be analyzed by using fluores-
cence microscopy and by producing videos of few seconds
length. Movement analysis done by a human specialist is
usually unappealing because it is both time consuming and
difficult, also the results depend always on the person do-
ing the analysis. By automating the movement analysis we
can ease and speed up the process, and the results would
also be easily replicable. The paper presents a new track-
ing approach for endosome movement based on the double
exponential smoothing. When compared to Kalman filter,
a commonly used movement predictor, the proposed method
proved to be simpler to implement, with lower running time
and with good results. Also, the paper shows ways to express
the movement of the tracked endosomes.

1. INTRODUCTION

An endosome is a structure (also called organelle) located in
a biological cell that is involved in the transport of proteins
from the outside to the inside of the cell. When looking to
a cell’s endosomes, they move in some direction with a par-
ticular speed and they can change their movement character-
istics, when some substances are administered to the body
that cell belongs to. As an application example, in this way,
knowledge can be gained about the effects that pharmaceu-
tical substances have on cell processes. The movement of
endosomes can be studied using fluorescent microscopy and
producing videos of few seconds length. The videos are pro-
duced in a digital format, i.e. AVI. The movement in these
videos can be analyzed manually by a specialized person.
This is a difficult and time consuming task, since the endo-
somes seem to move completely randomly at a first glance.
An automatic approach for this problem can give the results
faster and in a more objective way.

Tracking endosome movement deals with ambiguous sit-
uations, like partial or complete overlapping and focus is-
sues. There have been proposed some methods to solve this
problem; these are usually either deterministic or stochastic.
Sage et al. [3] uses dynamic programming to track a single
particle, even if it dims over time or is absent completely.
This approach assumes that the movement is only a few pix-
els from frame to frame. This does not seem to be suited very
well for our problem that concerns with multiple objects that
are fast moving. Han et al. [4] adopts neural networks for
tracking multiple objects. This approach is said to be able
to reliably handle irregular motion, occlusions and chang-
ing appearances. It does this by postponing the decision un-

til it has enough information for it, by keeping multiple hy-
potheses of trajectories in a graph structure. This algorithm
promises to give a solution for the problem we want to solve,
but the complexity is high. Also, it was developed for secu-
rity cameras. Main problem arises from the fact that people
look unique, endosomes do not, so that tracking may lead to
difficulties to make a distinction between two possibilities.
The Tensor Voting method was proposed by Kornprobst et al.
[5] for noisy sequences. It uses a perceptual grouping, cod-
ing the estimated velocity, number of neighbors involved and
their coherency. This method is computational intensive, and
it may present problems when trying to track similar look-
ing objects, especially when objects disappear and then later
reappear.

Genovesio et al. [6] developed a solution based on us-
ing a Kalman prediction method together with an association
technique for tracking fluorescent spots. This method is able
to deal with ambiguity and varying situations, like objects
size changes. Double exponential smoothing approach was
proposed by LaViola [7] for object tracking in virtual real-
ity. The method proved to give at least as good results as
Kalman filter. It is simpler to implement and the running time
is lower. This paper tries to solve the tracking problem for
endosome movement analysis in fluorescence microscopy by
using a method based on double exponential smoothing, and
it is organized as follows. The next section gives details
about the approach proposed. Section 3 gives experimen-
tal results and discussion, and the last section draws some
conclusions and tells about future work.

2. METHOD

In fluorescent microscopy, the endosomes are seen as green
spots that have no clear border. They can change their direc-
tion and speed at any given time. The fluorescence creates
uneven labeling for the objects. We can only see one fo-
cal plane in the image sequence, and as the microscope has a
limited focus depth some endosomes may disappear and then
reappear in the focus. Also, since the endosomes are moving
in a 3D space, they can obscure one another, either partially
or completely at some instance in time.

The proposed method for tracking the endosomes com-
prises of four stages: image enhancement, segmentation, es-
timation and association. Figure 1 summarizes the key ele-
ments and the processing flow of the approach discussed by
the paper.

For image enhancement step, we use first a low-pass fil-
tering to attenuate the noise, then we enhance the endosomes
edges with a high-boost filtering [1] and the last phase is the
contrast-limited histogram equalization [2] in order to en-
hance the contrast within each frame of the AVI file.
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Figure 1: Diagram of the approach proposed for the auto-
matic movement analysis of endosomes.

Segmentation is performed using an undecimated
wavelet transform method [8]. The wavelet transform is
computed row by row, followed by column by column, con-
volution with the b-spline kernel [1/16;1/4;3/8;1/4;1/16].
The discontinuity problems at the image borders are solved
by symmetric mirroring extension. The process can be re-
peated recursively and it can be described by the next equa-
tions:

W1 = A0−A1 (1a)

Wi = Ai−1−Ai (1b)

where Wi are images containing the wavelet coefficients, and
Ai are recursively obtained approximations of the original
image A0 by convolution with the above mentioned kernel,
i = 1, . . . ,J. The number of iterations (also, called scales) is
indicated by J. The term undecimated comes because this
wavelet transform does not subsample by 2 the result after
each iteration, as a normal wavelet transform does. The next
step in segmentation is to threshold the wavelet coefficients.
The threshold value is scale dependent and it is computed
based on median absolute deviation. Equation 2 shows how
the threshold value was computed in our implementation.

thri = 5 ·median|Wi−median(Wi)|, (2)

where median indicates the midpoint in a series of numbers,
and Wi represents a series of all wavelet coefficients at scale i.
Wavelet coefficients that have a value greater than thri keep
their values and the rest of them are set to zero.

The last step of segmentation is to obtain a binary im-
age that indicates the endosomes. First, a correlation (across
scales) matrix is computed by simply doing the element-wise
product (also, called Hadamard product) of Wi matrices. Sec-
ond, the computed correlation matrix is thresholded. In our
implementation we set to 1 (i.e. endosome) only values very
close (i.e. 0.5% deviation) to the maximum value in the cor-
relation matrix. An example result can be seen in Figure 2.

Initial image Enhanced image

Manually defined cell outline Segmented image

Figure 2: A segmented frame: initial image, enhanced im-
age, the mask that shows the cell of interest within the frame
and the final result of endosomes segmentation.

After we have found the objects in the image we try to
associate them to a previous track or in case we cannot, we
create a new track. This association is done by simply calcu-
lating the Euclidean distance between the estimates (predic-
tions) given based on the previous frames and the centroids
of the spots segmented in the current frame. For an estimate,
if there is no distance less than a threshold value between
centroids in the current frame and the estimate then the track
is considered terminated.

For all the tracks, new and continuing, the prediction
of the next positions is done by using a double exponential
smoothing approach.

The tracks are stored in structure of size MxN, where N is
the total number of tracks detected and M is the total number
of frames in the video file. Each element in the structure is a
position vector that keeps an x and y value.

A double exponential smoothing model gives to the past
observations exponentially smaller weights as the observa-
tions get older. In other words, recent observations are given
relatively more weight in prediction than the older observa-
tions.

There are two equations associated with double exponen-
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Figure 3: Movement quantization for cell MLN 02 (see Figure 4). (a) Number of object tracked in each frame; (b) Average
movement (expressed in pixels) in each frame; (c) Histogram of the average speed for the tracks detected; (d) Histogram of the
direction quantization for the tracks detected: −1 denotes a movement towards the cell nucleus centroid, 0 shows a movement
around the nucleus centroid or no significant movement, and +1 indicates a movement towards cell membrane.

tial smoothing (shortly, DESP), as follows:

ft = a ·Yt +(1−a) · ( ft−1 +bt−1) (3a)

bt = g · ( ft − ft−1)+(1−g) ·bt−1 (3b)

where Yt is the observed value at time t, ft is the prediction at
time t, bt is the estimated slope at time t, a is the first smooth-
ing constant, used to smooth the observations, and g is the
second smoothing constant, used to smooth the tendency of
the data.

The DESP estimation is given by equation:

ft+1 = ft +bt (4)

To initialize the double exponential smoothing model, f1

is set to Y1, and the initial slope b1 is set to the difference be-
tween the first two observations (i.e. Y2−Y1). The smooth-
ing constants have values in the range 0.0−−1.0. When a
smoothing constant is close to 1.0, more weight is given to

recent observations, and when it is close to 0.0, less weight
is given to recent observations.

When applied for movement prediction in a video file,
the first frame that can be estimated by a double exponen-
tial smoothing predictor is frame number 3, considering that
the counting starts at 1. For initialization purposes, the first
frame of the video is doubled. This was considered since in
a real microscopy avi the number of segmented endosomes
might differ between frame 1 and frame 2, and those are im-
portant for starting the double exponential smoothing algo-
rithm.

Based on the tracks detected, a quantization of the en-
dosome movement can be given. Two useful movement in-
dicators are the speed and, respectively, the direction. The
speed is quantized by computing the average speed for each
track and then by displaying the average speed distribution as
a histogram. For direction an auxiliary parameter is needed:
the centroid of the cell nucleus. The direction is quantized us-
ing three values, as follows: −1 denotes a movement towards
the cell nucleus centroid, 0 shows a movement around the nu-
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cleus centroid or no significant movement, and +1 indicates
a movement towards cell membrane. Let us consider dintial

the distance between the initial point of the track and the nu-
cleus centroid. And d f inal the distance between the final point
of the track and the nucleus centroid. Then, if d f inal−dintial is
positive the direction is coded as +1, if d f inal−dintial is neg-
ative the direction is quantized as −1, and else, if the differ-
ence is zero the movement is coded as 0. Figure 3 (c) and (d)
shows a movement quantization of speed and, respectively,
direction, for one of the tested cells.

3. RESULTS AND DISCUSSION

(a) (b)

Test − artificial AVI
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(c)

Nucleus centroids

Cell name x y

MLN 01 72 120
MLN 02 196 67

GL2 01 68 108
GL2 02 130 77
GL2 03 200 111

(d)

Figure 4: Cells used for testing the approach. (a) MLN video
file containing two cells; (b) GL2 AVI file containing three
cells; (c) AVI file created artificially for testing the tracking
algorithms; (d) A table that shows the centroid position for
the real cells. Also, the centroids are marked by an ”x” on
the images.

The proposed approach was tested using real video AVI
files produced using fluorescent confocal microscopy. Each
frame within the AVI file was an image of 270x206 pixels
and the frame rate was 20 frames per second. Images were
a little noisy and blurry. The tested AVI files had on average
250 frames. Each AVI file contained in focus more than one
cell. The cell were separated by using a mask outlined by a
human specialist, which, also, pointed out the coordinates of
the cell nucleus centroid. Beside the real video files, an arti-
ficial video file was created to test the tracking performance
for which the centroid was not considered. Figure 4 shows
all the cells that were tested, and their centroid.

Figure 5 presents a tracking result using double expo-
nential smoothing prediction by showing different time in-
stances. It reveals some of the difficulties of the problem:
endosome overlapping since the movement is in 3D, and
hard conditions for segmentation, since very crowded (also,
some of them overlapped) spots may appear from time to
time. Also, the figure reveals that the number of endosomes
tracked decreases when the number of frame increases; sit-
uation showed by the Figure 3 (a), too. The point (b) of
the same figure is usefull to see movement peaks and valleys

across the frames.

In the implementation, we used a = 0.2 and b = 0.3 for
the constants within the double exponential smoothing equa-
tions, and we considered a threshold value equals with 40 for
the association step.

t=01 t=03

t=16 t=17

t=50 t=51

Figure 5: Tracking result for cell MLN 02. The images have
been cropped to make the presentation clearer. The black line
shows the cell border. Objects(endosomes) labeled 7 and 17
are outlined. At frame t = 17 they become overlapped, since
the movement is in a 3D space, and track 7 is terminated. At
frame t = 51 due to segmentation limitation track 17 ends.

When compared to Kalman filter (see Table 1), the ap-
proach was faster with up to 10 seconds on the tested data,
and the quality of the results was good. It can be seen also
that the number of tracks given by DESP tends to be a bit
larger than the number of tracks given by Kalman filter. Ap-
plied on the test artificial video data, both algorithms lost a
track when two objects came too close to each other.

The proposed method has lower complexity than a
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Cell Measurements DESP Kalman

MLN 02 Processing time (sec) 105 115
Total number of objects detected 8236 8236
Max number of objects in one frame 46 46
Min number of objects in one frame 24 24
Average number of objects in one frame 33.07 33.07
Total number of TRACKS detected 1025 1012
Average track length (given in frames) 8.03 8.13

GL2 03 Processing time (sec) 102 109
Total number of objects detected 8551 8551
Max number of objects in one frame 45 45
Min number of objects in one frame 29 29
Average number of objects in one frame 36.08 36.08
Total number of TRACKS detected 1038 1026
Average track length (given in frames) 8.23 8.33

Test data - artificially created Processing time (sec) 8.4 8.5
Total number of objects detected 170 170
Max number of objects in one frame 6 6
Min number of objects in one frame 4 4
Average number of objects in one frame 5 5
Total number of TRACKS detected 8 7
Average track length (given in frames) 21.25 24.28
Real number of objects 5 5

Table 1: Double exponential smoothing vs. Kalman filter. Some of the measurements presented had the same value for both
cases, because they depended on the segmentation algorithm which was the same for both cases, and they were presented to
reveal the performance of the chosen segmentation approach.

Kalman filter, while giving the same good results.

4. CONCLUSION

The paper presented a new tracking approach for endosome
movement based on the double exponential smoothing and
some methods to quantize the endosome movement. The
method is able to follow all objects present in a frame, but
due to losing objects in the segmentation stage either to not
being able to detect them at all or to objects obscuring one an-
other, the average track length is about 8 frames. Improving
on the image enhancement or/and estimation can give better
tracking result.

The wavelet based segmentation works quite well. As a
future work, we will try to find better solutions for the im-
age enhancement step, and to optimize the a and b constants
within double exponential smoothing equations using an al-
gorithm as Levenberg-Marquard.
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