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ABSTRACT

Fluorescent fusion proteins of caveolin oligomerize to
form plasma membrane pits, called caveolae. Amount of
caveolin protein in a pit can be estimated by fluorescence
intensity of the pit in microscopy image. In this study an
automatic method is introduced for pit recognition, intensity
measurement and intensity distribution parameter estima-
tion. Dots are recognised and separated from non-caveolar
structures. Intensities are measured with a new automatic
method, which is capable of estimating intensities from all
the recognised pits. Intensity distribution is cleaned up from
outliers and modelled with a mixture model of normal distri-
butions. Optimal parameter set of mixture model is searched
automatically with a genetic algorithm.

1. INTRODUCTION

Caveolae are plasma membrane pits that form upon
oligomerization of caveolin proteins [1]. Each caveola is
considered to contain a set number of caveolin molecules
(Pelkmans and Zerial [2] have estimated this to be 144439).
These complexes can be recognised in the microscopy im-
age (see Figure [I)) when caveolin is tagged with a fluores-
cent fusion protein. The number of caveolin proteins in each
caveolae can be estimated by measuring the intensity of cave-
olar fluorescence from the image. Caveolae have a tendency
to form clusters of two or more pits and therefore intensi-
ties form quantal groups according to the number of caveolae
grouped together.

Microscopy images from cells are blurry and noisy con-
taining pixel-to-pixel variation, which must be smoothed out.
After image processing (e.g. deconvolution) caveolae appear
in images as bright and fairly symmetric circular dots of vari-
able sizes. Detecting caveolaes and separating them from
background and the determination of caveolae intensity au-
tomatically is a challenging task. Some of the caveolae are
also located so close to each other that they disturb each oth-
ers intensity estimation.

A method used for measuring intensity of a caveolar
structure is described in [2]. Briefly, five rings are formed
around the center pixel of a dot with each ring having one
pixel greater radius than previous one. First ring contains just
the center pixel and the outmost ring has a diameter of nine
pixels. Average intensity within each ring is calculated and
average value of the outmost ring representing background is
subtracted from all values. A one-dimensional normal distri-
bution is then fitted to these values symmetrically set around
center pixel value to represent radial sweep, and the area un-
der the curve is used as an estimate of the dot intensity.
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Figure 1: A cell with caveolae and a zoomed detail (pixel
size 87 %87 nm).

This previous method lacks of capability to handle
closely located dots, which has lead into excluding all the
closely located dots from the analysis. Thereby the amount
of observations in reduced, which decreases the statistical
significance of results and deductions. While the number of
observable caveolae in an image of a cell is just some hun-
dreds, it is crucial to estimate as many of them as possible.
More over, systematic exclusion of certain type of the data
(e.g. by the distance to the nearest dot) creates unreliability
to statistical deductions.

The intensity distribution estimation poses an optimiza-
tion problem, which regular curve fitting can’t solve effi-
ciently. Fitting a curve is highly dependent on the initial
quess and requires therefore manual adjusting and setting.
Identifying and separating the quantal clusters and estimat-
ing respective curve parameters needs an efficient and ex-
act method, which would increase the quality and reliability
of parameters of interest (e.g. proportion of observations in
each quantal cluster, widths of clusters). In this study a ge-
netic algorithm is applied for this purpose. The number of
quantal cluster present in the observations is estimated auto-
matically.

2. THEORY AND METHODS

The amount of caveolin in a pit can’t be observed directly
while the pixel size (here 87x87 nm) in a TIRF microscopy
image is about the same as the size of the caveolar pit (about
50-150 nm) itself. The amount of fluorescent caveolin in a
caveolar structure can be seen as multinormal-like distributed
dots in the image. For simplicity, a caveolar structure (single
or a group of several) is referred as a ’dot’ from now on, and
more sophisticated notion is used when needed.

The dots are recognised simply by finding all the pix-
els which are brighter than their eight-pixel neighborhood.
All the highest valued pixels of each caveolae get recognised
with a group of background pixels. Background detections
are removed automatically as in [3] using Otsu’s [4] method
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Figure 2: A caveolar structure from a cell divided into quar-
ters according to estimated center location.

to separate potential caveolae areas and background.

If the dots were completely separated in the image i.e.
far from each other, the intensity would be easy to measure
by summming the pixel values within the dot. However, this
method doesn’t work with closely located dots but here the
following similar procedure is performed. The exact loca-
tion (center point) of the dot is estimated by fitting a trun-
cated bivariate normal distribution to the nine (three times
three) centermost pixels of the dot. Majority of dots in true
images are separated enough, that the centermost nine pix-
els stay mostly undistrubed. The true center location can be
estimated as the mean of the best fitting bivariate normal dis-
tribution. Finding the best fit can be done for example with a
grid search of possible parameters (mean is restricted inside
center pixel, variance below a fixed reasonable constant) or
with some more advanced method.

According to the estimated true center location, the im-
age is divided into four square-shaped quarters of size four
times four pixels and the pixel values falling inside each of
the four squares are calculated. (See Figure[2}) Values from
pixels partially inside squares are summed only partially ac-
cording to their area inside the square. Quarter values are
multiplied by four to get an estimate for the whole dot inten-
sity. Most of the dots in images are small enough that they
fit into this eight times eight pixel area. If there are other
dots nearby, the highest quarter value probably contains the
highest amount of disturbance and the lowest value of these
quarters would presumably to be the least disturbed. How-
ever, tests have shown that the second and third highest val-
ued quarters are the most reliable estimators for the whole
dot intensity. This is probably because the highest and low-
est quarters are also most sensible to error produced by erro-
neous estimate for the center location of the dot. Therefore,
either second or third largest quarter value should be used as
intensity estimate.

The obtained intensity distribution needs to be cleaned
up of too high values. These merely distract mixture model
parameter estimation and they are removed in the follow-
ing way. Observed intensities are sorted to ascending order
and simple Mahalanobis distance (normalized Euclidean dis-
tance)
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Figure 3: A caveolar structure from a cell divided into quar-
ters according to estimated center location.

with property D(x,) > 1+ D(x,_;) which is removed along
with all the consequent observations. In other words, after
the increase in distance is greater than one in sorted data,
observations are considered as outliers. This method works
well, while the observed intensities are mostly in one large
stack with just some outliers (see Figure[3|for an example).

Intensity distribution is assumed to be a finite mixture
model

n
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consisting of n one-dimensional normal distributions with
component means [i;, variances Giz and mixture parameter g;
(see [15]] for finite mixture models). Each normal distribution
represents a quantal cluster of caveolae. Fitting a mixture
model to the intensity distribution establishes an optimiza-
tion problem.

The number of components in mixture model, i.e. clus-
ters in intensity distribution, needs to be determined. It is
assumed that the components are located with a constant dis-
tance from each other because dots in the image are assumed
to be either single caveolae or clusters of two or more caveo-
lae. Therefore, mixture models with three to six components
are fitted to the data, and the model whose components are
located closest to constant intervals is chosen as the appropri-
ate model. The distance of component intervals to constant
intervals, with n component means [y, ..., l,, is measured as
a sum of squared errors from the mean component interval

n—1
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c with
is calculated from each observation x; to the mean intensity o= S (Wis1 — W) = Mn — 1
p with variance 2. Treshold is set to the first observation x, n—14 T n—1"
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Figure 4: A detail of a simulated image.

With the data used here, three or four component model usu-
ally fits best.

The mixture model parameter estimation problem can be
solved automatically with a genetic algorithm [6]], developed
initally for brain imaging applications. Genetic algorithm
maximises the likelihood function with respect to the param-
eter vector, and finds global maximum avoiding local max-
ima (see reference for more detailed information).

3. DATA AND RESULTS
3.1 SIMULATION

Two simulations were performed to test the accuracy of in-
tensity measurement in controlled conditions. While the true
intensity values of simulated dots was known, accuracy of
the measurements could be observed.

a) Simulation of constant valued dots without disturbance
from neighboring dots was used to test the inaccurateness of
a measurement method itself.

b) Simulation with an image with multiple dots was used
to test the capability to handle closely located dots.

A simulated dot was sized nine times nine pixels and cre-
ated from a bivariate normal distribution, whose mean was
located randomly inside the center pixel. Dot pixel values
are propability distribution function values multiplied with a
constant to achieve the wanted total intensity value. In simu-
lation a) 1000 dots were estimated one by one, and in simu-
lation b) the image consisted of 500 randomly located dots in
a 400x400 pixel image, allowing partial and complete over-
lapping of dots.

a) Results of the test with single dots without noise
caused by neighboring dots can be seen in the Figure [5| and
in the Table[Tl

Table 1: Results from simulation with single undisturbed
dots with true intensity value 10 000.

Method Mean | St.dev CV
Pelkmans&Zerial | 9754.3 | 170.64 | 1.75%
New 9798.1 | 24.81 | 0.25%

The new method developed performs better with this sim-
ulation having lower variation, and both methods have quite
low bias. Note also that the results of the method by Pelk-
mans and Zerial [2] are not distributed symmetrically around
the mean value and therefore even a normally distributed data
wouldn’t result as normally distributed estimates, which can
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Figure 5: Results from simulation with 1000 single undis-
turbed dots with true intensity value 10 000.

Table 2: Results from simulation with multiple dots.

True | Pelkmans | New
Mean p; | 10321 8356 10023
W | 19856 16946 19441
us | 30635 26115 30347
St.deviation o 2467 2912 2576
oy | 2815 2544 2915
o3 | 3409 2839 4479
Mixture parameter a; | 0.4329 0.4949 0.4424
ay | 0.4000 0.3376 0.3684
a3 | 0.1671 0.1675 0.1892

pose a problem when estimating intensity distribution param-
eters.

b) In the second simulation the purpose is to test the
ability to measure tightly stacked dots and clusters. Dot in-
tensity values were created randomly from a mixture model
of three normal distributions. Because dots are located ran-
domly throughout the image and some of them are overlap-
ping making estimation more difficult.

Intensity measurement results can be seen in Figure[6|and
Table 2} Out of the 500 dots initially created 431 dots were
detected, which implies some overlapping. Results show that
the new method produces more accurate results. Especially
the parameters of the first and second quantal cluster are
close to the true ones.

3.2 TRUE MICROSCOPY DATA

A real cell image was acquired with TIRF (Total internal
reflection fluorescence) microscopy and deconvolded using
Huygens software by Scientific Volume Imaging to reduce
pixel-to-pixel noise. Cell were HeLa cells stably express-
ing caveolin-1 with a C-terminal GFP tag. Dots are detected
as earlier, and intensities are estimated with both methods.
A proper mixture model is searched for both intensity esti-
mates.

While the true distribution behind estimates is not exactly
known, evaluation of the quality of results is more difficult.
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Figure 6: Results from simulation image with multiple dots.
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Figure 7: Intensity histograms from a real cell with fitted
mixture model.

The intensity distributions produced by both methods with
estimated mixture models can be seen in Figure[7] It can be
said that the methods clearly produce different results, but it
would require a thorough investigation to determinen which
method has the more correct results. Int he results from the
new method, the quantal clusters are located with constant
intervals and they are visually pretty well separable. The ge-
netic algorithm manages works well in both cases in deter-
mining the parameter of mixture model.

4. DISCUSSION

The new method developed performs well in simulations.
Using Otsu’s method in deciding which dots belong to
background works well with this problem, as there is no
background observations visible in intensity distribution his-
tograms. The intensity measurement method manages to ex-
clude the disturbance effect of neighbor dots, which allows
the estimation of every detected dot and therefore increases
the reliability of results and deductions. Genetic algorithm
works well in finding caveolae intensity distribution param-
eters, with no initial guess or restrictions needed. Assumed
constant intervals of quantal clusters are used as a template
for finding the correct number of mixture components, mak-
ing the intensity distribution analysis automatic. Genetic al-
gorithm is can also be easily tuned for different purposes, if
for example prior knowledge of quantal clusters is available
or different hypotheses needs to be tested. Other algorithms,
e.g. EM algorithm with good initial guess could work pretty
well with this simple parameter estimation, but the genetic
algorithm is fully automatic and more flexible.

The new method is fully automatic, starting from an im-
age and producing the needed intensity distribution parame-
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ters. Automaticness allows to process larger amounts of data,
because no manual interference is needed. The method is
also pretty fast, which might be important for example with
time series image analysis. The larger amount of data that
can be analysed and the higher number of dots per image
that can be estimated, helps to increase the reliability.

Another solution for dot intensity estimation could be the
following procedure. If image was considered as a plane or
a surface and the intensity values as a third dimension or-
thogonal to the plane, then the dots would be as multinor-
mal distributed hills on the surface. A perfect method, i.e.
a method which would extract all the information from the
image, would then be the one which estimates all individual
multinormal distributions straight from the image. Then in-
dividual variances, volume below each hill and other param-
eters could be measured within the limits of some restrictions
and each caveolae would get an individual set of parameters.
This method however would require an algorithm capable
of estimating overlapping multinormal distribution parame-
ter reliably and efficiently, which is problematic with current
algorithms. Each caveolae would have six parameters to es-
timate (two for mean, three for covariance, one for volume).
This poses a very complex optimization problem, which has
to be solved e.g. with an genetic algorith used here.
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