
EFFICIENT 3-D PARALLEL FIR FILTERING ALGORITHM

M. Aziz and S. Boussakta*

School of Engineering & Technology
De Montfort University, Leicester, LE1 9BH, UK

Email: maziz@dmu.ac.uk
*School of Electrical, Electronics and Computer Engineering

University of Newcastle upon Tyne, Newcastle, NE1 7RU

Email: s.boussakta@ncl.ac.uk

ABSTRACT

In this paper we present an efficient 3-D digital filtering
method based on a new 3-D parallel filtering algorithm. This
method is suitable for high resolution / high speed 3-D image
and video processing. The proposed 3-D parallel filtering
algorithm is highly efficient due to the elimination of over-
lapping segments overhead in the block-filtering method, and
the boundary conditions in parallel filtering applications. It
also solves the problem of limited efficiency of direct FIR
filtering when the system impulse response is large, and en-
hances the overall memory distribution of the parallel system
by segmenting both the 3-D input data and the impulse re-
sponse of the system into smaller independent subsections
that can be simultaneously processed. Finally, the algo-
rithm’s performance is assessed and analyzed.

1. INTRODUCTION

Digital filtering is an important application in communica-
tions and digital signal processing, and is widely used in
many other applications in science and engineering [1-8].
However, digital filtering is known to be computationally
intensive, and for many applications special hardware is util-
ised to achieve the required level of performance in accept-
able time or real time [4-7] constraint. In fact, the demand is
ever increasing for high-performance, flexible and reliable
processors, as many commercially viable applications in sci-
ence and engineering are identified requiring more process-
ing power than that available form the single processor chip
[10-12].

In [9] Agarwal and Burrus extended the block convo-
lution method [8] to multidimensional convolution operation,
which was later parallelised and mapped onto multiprocessor
platform in 1-D & 2-D [10-12]. However, because of the
overlapping segments in the block convolution algorithm
[13] additional computational overhead was incurred and for
efficient performance the relative size of the input data had to
be restricted [13-15]. In [2] Aziz and Boussakta developed a
new parallel filtering algorithm in 2-D and proposed efficient
fast convolution algorithms using number theoretic trans-
forms (NTTs) achieving high speeding factors compared
with the number of parallel processors used as well as exact
FIR filtering free from rounding and truncation errors.

In this paper a direct 3-D parallel FIR filtering algo-
rithm is presented and its performance is assessed and ana-
lyzed for real time multiprocessor system [16]. The perform-
ance results reflects the highly parallel nature of the proposed
algorithm, which eliminates the problem of overlapping
segments in the block filtering method and the boundary
conditions in the parallel filtering implementation [14-15].

2. 3-D PARALLEL FILTERING ALGORITHM
DEVELOPMENT AND ANALYSIS

The new 3-D parallel filtering algorithm is presented in Fig-
ure 1. This algorithm differs from the block filtering method
by segmenting both the input data and the impulse response
of the system into smaller sub-blocks that have no overlap-
ping regions, by using 3-D decimation by 2 algorithms in the
input stage.

The 3-D parallel algorithm is divided into three main
stages. The first stage is the 3-D input and impulse response
decimation stage. The second stage is the 3-D parallel filter-
ing stage of the different segments of the inputs, using a
SIMD (single instruction multiple data [4]) parallel configu-
ration, for optimal performance. The third stage is the final
filtering output reconstruction stage. In the next sub-sections
the mathematical modelling of the three stages are pre-
sented.

2.1 3-D Parallel input stage

The input stage of the 3-D parallel algorithm uses decimation
by 2 in 3-D, producing 8-subsections for each 3-D input, see
Figure 1. The subsections generated constitute exactly the
same samples as the input block and hence no samples are
lost due to the decimation process, and the resulting subsec-
tions are independent and not overlapping.
The input decimation stage involves the decimation of two
data blocks, i.e. the 3-D input block 1 2 3(, ,)x n n n of size

()N N N  and the 3-D impulse response 1 2 3(, ,)h n n n of

size ()M M M  , into 8-segments each of sizes

2 2 2

N N N   
 

 and
2 2 2

M M M   
 

 respectively.

©2007 EURASIP 1064

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

z-1(n1)

z-1(n2)

z-1(n3)

z-1(n3)

x(n1,n2,n3)
1 2n  2 2n 

2 2n 

3 2n 

3 2n 

3 2n 

3 2n 

z-1(n2)
z-1(n3)

z-1(n3)

1 2n  2 2n 

2 2n 

3 2n 

3 2n 

3 2n 

3 2n 

3D recon.
algo.

z(n3)

z(n3)

z(n3)

z(n3)

z(n2)

z(n2)

z(n1)

y(n1,n2,n3)

3D recon.
algo.

3D recon.
algo.

3D recon.
algo.

3D recon.
algo.

3D recon.
algo.

3D recon.
algo.

3D recon.
algo.

Filtering stage of 64-
DSPs in a processor
array using SIMD

configuration, Eq. 6

Final Output Reconstruction
Stage, given in Eq. 8

3D Input Decimation
Stage, given in Eq. 2

Impulse Response
Decimation Stage,

given in Eq. 4

*** ***

*** ***

*** *** ***

z-1(l1)

z-1(l2)

h(l1,l2,l3)

1 2l 

2 2l 

3 2l 3 2l 3 2l 3 2l 

z-1(l2)

z-1(l3)

1 2l 

3 2l 3 2l 3 2l 3 2l 

2 2l 2 2l 2 2l 

z-1(l3) z-1(l3) z-1(l3)

*** DSP implementing 3-D FIR filter

z-1(nx)

z (ny)

2xn 

Right shift or Delay
in the nx direction

Left shift or Advance
in the ny direction

2yn 

Interpolate in x

Decimate in y

Figure 1 - The 3-D Parallel Filtering Algorithm

The 3-D input decimation process is defined as:

   
1 2 3

1 2 3
1 2 3 1 1 2 2 3 3, , 0,1
, , 2 ,2 ,2i i i i i i

x n n n x n i n i n i


    (1)

where 1 2 30 , , 2 1n n n N   and 1 2 3, , and i i i take eight

binary values, i.e. 000, 001, …, 111. So that the segments of

1 2 3(, ,)x n n n are defined as:

 
 

 

0 000 1 2 3 1 2 3

1 001 1 2 3 1 2 3

7 111 1 2 3 1 2 3

, , (2 , 2 ,2)

, , (2 ,2 ,2 1)

, , (2 1,2 1,2 1)

x x n n n x n n n

x x n n n x n n n

x x n n n x n n n

 

  

    


 (2)

The impulse response of the system 1 2 3(, ,)h n n n is also

decimated by 2, producing 8-segments, defined as:

   
1 2 3

1 2 3
1 2 3 1 1 2 2 3 3, , 0,1
, , 2 ,2 , 2i i i i i i

h n n n h n i n i n i


    (3)

where 1 2 30 , , 2 1n n n M   and 1 2 3, , and i i i takes the

binary values, i.e. 000, …, 111. So that the 8-segments of the
impulse response are defined as:

 
 

 

0 000 1 2 3 1 2 3

1 001 1 2 3 1 2 3

7 111 1 2 3 1 2 3

, , (2 ,2 , 2)

, , (2 ,2 ,2 1)

, , (2 1,2 1,2 1)

h h n n n h n n n

h h n n n h n n n

h h n n n h n n n

 

  

    


(4)

©2007 EURASIP 1065

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

2.2 3-D Parallel FIR filtering stage

The second stage is the 3-D FIR filtering of the different
segments shown in Eq’s 2 and 4 above. This is achieved by
direct convolution [8-9]. However, on the 3-D parallel algo-
rithm the 3-D filtering is processed in parallel using 64 sub-
filtering equations for the different segments of the 3-D in-
puts. These parallel sub-filters are expressed by the 3-D con-
volution equation as:

   

 
   

 
1 2 3

1 2 3 1 2 3 1 2 3 , 0, ,7

2 1 2 1 2 1

1 2 3
0 0 0

1 1 2 2 3 3

(, ,) , , , ,

, ,

, ,

ij j i i j

N N N

j
m m m

i

y n n n x n n n h n n n

x m m m

h n m n m n m



  

  

 

 

  

  



(5)

where  1 2 30 , , 2 2 1n n n N M    are the output dimen-

sions of each sub-filter. In general the 64 sub-filters carried
out on the multiprocessor array are given by:

 

0700 01 0

10 11 17 1
0 1 7

77170 77

yy y h

y y y h
x x x

hyy y

   
   
    
   
   
    






  



(6)

From Eq 6, it is clear that the 3-D filtering stage is computa-
tionally intensive. Hence, the parallel filtering stage is con-
figured in a SIMD configuration for optimal performance
[4], in order to achieve simplified synchronization between
processors with minimum interprocessor communications.

2.3 3-D Parallel output reconstruction stage

The third stage is the output reconstruction stage. The 3-D
parallel output stage can be viewed as a parallel to serial
conversion stage. In this stage the reconstruction of the out-
put 1 2 3(, ,)y n n n is carried out in two steps, using the 64

decimated sub-output segments given by Eq. 6. In the first
step using interpolations and shifts (delays), producing 8-sub
outputs 000 001 010 011 100 101 110 111, , , , , , , and y y y y y y y y        , these

are defined as:

   
1 2 3 1 2 3

1 2 3

1 1 1

1 2 3 1 1 2 2 3 3
0 0 0

, , 2 ,2 ,2i i i i i i
i i i

y n n n y n i n i n i
  

      (7)

where  
1 2 3 1 2 3, ,i i iy n n n are the sub-outputs produced from

the different processing elements. However, the final output

1 2 3(, ,)y n n n is then reconstructed in the second stage from

the intermediate outputs 0 1 7, , , y y y   , as follows:

   

   
   
   
   

1 2 3

1 2 3

1 1 1

1 2 3 1 1 2 2 3 3
0 0 0

0 1 2 3 1 1 2 3

2 1 2 3 3 1 2 3

4 1 2 3 5 1 2 3

6 1 2 3 7 1 2 3

, , , ,

, , , , 1

, 1, , 1, 1

1, , 1, , 1

1, 1, 1, 1, 1

i i i
i i i

y n n n y n i n i n i

y n n n y n n n

y n n n y n n n

y n n n y n n n

y n n n y n n n

  

    

  

    

    

      

 

 

 

 

 

 (8)

where 1 2 30 , , 1n n n N M    are the final output dimen-

sions, and 1 2 3, , and i i i are the shifts in the 3-D output array.

3. PARALLEL ALGORITHM EFFICIENCY AND
PERFORMANCE RESULTS

In this section the performance and speeding factor for the 3-
D parallel filtering algorithm is calculated on a multiproces-
sor DSP system (the ASP-P15 Quad-DSP card [16]), consist-
ing of 4-SHARC DSP processors (ADSP21060), and
benchmarked against a single SHARC-DSP processor system
implementing 3-D FIR filtering. The simulation is carried out
with test data sets of size (64×64×64) each, and the perform-
ance results are given in Table 1, where the computational
time for the parallel system is calculated and compared to
that of the single processor system and the speeding factor is
calculated accordingly.

Input Size (64×64×64)×(64×64×64)

Filter on 4-DSPs 150.1

Filter on 1-DSP 826.3

Speeding Factor 5.5

Table 1 - Performance results for the 3-D parallel filtering
algorithm

The performance of the 3-D parallel algorithm is found to be
very high, more than the number of DSP processor used, i.e.
4-DSPs. This is due to the following reasons:

 By using the 3-D parallel algorithm, the input is
decimated into smaller sections that take advantage
of the internal memory of the processing devices.
This makes data fetching and storing very efficient
on the DSP devices

 The interprocessor communications for the 3-D par-
allel algorithm is very low, due to the elimination of
the boundary conditions in the filtering method. This
significantly improves the overall performance of the
system

 For the single DSP filtering all data are stored in the
external memory of the system with added wait
states. This effectively adds extra processing clocks
for synchronizing the internal processor hardware

©2007 EURASIP 1066

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

with the external memory in every fetching and stor-
ing operations

 In fact, the extensive use of external memory in the
single processor system proves to be a major factor
in restricting the system performance

4. CONCLUSION

In this paper we have presented an efficient 3-D parallel FIR
filtering algorithm. The 3-D algorithm involves the decom-
position of two 3-D input blocks into smaller independent
segments, which are easier to manage and can be processed
in parallel without interprocessor communications. The
mathematical derivations of the parallel algorithm stages are
given and the performance assessed using real parallel DSP
card.

Furthermore, the 3-D parallel filtering algorithm elimi-
nates the overlapping segments in the block filtering method
and the boundary conditions in parallel filtering implementa-
tion, as both inputs are segmented into independent subsec-
tions that can be simultaneously processed. These features
along with the elimination of interprocessor communication
overhead and the efficient use of the internal memory banks
of the processing elements (PE) allow the 3-D parallel algo-
rithm to achieve high speeding factors that can exceed the
number of processors used as shown in Table 1.

5. ACKNOWLEDGMENT

The authors have the pleasure in acknowledging the financial
support of the EPSRC, under Grant No. GR/S 98160.

REFERENCES

[1] E. Gelenbe, “Multiprocessor performance”, Wiley se-
ries in parallel computing, (ISBN 0-471-92392-3),
1989.

[2] M. Aziz and S. Boussakta, “A hybrid parallel algorithm
for digital image filtering applications”, Proc. of IEEE
Inter. Conf. on Elec. Circ. And Systems, ICECS-2000
Conf., Lebanon, 2000, pp. 591-594.

[3] A. S. Jahangir, “Parallel beam mapping algorithm to
compute radiation dose in 3-D treatment planning”,
Ninth IEEE symposium on computer based medical
systems, 1996, pp.24-29.

[4] A. Downton and D. Crookes, “Parallel architectures for
image processing”, Electronics & Communications En-
gineering Journal, 1998, pp. 139-151.

[5] D. Moldovan, “Parallel processing: from applications to
systems”, Morgan Kaufmann Publishers, Inc. (ISBN 1-
55860-254-2), 1993.

[6] S. L. Hurt and A. Rosenfield, “Noise reduction in three
dimensional digital images”, Pattern recognition, vol.
17, No. 4, 1984, pp. 407- 421.

[7] M. L. C. Hamilton, “The application of multiprocessor
DSP to machine vision”, IEE Colloquium on Multi-
processor DSP Applications, Algorithms and Architec-
tures, 1995, pp. 8/1 – 8/5.

[8] Gold, B., and Rader, C. M., “Digital processing of sig-
nals”, McGraw Hill, New York, pp. 171-172, 1969.

[9] R. C. Agarwal, and C. S. Burrus, “fast one-dimensional
digital convolution by multidimensional techniques”,
IEEE Trans. Acoust. Speech Signal processing, ASSP-
22, 1974, pp. 1-10.

[10] M. Aziz, and S. Boussakta, “Parallelisation of the Over-
lap-Add Block-Filter Algorithm for Image Processing”,
XI European Signal Proc. Conf., EUSIPCO’02 Tou-
louse, Vol. II, 2002, pp. 399-402.

[11] M. Aziz, and S. Boussakta, “Parallelisation of the 1-D
Block Filter Algorithm to Run on Multiple DSPs”.
IEEE Inter. Conf. on Elec. Circ. And Systems,
ICECS’02 Dubrovnik, 2002, pp. 943-946.

[12] M. Aziz, S. Boussakta, and D. C. McLernon, “High
performance 2-D parallel block filtering system for
real-time imaging applications using the SHARC
ADSP21060”, Elsevier Science, Real Time imaging
journal, vol. 9 (2), 2003, pp. 151-161.

[13] X. Li, G. Qian, Block size considerations for multidi-
mensional convolution and correlation, IEEE Trans.
Signal Process. Vol. 40, 1992, pp. 1271-1273.

[14] A. D. Cenzo, “Transform length for correlation and
convolution”, IEEE Trans. Acoust. Speech Signal proc-
essing, ASSP-35, 1987, pp. 698-699.

[15] S. R. Wang, and P. Siy, “Parallel-decomposition algo-
rithm for discrete computational problems and its appli-
cation in developing an efficient discrete convolution
algorithm”, IEE Proc. Vis. Image and Signal Process.
Vol. 142 (1), 1995, pp. 40-46.

[16] “ASP-P15 User Manual”. TRANSTECH parallel DSP
systems, available on (www.transtech-
dsp.co.uk/sharc/asp-p15.htm).

©2007 EURASIP 1067

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

