
EFFICIENT 3-D PARALLEL FIR FILTERING ALGORITHM

M. Aziz and S. Boussakta*

School of Engineering & Technology 
De Montfort University, Leicester, LE1 9BH, UK

Email: maziz@dmu.ac.uk
*School of Electrical, Electronics and Computer Engineering

University of Newcastle upon Tyne, Newcastle, NE1 7RU 

Email: s.boussakta@ncl.ac.uk

ABSTRACT

In this paper we present an efficient 3-D digital filtering 
method based on a new 3-D parallel filtering algorithm. This 
method is suitable for high resolution / high speed 3-D image 
and video processing. The proposed 3-D parallel filtering 
algorithm is highly efficient due to the elimination of over-
lapping segments overhead in the block-filtering method, and 
the boundary conditions in parallel filtering applications. It 
also solves the problem of limited efficiency of direct FIR
filtering when the system impulse response is large, and en-
hances the overall memory distribution of the parallel system 
by segmenting both the 3-D input data and the impulse re-
sponse of the system into smaller independent subsections 
that can be simultaneously processed. Finally, the algo-
rithm’s performance is assessed and analyzed.

1. INTRODUCTION

Digital filtering is an important application in communica-
tions and digital signal processing, and is widely used in 
many other applications in science and engineering [1-8]. 
However, digital filtering is known to be computationally 
intensive, and for many applications special hardware is util-
ised to achieve the required level of performance in accept-
able time or real time [4-7] constraint. In fact, the demand is 
ever increasing for high-performance, flexible and reliable 
processors, as many commercially viable applications in sci-
ence and engineering are identified requiring more process-
ing power than that available form the single processor chip 
[10-12]. 

In [9] Agarwal and Burrus extended the block convo-
lution method [8] to multidimensional convolution operation, 
which was later parallelised and mapped onto multiprocessor 
platform in 1-D & 2-D [10-12]. However, because of the 
overlapping segments in the block convolution algorithm 
[13] additional computational overhead was incurred and for 
efficient performance the relative size of the input data had to 
be restricted [13-15]. In [2] Aziz and Boussakta developed a 
new parallel filtering algorithm in 2-D and proposed efficient 
fast convolution algorithms using number theoretic trans-
forms (NTTs) achieving high speeding factors compared 
with the number of parallel processors used as well as exact 
FIR filtering free from rounding and truncation errors. 

In this paper a direct 3-D parallel FIR filtering algo-
rithm is presented and its performance is assessed and ana-
lyzed for real time multiprocessor system [16]. The perform-
ance results reflects the highly parallel nature of the proposed 
algorithm, which eliminates the problem of overlapping 
segments in the block filtering method and the boundary 
conditions in the parallel filtering implementation [14-15].

2. 3-D PARALLEL FILTERING ALGORITHM 
DEVELOPMENT AND ANALYSIS

The new 3-D parallel filtering algorithm is presented in Fig-
ure 1. This algorithm differs from the block filtering method 
by segmenting both the input data and the impulse response 
of the system into smaller sub-blocks that have no overlap-
ping regions, by using 3-D decimation by 2 algorithms in the 
input stage. 

The 3-D parallel algorithm is divided into three main 
stages. The first stage is the 3-D input and impulse response 
decimation stage. The second stage is the 3-D parallel filter-
ing stage of the different segments of the inputs, using a 
SIMD (single instruction multiple data [4]) parallel configu-
ration, for optimal performance. The third stage is the final 
filtering output reconstruction stage. In the next sub-sections 
the mathematical modelling of the three stages are pre-
sented.

2.1  3-D Parallel input stage 

The input stage of the 3-D parallel algorithm uses decimation 
by 2 in 3-D, producing 8-subsections for each 3-D input, see 
Figure 1. The subsections generated constitute exactly the 
same samples as the input block and hence no samples are 
lost due to the decimation process, and the resulting subsec-
tions are independent and not overlapping. 
The input decimation stage involves the decimation of two 
data blocks, i.e. the 3-D input block 1 2 3( , , )x n n n  of size 

( )N N N   and the 3-D impulse response 1 2 3( , , )h n n n  of 

size ( )M M M  , into 8-segments each of sizes 

2 2 2

N N N   
 

 and 
2 2 2

M M M   
 

 respectively.
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Figure 1 - The 3-D Parallel Filtering Algorithm

The 3-D input decimation process is defined as:

   
1 2 3

1 2 3
1 2 3 1 1 2 2 3 3, , 0,1
, , 2 ,2 ,2i i i i i i

x n n n x n i n i n i


      (1)

where 1 2 30 , , 2 1n n n N    and 1 2 3, ,  and i i i  take eight 

binary values, i.e. 000, 001, …, 111. So that the segments of 

1 2 3( , , )x n n n  are defined as:

 
 

 

0 000 1 2 3 1 2 3

1 001 1 2 3 1 2 3

7 111 1 2 3 1 2 3

, , (2 , 2 ,2 )

, , (2 ,2 ,2 1)

, , (2 1,2 1,2 1)

x x n n n x n n n

x x n n n x n n n

x x n n n x n n n

 

  

    


  (2)

The impulse response of the system 1 2 3( , , )h n n n is also 

decimated by 2, producing 8-segments, defined as:

   
1 2 3

1 2 3
1 2 3 1 1 2 2 3 3, , 0,1
, , 2 ,2 , 2i i i i i i

h n n n h n i n i n i


    (3)

where 1 2 30 , , 2 1n n n M    and 1 2 3, ,  and i i i  takes the 

binary values, i.e. 000, …, 111.  So that the 8-segments of the 
impulse response are defined as:

 
 

 

0 000 1 2 3 1 2 3

1 001 1 2 3 1 2 3

7 111 1 2 3 1 2 3

, , (2 ,2 , 2 )

, , (2 ,2 ,2 1)

, , (2 1,2 1,2 1)

h h n n n h n n n

h h n n n h n n n

h h n n n h n n n

 

  

    


(4)
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2.2 3-D Parallel FIR filtering stage

The second stage is the 3-D FIR filtering of the different 
segments shown in Eq’s 2 and 4 above. This is achieved by 
direct convolution [8-9]. However, on the 3-D parallel algo-
rithm the 3-D filtering is processed in parallel using 64 sub-
filtering equations for the different segments of the 3-D in-
puts. These parallel sub-filters are expressed by the 3-D con-
volution equation as:

   

 
   

 
1 2 3

1 2 3 1 2 3 1 2 3 , 0, ,7

2 1 2 1 2 1

1 2 3
0 0 0

1 1 2 2 3 3

( , , ) , , , ,

, ,

, ,

ij j i i j

N N N

j
m m m

i

y n n n x n n n h n n n

x m m m

h n m n m n m



  

  

 

 

  

  



(5)

where  1 2 30 , , 2 2 1n n n N M    are the output dimen-

sions of each sub-filter. In general the 64 sub-filters carried 
out on the multiprocessor array are given by:

 

0700 01 0

10 11 17 1
0 1 7

77170 77

yy y h

y y y h
x x x

hyy y

   
   
    
   
   
    






  



(6)

From Eq 6, it is clear that the 3-D filtering stage is computa-
tionally intensive. Hence, the parallel filtering stage is con-
figured in a SIMD configuration for optimal performance 
[4], in order to achieve simplified synchronization between 
processors with minimum interprocessor communications.

2.3 3-D Parallel output reconstruction stage

The third stage is the output reconstruction stage. The 3-D 
parallel output stage can be viewed as a parallel to serial 
conversion stage. In this stage the reconstruction of the out-
put 1 2 3( , , )y n n n  is carried out in two steps, using the 64 

decimated sub-output segments given by Eq. 6. In the first 
step using interpolations and shifts (delays), producing 8-sub 
outputs 000 001 010 011 100 101 110 111, , , , , , ,  and y y y y y y y y        , these 

are defined as:

   
1 2 3 1 2 3

1 2 3

1 1 1

1 2 3 1 1 2 2 3 3
0 0 0

, , 2 ,2 ,2i i i i i i
i i i

y n n n y n i n i n i
  

       (7)

where  
1 2 3 1 2 3, ,i i iy n n n  are the sub-outputs produced from 

the different processing elements. However, the final output 

1 2 3( , , )y n n n  is then reconstructed in the second stage from 

the intermediate outputs 0 1 7, , ,  y y y   , as follows:

   

   
   
   
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 (8)

where 1 2 30 , , 1n n n N M     are the final output dimen-

sions, and 1 2 3, ,  and i i i  are the shifts in the 3-D output array.

3. PARALLEL ALGORITHM EFFICIENCY AND 
PERFORMANCE RESULTS

In this section the performance and speeding factor for the 3-
D parallel filtering algorithm is calculated on a multiproces-
sor DSP system (the ASP-P15 Quad-DSP card [16]), consist-
ing of 4-SHARC DSP processors (ADSP21060), and 
benchmarked against a single SHARC-DSP processor system 
implementing 3-D FIR filtering. The simulation is carried out 
with test data sets of size (64×64×64) each, and the perform-
ance results are given in Table 1, where the computational 
time for the parallel system is calculated and compared to 
that of the single processor system and the speeding factor is 
calculated accordingly.

Input Size (64×64×64)×( 64×64×64)

Filter on 4-DSPs 150.1

Filter on 1-DSP 826.3

Speeding Factor 5.5

Table 1 - Performance results for the 3-D parallel filtering 
algorithm

The performance of the 3-D parallel algorithm is found to be 
very high, more than the number of DSP processor used, i.e. 
4-DSPs. This is due to the following reasons:

 By using the 3-D parallel algorithm, the input is 
decimated into smaller sections that take advantage 
of the internal memory of the processing devices. 
This makes data fetching and storing very efficient 
on the DSP devices

 The interprocessor communications for the 3-D par-
allel algorithm is very low, due to the elimination of 
the boundary conditions in the filtering method. This 
significantly improves the overall performance of the 
system

 For the single DSP filtering all data are stored in the 
external memory of the system with added wait 
states. This effectively adds extra processing clocks 
for synchronizing the internal processor hardware 
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with the external memory in every fetching and stor-
ing operations

 In fact, the extensive use of external memory in the 
single processor system proves to be a major factor 
in restricting the system performance

4. CONCLUSION

In this paper we have presented an efficient 3-D parallel FIR 
filtering algorithm. The 3-D algorithm involves the decom-
position of two 3-D input blocks into smaller independent 
segments, which are easier to manage and can be processed 
in parallel without interprocessor communications. The 
mathematical derivations of the parallel algorithm stages are 
given and the performance assessed using real parallel DSP 
card. 

Furthermore, the 3-D parallel filtering algorithm elimi-
nates the overlapping segments in the block filtering method 
and the boundary conditions in parallel filtering implementa-
tion, as both inputs are segmented into independent subsec-
tions that can be simultaneously processed. These features 
along with the elimination of interprocessor communication 
overhead and the efficient use of the internal memory banks 
of the processing elements (PE) allow the 3-D parallel algo-
rithm to achieve high speeding factors that can exceed the 
number of processors used as shown in Table 1.
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