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ABSTRACT
In this paper, closed-form frequency estimation of a sin-
gle real tone in white noise is addressed. Based on the al-
ternative derivation of Pisarenko’s frequency estimate using
the standard sample covariance of the noisy sinusoid with
lags 1 and 2, we have devised novel sample covariance ex-
pressions, which are inspired from the modified covariance
(MC) method, to achieve unbiased frequency estimation.
The variance of the proposed Pisarenko harmonic decompo-
sition (PHD) variant is also derived. Computer simulations
are included to corroborate the theoretical development and
to demonstrate its superiority over the MC and original PHD
algorithms.

1. INTRODUCTION

Estimating the frequency of a sinusoid in noise has been an
important research topic [1]-[5] because of its wide applica-
bility in control theory, signal processing, digital communi-
cations, biomedical engineering as well as instrumentation
and measurement. The discrete-time signal model for single
sinusoidal frequency estimation is

x(n) = s(n)+q(n), s(n) = α cos(ωn+φ),
n = 1,2, ...,N (1)

where α , ω ∈ (0,π) and φ ∈ [0,2π) are unknown but deter-
ministic constants which represent the tone amplitude, fre-
quency and phase, respectively, while the noise q(n) is as-
sumed to be a zero-mean white process with unknown vari-
ance σ2. The task is to find ω from the N samples of {x(n)}.

Under Gaussian noise assumption, the maximum likeli-
hood estimate of frequency [6] is obtained by maximizing a
highly nonlinear and multimodal cost function and thus ex-
tensive computations are involved. For applications where
real-time estimation is required, computationally efficient
but suboptimal frequency estimators [3] such as notch filter-
ing, Capon methods, linear prediction, Yule-Walker methods
and subspace based approaches are widely used choices.

In this work, we focus on fast frequency estimation of a
real-valued tone in white noise. The rest of the paper is or-
ganized as follows. In Section 2, we first review that the Pis-
arenko harmonic decomposition (PHD) method [7], which
exploits the eigenstructure of the sample covariance matrix,
can be derived [8] in an alternative and simpler manner with
the sample covariance of x(n) with lags 1 and 2. Inspired
by the modified covariance (MC) frequency estimator [2],
we devise an unbiased variant of the PHD estimate. The
frequency variance of the unbiased PHD method is also an-
alyzed. Numerical examples are presented in Section 3 to

corroborate the theoretical development and to evaluate the
performance of the proposed algorithm by comparing with
the original PHD and MC methods. Finally, conclusion is
drawn in Section 4.

2. UNBIASED PISARENKO’S ESTIMATOR

In this Section, we first review that the PHD solution for sin-
gle tone frequency estimation can be obtained alternatively
[8]. An unbiased variant of the PHD method is then pro-
posed and analyzed. Denote the standard sample covariance
of x(n) with lag k by rk, which is expressed as

rk =
1

N− k

N−k

∑
n=1

x(n)x(n+ k) (2)

For a sufficiently large N, it is easy to show that r1 and r2 can
be approximated as

r1 ≈ α2 cos(ω)/2 (3)

and

r2 ≈ α2 cos(2ω)/2 = α2(cos2(ω)−1/2) (4)

Cross-multiplying (3) and (4), we obtain the following ap-
proximate equation:

2r1 cos2(ω̂)− r2 cos(ω̂)− r1 = 0 (5)

where ω̂ denotes an estimate of ω . Only one root of (5)
corresponds to the actual frequency and it is easy to verify
that ω̂ has the form of:

ω̂ = cos−1


 r2 +

√
r2

2 +8r2
1

4r1


 (6)

This frequency estimate is in fact identical to the PHD esti-
mate which is found from the eigenvector corresponding to
the smallest eigenvalue of the following 3×3 covariance ma-
trix [7]:

[ r0 r1 r2
r1 r0 r1
r2 r1 r0

]
(7)

In our study, we propose to employ alternative expressions
for r1 and r2, which are inspired by the MC frequency esti-
mate, denoted by ω̂MC [2]:

ω̂MC = cos−1




N

∑
n=3

x(n−1)(x(n)+ x(n−2))

2
N

∑
n=3

x2(n−1)


 (8)
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where the numerator and denominator correspond to r1 =
α2 cos(ω)/2 and r0 = α2/2 + σ2, respectively. Our pro-
posed new r1 and r2 are:

r1 =
N−1

∑
n=4

x(n−1)(x(n)+ x(n−2)) (9)

and

r2 =
N

∑
n=5

x(n−2)(x(n)+ x(n−4)) (10)

The choice of (9) and (10) is to achieve unbiased frequency
estimation and their computations require 4(N−4) additions
and (2N−4) multiplications. To illustrate the unbiasedness,
we take the expected value of (9):

E{r1}

=
N−1

∑
n=4

E {x(n−1)(x(n)+ x(n−2))}

=
N−1

∑
n=4

E {x(n−1)(s(n)+ s(n−2)+q(n)+q(n−2))}

=
N−1

∑
n=4

E {s(n−1)(2cos(ω)s(n−1)+q(n)+q(n−2))}

= 2cos(ω)
N

∑
n=5

s2(n−2) (11)

where E denotes the expectation operation. In a similar man-
ner, we obtain:

E{r2} = 2cos(2ω)
N

∑
n=5

s2(n−2) (12)

From (3)−(5), we see that the new sample covariances of (9)
and (10) are superior to the standard ones. As a result, our
proposed frequency estimate is obtained by substituting (9)
and (10) into (6).

To derive the variance of the modified PHD estimator,
we follow the work of [9]. From (5), we define a quadratic
function f (ρ):

f (ρ) = 2r1ρ2− r2ρ− r1 (13)

where ρ = cos(ω̂) is one of its roots. For sufficiently large N
and/or signal-to-noise ratio (SNR), this root will be located
at a reasonable proximity of cos(ω), and the variance of ω̂ ,
denoted by var(ω̂), is evaluated as [9]:

var(ω̂)≈ E
{

f 2(ρ)
}

(
E

{
f ′(ρ)

})2

∣∣∣∣∣
ρ=cos(ω)

· 1
sin2(ω)

(14)

where f ′(ρ) is the derivative of f (ρ) with respect to ρ . As-
suming that q(n) is Gaussian distributed, we have shown that
(See the Appendix)

var(ω̂)≈

1
(N−4+g(ω,φ ,N−2,0,3))2(cos(2ω)+2)2 ×
(

2+F (ω,φ ,N)+G (ω,φ ,N)+H (ω,φ ,N)
2SNRsin2(ω)

+
cos2(ω)(N−5)+ cos2(2ω)(N−4)

SNR2 sin2(ω)

)
(15)

where g(ω,φ ,N,k,b), F (ω,φ ,N), G (ω,φ ,N) and
H (ω,φ ,N) have been defined therein. For SNR >> 1 and
sufficiently large N, the frequency variance can be simplified
as (See the Appendix):

var(ω̂)≈
SNR+ cos2(ω)(N−5)+ cos2(2ω)(N−4)

SNR2(N−4)2(cos(2ω)+2)2 sin2(ω)
(16)

3. SIMULATION RESULTS

Computer simulations had been carried out to evaluate the
proposed frequency estimator performance for a single real
sinusoid in white Gaussian noise. We compared its mean
square frequency error (MSFE) with those of the original
PHD and MC methods as well as Cramér-Rao lower bound
(CRLB) [3] for frequency estimation. The tone amplitude
was assigned to

√
2 and φ = 0 was used, while different

SNRs were obtained by proper scaling the noise variance σ2.
All simulation results provided were averages of 1000 inde-
pendent runs.

Figure 1 shows the MSFEs of the three estimators as well
the CRLB versus ω at SNR = 20 dB and N = 10. The expres-
sions of (15) and (16) are accompanied to check the validity
of theoretical performance of the unbiased PHD method. It
can be seen that the measured MSFEs of the proposed es-
timator agreed very well with the variance formula of (15)
while they were close to (16) although its derivation assumes
a large value of N. We observe that the proposed scheme
outperformed the PHD solution in spite of the similarity
in their algorithms. Moreover, it was superior to the MC
method and had performance close to CRLB except when
ω ∈ (0.4π,0.6π). The mean frequency errors of the three
methods, which were obtained by subtracting ω from the
corresponding mean frequency estimates, are shown in Fig-
ure 2. It is seen that the biases of the modified Pisarenko’s
estimator were much smaller than those of the PHD and MC
method for the whole frequency range, which demonstrates
the unbiasedness of the former. The above test was repeated
for N = 100 and the MSFE results are plotted in Figure 3.
We see that the proposed estimator was the best among the
three algorithms for all frequency values, although it had a
larger degradation from the CRLB. Furthermore, the validity
of (15) and (16) was confirmed.

Figures 4 plots the MSFEs versus SNR at N = 10 and
ω = 0.265π . It is observed that the measured MSFEs of the
proposed scheme, which again conformed to (15) as well as
(16) except when SNR ≤ 4 dB, outperformed the remaining
two estimators for higher SNRs. In addition, the unbiased
Pisarenko’s estimator approached the CRLB for SNR ≥ 10
dB.
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4. CONCLUSION

Inspired by the modified covariance (MC) method, we devise
alternative expressions for the sample covariance to produce
an unbiased variant of Pisarenko’s frequency estimator. The
performance of the proposed scheme is theoretically ana-
lyzed and evaluated via computer simulations which demon-
strate its superiority over the MC and original Pisarenko’s
methods.

5. APPENDIX

The derivations of (15) and (16) are given as follows. From
(13), it is easy to show that

E
{

f 2(ρ)
} |ρ=cos(ω) = cos2(2ω)E{r2

1}−

2cos(ω)cos(2ω)E{r1r2}+ cos2(ω)E{r2
2} (A.1)

The required terms, namely, E{r2
1}, E{r1r2} and E{r2

2} are
computed as

E{r2
1}=

α4 cos2(ω){(N−4)+g(ω,φ ,N−2,0,3)}2

+α2σ2{4N−18+(4N−20)cos(2ω)}
+2(2N−8)σ4

+α2σ2{(1+2cos2(ω))g(ω,φ ,N−2,0,3)+
+g(ω,φ ,N−2,−2,5)×
4cos(ω)g(ω,φ ,N−2,−1,4)} (A.2)

E{r1r2}=

α4 cos(ω)cos(2ω){(N−4)+g(ω,φ ,N−2,0,3)}2

+α2σ2{(4N−20)cos(ω)+(4N−22)cos(3ω)}
+α2σ2{(2cos(2ω)+1)g(ω,φ ,N−2,−1,4)
+2cos(ω)cos(2ω)g(ω,φ ,N−2,0,3)
+2cos(ω)g(ω,φ ,N−2,−2,5)
+g(ω,φ ,N−2,−3,6)} (A.3)

E{r2
2}=

α4 cos2(2ω){(N−4)+g(ω,φ ,N−2,0,3)}2

+α2σ2{4N−20+(4N−24)cos(4ω)}
+2(2N−10)σ4

+α2σ2{4cos(2ω)g(ω,φ ,N−2,−2,5)

+(2cos2(2ω)+1)g(ω,φ ,N−2,0,3)
+g(ω,φ ,N−2,−4,7)} (A.4)

where

g(ω,φ ,N,k,b) =
N

∑
n=b

cos((2n+ k)ω +2φ) =

sin((2N + k +1)ω +2φ)− sin((2b−1)+ k)ω +2φ)
2sin(ω)

F (ω,φ ,N) =

cos2(2ω){(1+2cos2(ω))g(ω,φ ,N−2,0,3)
+g(ω,φ ,N−2,−2,5)+4cos(ω)g(ω,φ ,N−2,−1,4)}

G (ω,φ ,N) =
−2cos(ω)cos(2ω){(2cos(2ω)+1)g(ω,φ ,N−2,−1,4)
+2cos(ω)cos(2ω)g(ω,φ ,N−2,0,3)
+2cos(ω)g(ω,φ ,N−2,−2,5)+g(ω,φ ,N−2,−3,6)}

and
H (ω,φ ,N) =

cos2(ω){4cos(2ω)g(ω,φ ,N−2,−2,5)

+(2cos2(2ω)+1)g(ω,φ ,N−2,0,3)
+g(ω,φ ,N−2,−4,7)}

In a similar manner, we get

E
{

f ′(ρ)
} |ρ=cos(ω) =

α2(N−4+g(ω,φ ,N−2,0,3))(cos(2ω)+2) (A.5)

Substituting (A.1)-(A.5) into (13) with SNR = α2/(2σ2)
and after simplifications, we obtain (15). For sufficiently
large SNR and N, the terms g(ω,φ ,N,k,b), F (ω,φ ,N),
G (ω,φ ,N) and H (ω,φ ,N) can be ignored. In so doing,
the asymptotic expression of (16) is obtained.
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Figure 1: Mean square error versus ω at SNR = 20dB and N = 10
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Figure 2: Mean frequency error versus ω at SNR = 20dB and N =
10
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Figure 3: Mean square error versus ω at SNR = 20dB and N = 100
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Figure 4: Mean square error versus SNR at ω = 0.265π and N =
10
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