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ABSTRACT accelerometer and gyros. INS errors have an exponential growth

Nowadavs. accurate and reliable positioning svstems are requir o#er time. Thus, GPS measurements are classically used to bound
. ysS, accure p ning Systems are requireflese errors during satellite visibility. On the other hand, INS offer a
in several applications such as safety of life or liability critical. The 5o\ o rection to GPS measurements which is mostly used during

'EPS satellite outages. This paper studies a multi-aided navigation

;ZﬁtiTtr]:ék?Amofg a;?/tigl?lglrlcgtlli?g i'sml’fs)lg’('jn% tlgrfgl\llze?“?gr, ;u"’;\é'r%%'_system integrating GPS, INS and WSS. The idea is that increasing
! facking. in p ' : ely. the sensor redundancy should provide higher reliability and accu-
tive navigation. However, the quality of the localization task for

ground vehicles is subjected to degrade in outdoor conditions Foréacy for the positioning system. Any failure in one sensor can be
instance, severe degradations have been observed in urban ar ompensated by other on board sensors providing reliable measure-

when the vehicle is subjected to multipath or masking effects inteﬁﬁgms' For instance, during GPS satellite outages, non-holomonic
fering with the satellite IJines of sight Ipn this case co%binin GPSconstraints are applied to the vehicle trajectory. Thesteal .
pseu%lo ranges with other measurg(arﬁent sources is an interegting wﬂemenmdo not differ much from the real vehicle trajectory. At the

of improving localization performance. This paper studies differ- me time, they provide extra sources of measurements to make INS

ent fusion approaches based on differential odometry provided by rors observables, improving the positioning accuracy [4]. These

wheel speed sensors (WSS) and inertial sensors such as aceeler ¥ame holomonic constraints are applied to the vehicle attitude an-
; : . Oé!}s calculated from the differential odometry.
eters and gyros. Different tracking strategies based on extended a
unscented Kalman filters are investigated and compared for these
fusion approaches.
The different coupling strategies will be processed by filtering

1. INTRODUCTION techniques based on the extended Kalman filter (EFK) and the un-

Vehicle positioning has become a major focus of automobile indusScented Kalman filter (UKF). The EKF is the commercially used
try. In urban canyon areas, different problems such as corrupteff°r'd accepted filter for navigation. It is known to provide rea-
received signals or restricted/absence satellite visibility can arise®nable accuracy with a low computational cost. The EKF propa-
Using auxiliary sensors to mitigate this unreliable or absent infor92t€s the mean and covariance of the state assuming the state and
mation (during GPS satellite outages) is an interesting idea. Thedg€asurement equations can be linearized. Conversly, the unscented
additional sensors may use dead reckoning techniques. These teffiman filter (UKF) allows one to track the state mean and covari-
niques compute the actual position of the vehicle from its knowrNC€ Matrix without any linearization operation [S]. The UKF ap-
initial location by integrating differential measurements. The senProximates the state mean and covariance matrix through a set of
sors which have been already used for vehicular navigation includ@€ighted points called sigma points and propagates them through
gyroscopes, odometers [1], inclinometers and tilt meters amon§j'€ €& non linear measurement model. It can be shown that third
others. Another way of improving localization performance con-Order accuracy is achieved by the UKF, which considers higher or-
sists of using map matching techniques lately introduced as part €T ©€rms in the Taylor expansion than the EKF approximation [6].
multi-aided navigation approaches for automobiles [2]. onsequently, the UKF has provided significant improvement in
This paper studies the potential interest of using wheel speeR0Sitioning accuracy (when compared to the EKF) in several nav-
sensors (WSS) in hybrid GPS. WSS are fundamental componen't%at'on applications [5], [6]. It is interesting to mention here that

in the antilock braking system (ABS), which will be a standard particle filters (PFs) are also nice alternatives to the EKF and UKF

equipment in most new generation vehicles. WSS provide meav_vhlch could be used for automotive navigation. PFs capture all

surements through the vehicle controller area network (CAN). Ajinformation regarding the state, by estimating sequentially the pos-

modern cars are equipped with WSS which measure wheel angultﬁrior state distribution [2]. The standard Bayesian estimators such

rates and estimate the traveled distance. Therefore, coupling GPS the minimum mean square error (MMSE) and the maxiraum

and WSS provides a self contained positioning system that explor%>Steriori (MAP) estimators can then be derived from this state

the already available on board information at no additional cost. |stributiotrr1]. Howe%er,lthis paper c?rlg:entlratest ??t EKF anld t.UKF
particular attention is devoted to differential odometry in this palper_l_‘f]Cause ey prok;n e owerr] COE”&F":“ & :jor&e}tq:cos_” ;) erlngf solu (ljogs.
In differential odometry, vehicle velocity and yaw rate are obtained! '€ comparison between the an will be performed by
by the wheel encoders on the rear undriven wheels. These infof°MParing the mean square errors (MSEs) of the estimates to the

mations are then used to improve localization performance. HOW(_:orresponding posterior Cramer Rao Bounds (PCRBs).

ever, odometric measurements are corrupted by several eradrs su

as wheel radius errors. Navigation performance can be improved by

including these errors in the state model for their estimation [2]. The paper is organized as follows: Section 2 presents the bases
Another possibility for improving navigation performance is to of a GPS/WSS coupling approach. The principles of INS and its

combine GPS and inertial navigation systems (INS) [3]. This pa<coupling with GPS and WSS are explained in Section 3. Filtering

per focuses on a coupling approach based on a tight integratiostrategies allowing us to estimate the vehicle position by combin-

GPS/INS hybrid systems have been used intensively in aeronautidsg different sources of measurements are presented in Section 4.

However, their application to the automotive industry is increas-Some elements regarding the computation of the PCRB for a state

ing thanks to the new low cost inertial measurement units (IMU).vector are also presented. Simulation results are shown in Section

INS are self contained non jammable systems consisting of a 3B. Conclusions are reported in Section 6.
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2. GPS'WSSHYBRIDIZATION 2.3 GPS/WSSIntegration

21 GPS If the wheel radii were constant, the vehicle speed and yaw rate

The GPS measurements are called pseudo-ranges (instead \%?UId be related tay (t) andy (t) by the following equations:
ranges) since the estimated times of transmission are corrupted by

different biases. The positioning equations Mgisatellites in sight ):((t) = V] (1), @n (1), Rer, R sinip ()] +w(t), )
at time instant can be defined as: y(t) = V]arr(t), @ (t), Rer, Ry] cog(t)] +vy(t), ®)
P(t) = hlor (1), wh (), Rer, Rt + v (1), (6)

ri(t) = \/[Xi (t) =X + Y1) = y(O))?+ Z2(t) + b(t) +wi 1), wherevy(t), w(t) andvy(t) are white noise sequences. When the

] ) (1) wheel radii are time varying, the componeRts andR;| have to be
fori=1,...,ns, whereri(t) is the pseudo-range between the user andeplaced in (4), (5) and (6) by their time-varying counterpRrtst
theith satellite [X;(t), Yi(t), Zi (t)]T is the position of théth satellite  dRyr(t) and Ry + 0R;((t). This yields the following continuous-
in the local frameb(t) is a bias term resulting from the clock offset, time state model
w; (t) is the measurement error apxt), y(t)] is the vehicle position
to be estimated (note that the vehicle altitudez(ly = 0 in this X(t) = =V [ (1), @i (1), ORer (1), ORy (1)] sin[(t)] + wx(t),
paper). These equations will be used as measurement equations in Y(t) =V [ (t), ey (t), 8Rer (1), SRy (t)] cOFW(t)] + Wy (1),

o

the proposed navigaton solutions. B16) = hlex 0, @0 (1), 8RR (1), 3R (1] + Vi 1),

22 WSS SRr(t) =V (t),  ORi(t) =w(b),

This section describes the main elements of differential odometry.

The idea is to integrate informations regarding distance and yawherev;(t) andvy(t) are white noise sequences. Note that this
rate using the measurements given by the vehicle odometers. Theodel considers the wheel radius errors as random constants whose
WSS measurements will be calibrated to provide reliable informaderivatives are Gaussian white noises. The previous state equations
tion during GPS satellite outages. Figure 1 shows WSS located care completed by a GPS clock offset dynamic model defined as:

the front or rear wheels. The first index of the different variables

refers to the frontf or rearr axes whereas the second index corre- b(t) =d(t) +vp(t), d(t) =vq(t), @)
sponds to the left and rightr sides of the car. Consequently, the

wheel radii (resp. angular velocities) are denoteRagRr,Rfy and  whereb(t) denotes the GPS receiver clock offset in metdt) is

Ry (resp.ah, wrr, wr andwyr). The other notations used in Fig. 1 the derivative ob(t) andvy(t),vq4(t) are white noise sequences.

areL for the length between wheels agdfor the vehicle yaw rate The resulting continuous time state vector for GPS/WSS inte-

(change of angle of direction). This paper focuses on velocity angration is composed of the vehicle position, angle of direction, radii
yaw rate calculations using rear wheels. This choice is motivate@nd clock parameters at tine

by the fact that acceleration and deceleration have less effect on the

output of these sensors. X¢ = [X(t), y(t), W(t), 3R (t), 5Ry (t),b(t%d(t)f eR. (8

Wty This paper assumes that the wheel speeds, radius offsets and noises
are piecewise constant. As a consequence, the previous continuous-
time state model can be classically discretized by replacing deriva-

W tives by finite differences, e.(t) by w whereTs is
K< the sampling period.

G| CWrr
R F

yAL

3. GPSINS/WSSHYBRIDIZATION

IR” 3.1 INS

—_— INS are self-relying and autonomous systems which have been
L > widely used in navigation applications. They are composed of an
X IMU yvith inertial sensors (accelerometers and gyrom(_eters). '_I'he
Figure 1: lllustration of WSS definition. IMU is coupled with a computer that provides the mobile with its
position, velocity and attitude angles. The accelerometers deliver a
Assume first that the wheel radii are constant and known. Thggg ?ﬁgv'ta:gor::{;zcﬁqlg;astlﬁg gﬁs?ggg&e?;t% e:)s% ?ﬁggggggﬁuster
mean speed of the vehicle at timean be computed as [2]: P gy X X . ;
Qip in order to keep track of the vehicle orientation. As explained
Ve (1), @ (1), Rero Ry | = @r (1)Rrr + e (DR (2y  before, this paper assumes that the vehicle alfitudgtjs= 0, or
e T 2 ' equivalently that the vehicle is equipped with 2D accelerometers
The yaw rate of the vehicle can be calculated similarly as a functio@"d gyrometers. Moreover, we use the following notations:
of the angular velocities of each wheel (3). By neglecting side slifRqzp : rotation matrix from frame a to frame b,
effects (see [7] for more details) and modeling the vehicle as a rigiq)b - location of the vehicle in the frame b,
body, the vehicle yaw rate at tinhexpresses as

ng : rotation rate from frame a to frame b, resolved in frame b,
(1) = hlenr (1), & (1), R, Ry = wrr (DR — o (HRy 3) \2 : velocity relative to frame a, resolved in frame b.

L The subscripts and superscripts refer to the different coordinate
Errors in the wheel radii will have a strong impact on localizationframes, i.e.j: inertial framee: earth centered earth fixed franme,
accuracy when getting propagated through the angle and velocitpcal geographic framep: platform frame. The differential equa-
expression. Indeed, any non corrected error will result in an accuions relating the measured quantities to the dynamics are defined
mulative increasing error. A usual way of mitigating the effects ofas follows:
radius variation®Ry, (t) anddR; (t) is to include them in the state
vector, as shown in the next section. V2 = Rpan fP + g7 — (QI, + 200 VA — QL] p", 9)
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o (AL R% 0 y 10 The idea is to use WSS measurements to further correct the INS er-
p= o ) 0 ﬁ e (10) " rors. Note that a frame transformation is necessary to compare INS

and WSS data. In the presence of GPS, the WSS contribution is
whereg" is the gravitational acceleration in the local geographicvery small. However, this contribution is crucial during GPS satel-
frame,A andg are the latitude and longitude of the mobifg(t) = lite outages since it allows one to correct the INS growing errors.
[y(t),x(t)] is defined in the same frame of the WSS showing the =~ The proposed GPS/INS/WSS integration considers non-
north and east velocityR, is the earth radius of curvature in a holonomic constraints for the WSS measurement vector as in [4].
meridian at a given latitude arR}, is the transverse radius (we con- The idea is to have the maximum numbemadasurements avail-
sider the WGS84 model for which the earth is an ellipsoid). Thesé@ble during GPS outages. Assume that the side slip effects can be
equations are integrated to obtain the vehicle position and velodieglected as in [7], the altitude can be set to 0 in (1) and there is
ity. This integration will entail a drift in stand-alone INS estimates no misalignment between the body frame and the vehicle. Conse-
due to a bias affecting the INS measurements (denotes & quently, thevirtual measurements provided by the non-holonomic
the accelerometer bias and lagfor the gyroscope bias). These constraints will _help to keep track Qf |NS errors. The WSS mea-
errors affecting the position accuracy can be reduced by couplingurement equation for the yaw rate is given by,

the INS with the GPS and WSS outputs. In the following sections,

the commonly used GPS/INS coupling approach will be first intro- Uvss— PiNs = hy(ORr, ORy1, 8p), (16)
duced. An extension to the hybrid system GPS/WSS/INS will then ) ) )
be discussed. whereh(.) is the difference between the radius errors propagated

through the yaw rate expression (3) and the INS attitude errors:
3.2 Multi-sensor integration
o W ORr

32.1 GPSINS hw(éﬂr,da|,6p)_w+6p. (17)

L
The common GPS/INS coupling techniques use the GPS pseudor-
ange measurements to correct the INS errors in order to obtain ré- frame transformation has to be used to compare the velocities
liable position estimation. This procedure is interesting since theiven by each system appearing in (2) and (9). This paper converts
integrated system can still rely on INS outputs in absence of GP&e INS velocities to the vehicle frame (an alternative would be to
measures (due for instance to masking). The errors of the INS sysxpress WSS velocities in the navigation frame). In this case, the
tem are defined as the difference between the actual INS parameelocity WSS measurement equation can be written
ter values and their estimatiodeX = X — )?.NS. The state model
describing the INS error dynamic behavior can be obtained by lin- (V,0)vss — RTpZn(vg)ms =hy (3R, R, 0p,0\), (18)
earizing thedeal equations around the INS estimates [9]. The state
vector is usually augmented with systematic sensor errors: where

T 9 o) o)

X = (8V2,5p,ba, by, 50", b,d)T € R®, (11) by () = M ROV + RbpnSVE) 8. (19)
where dp" and v contain the position and velocity error§p
is the inertial yaw rate errob, andbg are the accelerometer and 4. FILTERING TECHNIQUES
gyroscope biaseb,denotes the GPS receiver clock offset in metersThis section recalls standard filtering techniques which provide es-
andd its derivative. The dynamic model used in this papeffpd)  timates of the state vectgy from the following state-space model:
has been defined in (7). The INS state equations can be defined as

follows (see [3] or [9] for more details): Xt = AXi_1+ Vs re = h(x;) + W,
op = —3Q, — Q) dp + RpchSQipp (12)  wherey, is the state vecto# is the state model propagation ma-
trix, rt is the measurement vector (pseudo-rangeshaigithe non
OVe = Rponba + S(8p) " — S(Qg, + 2Qf%) 6vg + 69" linear function relating the pseudo-ranges to the state vector. The

_ n n noise sequenceg andu; are supposed to be independent white
S(0Qe +20Qie)Ve (13) Gaussian with covariances matrig@sandR;.

5-pn:S<QQn)5pn+5\'lg7 (14) 41 EKF

whereS(u) is the skew-symmetric matrix such th8fu)y = uAy  The EKF proceeds by linearizing the model about the latest esti-
andu Ay denotes the cross product between vectoendy [3,  mate to meet the Kalman Filter assumptions. The state space model

p. 292]. Note that the vectors appearing in the INS state equajefined above is then classically approximated as follows:
tions above are obtained by adding a third component equal to

0 corresponding to the altitude. The measurement equation for { Xt AXe 1+

re =~ HeolXe—Xee—1) +eXye-a) + W, (20)

the GPS/INS system is still given by the pseudoranges (1) where
(x(t),y(t)) are obtained from the geodetic corrected measurements
(A 43X, 9+ d¢)ns in the rectangular coordinate system.

whereH; = dﬁix) ‘X:fmu' Consequently, the conditional probabil-

322 GPSINSWSS ity of the statep(x,|r1¢) can be estimated by a Gaussian probability

Integrating GPS, INS and WSS is a challenging and interesting naensity function whose meayy; and covarianc&;; can merely be

igation problem. This section first considers GPS/INS integration asomputed by Kalman recursions.

explained above and introduces WSS to enhance the accuracy on the

given position estimations. As already explained, the outputs frord.2 UKF

the rear WSS provide the absolute veloditin the vehicle heading e UKF does not need to linearize the non linear measurement

direction, and its yaw ratg. These will be used as measurementSgqyation to determine the covariance matrix of the random state

to update the filter. For this, the state vector (11) is augmented byector. For this purpose, a set of sigma points with appropriate

radius errors affecting the WSS yielding weights is deterministically chosen so as to capture the mean and

T covariance of this random vector up to a third order accuracy. More

X= (6vg,5p,ba,bg76p”,b,d76Rrr,6Rr|) e R (15) precisely, consider a random vectowith meanx and covariance
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matrix P;. The sigma points and the weights associated tre = GPS/WSS (Filtered trajectory) is also depicted. The coupling be-

defined as follows: tween GPS and WSS is clearly necessary for this example. Fig. 3
shows the positioning errors for the GPS/WSS coupling approach

Xo = X We — A 1) which are compared to the corresponding PCRB. These errors fluc-

0= 0 (n+A) tuate from 10 to 15 meters. Note that the coupling technique per-

forms similarly when using the EKF or the UKF. The vehicle dy-
_ 1 > 2 . - - ; i
Xi=x+v(+A)B, W= (22) namics is sufficiently slow for this example to linearize efficiently

2(n+A) the measurement equation (1). Therefore the UKF doesn’'t show
- e o 1 any improvement over the EKF. Note also that the hybridization
Xign=X—=/(n+A)B.  Witn= 2(n+A) (23) approach reaches almost the best achievable precision, provided

by the Posterior Cramer Rao bound. Similar results obtained for
wherei = 1,...,n andn is the dimension of the state vector. The the GPS/INS/WSS hybridization can be observed in Figs. 4 and
parameten is a scaling parameter. The mean and covariance m&. A comparison between both coupling techniques shows that the
trix of the Gaussian vectagy = h(x) can then be approximated as GPS/INS/WSS outperforms the GPS/INS approach. Adding INS
follows: measurements to GPS and WSS data results in improved accuracy.
For instance, the GPS/INS/WSS positioning errors fluctuate from 5
L 2n - to 10 meters.
y= _Z}WiYi» Py = 'Z)Wi Yi-y)Yi-y)', For further comparisons, a more realistic urban scenario is pre-
1= 1= sented with partial GPS availability. The idea is to observe the be-
havior of the different coupling techniques with a reduced num-
ber of visible GPS satellites. For this, we have simulated & 30
; . time interval during which only two GPS satellites are visible, fol-
In the general formulation, the state vectoraisgmented by 5ed by a 30s GPS outage (both indicated by vertical black lines
concatenating the original state vector Wlth the state and.measurﬁ]- Fig. 6). Fig. 6 compares the positioning errors obtained for
ment noises [S]. However, this concatenation is not required hergyg gitferent coupling and filtering strategies for this example. The
since the state and measurement noises are additive [10]. In theps;NS/WSS coupling clearly outperforms GPS/WSS during lim-
way, the size of the sigma points is reduced, enabling a more effie 4 Gps visibility and GPS outages. The use of INS helps to keep
cient algorithm. For the rest of the filtering process, the UKF al-y 1y, nq over the positioning errors, avoiding loosing track of the
gorithm follows the principles of the Kalman Filter adapted to the apicie - Consequently, GPS/INS/WSS hybridization provides re-
unscented transform. The reader is invited to consult [10] for & deapie hositions during longer periods than the GPS/WSS system.
tailed description of the UKF, specially in the additive zero mean e 4150 that a slight improvement is observed with the UKF (ver-
noise case. sus the EKF) when regaining full GPS visibility.
; ) Another way of comparing the different coupling strategies is
4.3 Posterior Cramer-Rao Bound (PCRB) to analyze the corresponding horizontal position PCRBs for differ-
The PCRB provides a lower bound on the MSEs of the state esant numbers of LOS satellites. Table 1 shows that the asymptotic
timates. It can be viewed as a reference to which the state MSBsorizontal error PCRBs corresponding to the GPS/WSS coupling
of suboptimal algorithms can be compared. The PCRB is often retend to diverge over time when working with a small number of
ferred to as the Bayesian version of the Cramer-Rao bound. Theatellites, contrarily to the GPS/INS/WSS hybridization. Note that
recursive formulas allowing to compute the PCRB are detailed inhere is a significant gain when passing from 5 to 6 satellites in the
[11]. All expectations appearing in these formulas have been estgPS/WSS case. Indeed, the sixth satellite has a very good visibility

mated by averaging the results over several Monte Carlo runs. Thign terms of Dilution of Precision) for this GPS constellation.
paper focuses on the PCRB for the horizontal INS position error

denoted by HPCRB, since the vehicle altitude is supposed to be
0. We recall here that the horizontal position error can be defined 6. CONCLUSIONS
as functions of the latitudéA and longituded¢ inertial errors by This paper presented two different coupling techniques referred to
HE = (R6A )2+ (R3@cosA )2, whereR stands for the earth radius. as GPS/WSS and GPS/INS/WSS. The GPS/WSS approach used
the already existing wheel speed sensors from the automobile ABS.
5. SIMULATION RESULTS Both the yaw rate and velocity of the vehicle were obtained by dif-

Several simulations have been conducted to compare the differefﬁ;emial odometry. In this way an economic self contained solution
P s provided for vehicle navigation. On the other hand, the widely

coupling techniques. All results presented in this section have be : ;
averaged over 25 Monte-Carlo runs (note that the vehicle traject%%i%gfégnﬁ;‘ti'ﬁ;lfjiF:]Sg/ Ivltl/gsarpnpergggrher\%vzﬁtgdapted to land vehicle

ries differ from one Monte Carlo run to another). An example of the Simulati its sh d d P for both
simulated vehicle dynamics corresponding to an acceleration va:% imuiation results showed a good performance tor both Sys-
g

whereY; = h(X;) is the result of each sigma poiX{ undergo-
ing the non linear transformatidn

ance of Bn/s? is depicted in Fig. 2. The pseudo-range measureme gms. However, th(_a GPS/INS/WSS outpe_rfor_med the GPS/WSS
accuracy for the GPS signal is 12m (i.e. the standard deviation ccuracy by approximately 5 meters. To highlight the sensor con-

: ! ibutions to tracking purposes, hostile conditions (limited GPS
w;(t) is equal to 12m). The WSS parameters have been adjusted aG-.. .- ; .
cording to standard vehicles, i~ 1.8m andRy, — R — 0.23m. a\ﬁSIbI|Ity and GPS outages) were simulated. Combining GPS

INS errors have been simulated according to an HG1700 tactic‘?/Ith different sensors enabled the system to provide a reliable

IMU for realistic purposes [4]. The standard deviations of the nois osition estimation during these hostile conditions. The asymp-

. otic PCRBs for both hybrid approaches under varying numbers
componentsy (1), w(t), w(t), vy (t) andv; (t), vi (t) are summarized ") 55" Gps satellitesywere IZ\?so computed Th)(/e gtability in
in the following table i

terms of accuracy for the GPS/INS/WSS system appeared superior
V] X y 7] SR to GPS/WSS. Having more dead reckoning measurement sources
o 1 004m/s| 004m | 0.04ml 006m| 10" m make the GPS/INS/WSS system more able to work efficiently in
urban areas affected by limited GPS availability. The measurement
A scenario with full GPS visibility is first presented. The GPS re-equation associated to the proposed navigation state space model
ceiver is assumed to view 7 satellites in line of sight (LOS). Figureis nonlinear. Two filtering techniques based on the EKF and UKF

2 shows an example of real trajectory followed by the vehicle andvere compared for this navigation problem and provided similar re-
the estimated position obtained when using WSS only (WSS trajecsults. Land vehicles are subjected to slow varying dynamics yield-
tory). The estimated trajectory resulting from the coupling approacling similar performance for both techniques.
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Further investigations include the development of fusion strate-
gies based on low cost sensors. Different approaches can be ex-
plored and evaluated. The first one consists of examining the inter-
est of a pressure sensor used as an altimeter to provide vertical accu-
racy improvement. The second technique takes the best advantage
of the tire monitoring system which is going to become standard
for all vehicles. Finally an image-aided navigation system might be

investigated.
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Example of an actual and estimated trajectory

(1]

(2]

[3

—_—

(4]

[5

—_

(6]

(7]

(8]

9]

(10]

N of LOSsat. | GPSIWSS | GPSINSWSS
1 div 60m
2 div 17m
3 21m 8m
4 18.6 m 5m
5 16 m 47m
6 10 m 4m
7 9.5m 3.7m

Table 1: Asymptotic Horizontal PCRBs.
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