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ABSTRACT
Knowledge about the position of a user’s mobile handset device
constitutes a valuable information for emerging location–based ser-
vices and applications. While satellite–based navigation systems
are the chosen technology for outdoor, rural and semi–rural en-
vironments, location in urban canyon or indoor navigation is still
unsolved. In this paper, we exploit the fact that handsets are usu-
ally surrounded by different kinds of communication and sensor net-
works, which can be used to enhance the coverage, accuracy and
robustness of satellite–based systems. After outlining models for
motion, measurements and positioning, we depict a common sce-
nario and propose a methodology for handset tracking. We show
the suitability of Particle Filtering to the problem at hand by the
appliance of a modified version of a recently proposed algorithm,
the Variable Rate Particle Filtering (VRPF). The novelty relies on
the inclusion of a Rao–Blackwellization procedure that significantly
reduces the computational load. Details about the implementation
and some significant numerical results of computer simulations are
also provided.

1. INTRODUCTION

Information about the position of a user’s mobile handset device
is a potential trigger for a myriad of emerging applications. From
fireman operations to interactive, personalized touristic guides, po-
sition constitutes a valuable data to be exploited by systems which
only imagination can bound. Unfortunately, the problem of user’s
position remains unsolved, at least with the degree of coverage, re-
liability and accuracy that applications –and imagination– demand.
The outstanding approach to mass-market positioning is usually re-
ferred to as Global Navigation Satellite Systems (GNSS), a concept
which includes the well-known GPS, GLONASS or the forthcom-
ing Galileo system. These satellite–based systems, often assisted by
some kind of aiding system providing local information (WAAS,
EGNOS, RTK), are able to determine the user’s position with a
high degree of accuracy under proper conditions. However, the per-
formance of those systems severely degrades in common scenarios
such as the urban canyon or indoor navigation, where there is no
line–of–sight between the mobile device and the satellites. In these
cases, the weak receiving power, the multipath effect and interfer-
ences make a stand–alone GNSS receiver useless.

Our everyday’s life is surrounded by a continuous set of radi-
ating sources coming from everywhere. The rapid deployment and
pervasiveness of wireless communication systems (GSM, UMTS,
WiFi, WiMAX, Bluetooth, UWB, TDT, DAB) and sensor networks,
in combination with the availability of flexible, low–cost commer-
cial off–the–shelf components, offers a bundle of electromagnetic
waveforms that can be exploited in order to compute user’s position.
Although these systems are primary designed for other applications,
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they can provide worthy information for positioning. For instance,
the fine time resolution of UWB signals makes them quite promis-
ing for indoor, high–resolution ranging [1]. In addition, the mobile
device could include a low–cost inertial measurement unit (for in-
stance, accelerometers based on MEMS technology, in the fashion
of Nintendo’s Wii console) which provide valuable complementary
information [2].

In this paper, we address the problem of exploiting available
data coming from heterogeneous systems, with the purpose of lo-
cating and tracking a mobile target. As shown hereinafter, equa-
tions involved in positioning are nonlinear. Sequential Monte Carlo
(SMC) methods [3], also known as Particle Filters, constitute a clear
trend followed by the signal processing community for dealing with
nonlinearities while adding information (in a Bayesian sense) to the
set of observation equations, and thus it will be applied to the prob-
lem at hand.

2. GENERAL SYSTEM MODEL

2.1 Motion equations
For the target motion, we will follow the approach taken in [4] con-
sidering a model which is linear in the state dynamics and nonlinear
in the measurements. States can be linearly expressed as
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where the subindex t refers to time, xt ∈ R
Nx×1 is the state vector

(containing the position of the target rt and possibly other motion
parameters, such as velocity, acceleration or heading), ut ∈ R

Nu×1

is a vector containing the inputs taken by the target (for instance
the acceleration at provided by an inertial measurement unit) and
ft ∈ R

N f ×1 stands for unmeasured forces. The transition matrix
A ∈ R

Nx×Nx relates the previous state xt to the updated state xt+1.
In a similar way, matrices B ∈ R

Nx×Nu and C ∈ R
Nx×N f relate the

measured inputs and the unmeasured forces to xt+1, respectively.
We have assumed a known probability density px0 (not necessarily
Gaussian) and a Gaussian distribution pft . A general way to express
the state evolution density is xt+1 ∼ f (xt+1|xt), where ∼ denotes
that the variable on the left is drawn independently from the proba-
bility density function on the right.

Observe that we have splitted these terms into a linear (super-
script LIN) and a nonlinear (superscript NL) part. This is because
the optimal solution for linear state space models and Gaussian
noise is well–known – the Kalman filter. Indeed, we will solve
separately the linear part (details about the Kalman filtering will
be given in section 4) and the nonlinear part (by means of a Par-
ticle Filtering method). This well-known strategy, which saves an
important amount of computational effort, is usually referred to as
Rao-Blackwellization in Particle Filtering literature. Its applicabil-
ity has also been shown for approaches with more relaxed statistical
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assumptions such as the Cost–Reference Particle Filtering without
significative loss of performance [5].

2.2 Measurement equations
Modern handset devices are equipped with a set of wireless system
interfaces. Measurements taken from these systems (mainly time
delay or receiving power strength) are nonlinearly related to the de-
vice position. A general model could be written as

yt = h(xt)+et (2)

where h(·) is a possibly nonlinear function relating the state to the
measurements yt ∈ R

Ny×1, and et ∈ R
Ny×1 is the measurement er-

ror, with known probability density pet and not necessarily Gaus-
sian. When the measurement is time delay, it can be converted to
range multiplying by the speed of light c, but taking into account
the desynchronization between emitter and receiver (time stamp of
measures has been omitted for clarity):

y = c(tRx − tTx)
︸ ︷︷ ︸

d

+c(∆tRx −∆tTx)+ e (3)

where d =

√

(rTx x − rRx x )
2 +

(
rT x y − rRx y

)2
+(rTx z − rRx z)

2 is the
geometric distance, and ∆t refers to the device’s clock bias with re-
spect to an agreed time framework. In case of power aware sensors,
we will assume an stochastic model for the strength loss:

y = PTx − P̄L(d0)−10n log10

(
d
d0

)

+ ε, (4)

where PTx is the transmitted power, d0 is the reference distance,
P̄L(d0) is the mean loss at d0, n is the slope of the loss (depend-
ing on the scenario) and ε is a random variable with a log–normal
distribution.

2.3 Positioning equations
The equations relating measurements to target’s position depend on
whether the time of transmission tTx is known or unknown. When
the system consists of several beacons emitting from known loca-
tions at known instants (i.e. a synchronized beacon network), we
speak about spherical positioning. The estimated travel time or re-
ceiving power is converted to range. Each range measurement de-
fines a sphere centered at the beacon, on which the receiver must
lie. The intersection of several spheres (corresponding to several
beacons) defines the position of the receiver.

If tTx is not known, we can measure differences in travel times
and convert them into differences in ranges to the beacons, in order
to cancel the unknown. The locus of all points at the same dis-
tance of two given points in a 3D space is a hyperboloid, which
is defined by a range difference. Again, the intersection of several
hyperboloids indicates the receiver’s position. A review on the lo-
cation equations can be found in [6].

Since both sphere and hyperboloid equations are nonlinear, the
traditional approach [2] consists on a linearization of the position-
ing model in the vicinity of a point of interest. Then, we can add
aprioristic information to the model, extend it to other parameters
of interest (velocity, acceleration an so on) and optimize it via the
Kalman filter, assuming Gaussianity for the error terms.

The fact that Particle Filtering methods are able to deal with
nonlinear optimization and more relaxed statistical assumptions
suggests that the optimization can be performed directly over the
parameters of interest (that is, the target position) instead of over
the parameters of the linearized model (that is, propagation time,
signal strength or Doppler shift). This new concept has been shown
in [7], obtaining remarkable improvements in the overall perfor-
mance, and it will be the approach taken in this paper. It also has
the benefit of allowing the inclusion of the motion models in a more

Figure 1: Example of a generic system architecture with Ns = 2,
Nc = 2, Nd = 2 and Np = 8. Notation of positions and measurements
is also depicted.

natural way, since all the equations are referred to position param-
eters, in contrast to including prior information in the parameters,
which can be troublesome in many applications. In communication
systems’ terminology, this strategy can be regarded as a cross-layer
optimization.

2.4 Multiple target tracking

The extension to multiple targets can be achieved by expanding the
motion model (properly stacking the new equations in model (1))
and applying some mechanism in order to efficiently cope with an
unknown number of tracks, initiate and terminate tracks, switch
between two near tracks and to give some robustness against low
detection and high false alarm probabilities (typical features of a
sensor network). In that sense, see [8, 9] and references herein for
some suitable algorithms. Since the focus of this paper is on the
methodology for the location and tracking problems, we will re-
strict ourselves to a single target.

3. PROBLEM STATEMENT

We assume a moving target equipped with a GNSS receiver, some
kind of mobile communication system (GSM, 3G), a set of embed-
ded accelerometers and the capability of being detected by a power–
aware sensor network.

A total number of Np power–aware sensors are located at fixed
unknown positions r

p
1:Np

= {r
p
1 , ...,r

p
Np
} with an arbitrary topology.

The n–th sensor takes a measure yn,t = h(dn,t ,ε) at time t, where
dn,t is the distance between the target and the sensor and ε is a ran-
dom perturbation with known pε . This measure is broadcasted by
the sensor if the distance is under a certain threshold and otherwise
remains silent. We assume that sensors are not synchronized.

There are also Nc mobile communication base–stations at fixed
unknown positions rc

1:Nc
= {rc

1, ...,r
c
Nc
} and Ns GNSS satellites

(with known positions, since it is broadcasted in their navigation
message) at rs

1:Ns
= {rs

1, ...,r
s
Ns
}.

We will also assume a set of Nd control nodes in the net-
work (called Data Fusion Centers, DFCs), with unknown positions
rd

1:Nd
= {rd

1 , ...,rd
Nd
}, which receive the messages broadcasted by
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some of the sensors and are able to perform an estimation of the
distance to that sensors. In addition, DFCs can also sense measure-
ments of GNSS and communication systems. The main purpose
of the paper is to jointly estimate the target track r0:t = {r0, ...,rt},
the sensor locations r

p
1:Ns

, the communication station locations rc
1:Nc

and the DFC positions rd
1:Nd

given

• Measurements taken by the target device (GNSS, mobile com-
munication systems, inertial measurements), which are sent to
one or more DFCs.

• Measurements taken by the DFCs (GNSS, mobile communica-
tion systems, distance to some sensors, information gathered by
other DFCs).

• Sensor network broadcast to the DFCs.

4. PROPOSED SOLUTION

The proposed solution closely resembles the one proposed in [10]
for a beacon–free sensor network. In our scenario, we assume a
minimum of one node with known location to avoid the rotation
ambiguity of a relative positioning. This can be translated into the
assumption that at least one DFC has simultaneous lines–of–sight
with at least four GNSS satellites, has decoded the position of such
satellites and has computed its own position. Provided that most of
the information is firstly gathered by the DFCs, it seems reasonable
to perform computation there. In any case, secure communication
between DFCs and the mobile handset is mandatory for privacy rea-
sons.

4.1 Initialization: estimation of node locations
The first step in the determination of the target’s position and sub-
sequent tracking is the estimation of node locations (DFCs, mobile
communications’ base stations and sensors). The Maximum A Pos-
teriori estimation of the DFC’s positions can be expressed as

r̂d
1:Nd

= argmax
r̃

d
1:Nd
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(5)

where ydd
il is a measurement obtained by the i–th DFC from a

signal of the l–th DFC. Assuming a static network, problem (5)
can be solved considering a narrow Gaussian distribution for those
DFCs positioned by GNSS and a uniform distribution for the other
ones. Following the approach taken in [10], we suggest to apply
the Accelerated Random Search algorithm (proposed in [11] and
detailed in Algorithm 1) due to its simplicity when dealing with
high–dimensional problems. Once r̂d

1:Nd
has been computed, the

positions of the sensors and the base stations can be selected inde-
pendently:

r̂p
n = argmax

r̃s
n
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p
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(6)

where y
dp
ln is a measurement obtained by the l–th DFC from a signal

of the n–th sensor, and

r̂c
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r̃c
m
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p
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(7)

where ydc
lm is a measurement obtained by the l–th DFC from a sig-

nal of the m–th communication base station. Again, Algorithm 1
has been used for solving problems (6) and (7) considering uniform
distributions for p

(
r̃

p
n
)

and p(r̃c
m) and Gaussian distribution for the

others. The requirement is that each DFC, sensor and base station
should transmit at least one signal burst which can be collected by
other DFCs in the network.

Algorithm 1 ACCELERATED RANDOM SEARCH

Require: A function to optimize f (r1:N), dmin, dmax, contraction
factor c, number of iterations Niter. R is the domain of r1:N

and B(i) =
{

r̃1:N ∈ R :
∥
∥
∥r̃1:N −r

(i)
1:N

∥
∥
∥

2
< d(i)

}

Ensure: r̂1:N = arg max
r1:N∈R

f (r1:N).

1: Initialize d(1), r(1)
1:N

2: for i = 1 to Niter −1 do
3: Draw r̃1:N ∼ U(B(i))

4: if f (r̃1:N) > f
(

r
(i)
1:N

)

then

5: r
(i+1)
1:N = r̃1:N , and d(i+1) = dmax

6: else
7: r

(i+1)
1:N = r

(i)
1:N , and d(i+1) = d(i)

c
8: end if
9: if d(i+1) < dmin then

10: d(i+1) = dmax
11: end if
12: end for
13: r̂1:N = r

(Niter)
1:N

4.2 Target tracking

The data fusion algorithm must face a problem in which the ob-
servations coming from different systems arrive at different (and
probably incommensurate) rates. In addition, it would be desir-
able to parameterize rapid manoeuvres or nearly–Brownian motions
with closely spaced states and smooth, straight trajectories with few
state points. The intuitive idea behind this approach is to track more
finely the sharp movements (for instance, someone moving inside
a building) and perform more spaced updates when the movement
is smooth and predictable (someone traveling by bus), by means of
a suitable choice for the dynamical model. In order to cope with
that, we propose an algorithm inspired in the Variable Rate Particle
Filtering (VRPF) presented in [12, 13]. Unlike standard space–state
modeling, the VRPF approach does not model the states at the same
rate than the observations, and thus it is not necessary to update the
target state every time we receive a new observation.

The variable rate state can be modeled by adding a random,
continuous–value variable to the state model, expressing the time
at which the target changes its state. Thus, the state space is ex-
panded to θ n = {xn,τn}, where τn ∈ R

+
> τn−1 denotes the state

change time. The observation samples yt|t=t0+kTs
are assumed to be

generated independently from a density function g(·), conditionally
upon a neighborhood of close states θ Nt = {θ n; n ∈Nt}. Thus, the
likelihood model for the observations can be expressed as follows:

yt ∼ g(yt |θ0:∞) = g(yt |{xn,τn;n ∈ Nt}) = g
(
yt |s

(
θNt

))
(8)

being Nt a local neighborhood of state indices that defines the de-
pendence structure of the observations, and s

(
θNt

)
is a determinis-

tic function that depends on the dynamical model.
Defining α f ar = (t − τn−2)xn−2 +(τn+1 − t)xn+1 and αclose =

(t − τn−1)xn−1 +(τn − t)xn, a possible interpolation function can
be put in the form

x̂t = s(θNt ) =
βα f ar +(1−β )αclose

τn+1 − τn−2
(9)

From equation (9) it seems clear that the neighborhood is obtained
as Nt = {n,n−1,n−2,n+1; τn−2 < τn−1 ≤ t < τn < τn+1}.
Note that, as implicitly stated in equation (8), the addition of
new state points beyond Nt does not change the neighborhood of
θ 0:t . The aim is to estimate recursively the sequence of variable
rate state points as new measurements become available, that is,
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every Ts seconds. All the information concerning this sequence is
included in its conditional probability distribution,

p
(

θ0:N +
t
|y0:t

)

p
(

θ0:N +
t−1

|y0:t−1

) =
g
(
yt |θNt

)
f
(

θ
N

+
t−1+1:N +

t
|θ

N
+

t−1

)

p(yt |y0:t−1)
(10)

where N
+

t = max(Nt ) refers to the member of Nt hav-
ing the largest time index τn. Note that, if the neighbor-
hood does not increase in a time step, N

+
t = N

+
t−1 and thus

f
(

θ
N

+
t−1+1:N +

t
|θ

N
+

t−1

)

= 1. In general, equation (10) is analyti-
cally intractable and we must resort to efficient numerical approx-
imations such as particle filters. As aforementioned, we propose
an algorithm with a variable state rate. The general methodology of
VRPFs, their applicability to target tracking and implementation de-
tails can be found in [14]. Here we introduce a modified algorithm
which follows the common structure of Monte Carlo approxima-
tions (prediction and update) for the nonlinear states and a Kalman
filtering for the linear ones, according to a particular case of Rao–
Blackwellization which is known as Mixture Kalman Filter [15]. A
description of the algorithm is shown in Algorithm 2.

In brief, the M generated particles are replicated Mi times ac-
cording to their weight, and then propagated forward with only
one likelihood evaluation. Related to the implementation, it is
worthwhile to mention that the prediction samples of the nonlinear
part of the state vector can be drawn from a Gaussian distribution,
x

NL (i)( j)
t+1 ∼ N(µ (i)( j),Σ) with µ(i)( j) = x

NL (i)( j)
t +ANLx

LIN (i)( j)

t|t−1 +BNLut

and Σ = ANLPLIN
t|t−1 (ANL)T +CNLQt (C

NL)T , where Qt is the co-
variance of ft [4]. Then, the linear subset of unknowns can be solved
by means of the Kalman filter with a remarkable saving of compu-
tational effort:

x̂
LIN (i)( j)

t+1|t = ĀLIN
(

x̂
LIN (i)( j)

t|t−1 +Kt

(

z
(i)( j)
t −ANLx̂

LIN (i)( j)

t|t−1

))

+

+ BLINut +CLIN (CNL)†
z

(i)( j)
t (11)

where ĀLIN = ALIN −CLIN (CNL)†
ANL, (·)† denotes the Moore–

Penrose pseudoinverse, z(i)( j)
t = x̂

NL (i)( j)
t+1 − x̂

NL (i)( j)
t , and

Kt = PLIN
t|t−1 (ANL)T

(

ANLPLIN
t|t−1 (ANL)T +CNLQt (C

NL)T
)−1

(12)

PLIN
t|t−1 = ĀLIN

(

PLIN
t−1|t−2 −Kt−1A

NLPLIN
t−1|t−2

)(
ĀLIN

)T
. (13)

The completedness test of steps 9 and 17 refers to whether the
set of states such that τn−2 < τn−1 ≤ t < τn < τn+1 have been yet
generated or not. The update of weights performed in step 27 is
formally defined as

w(i)( j)
t ∝

w̄(i)
t−1

w̆(i)
t−1

g
(

yt |θ
(i)( j)
Nt

)

f
(

θ (i)( j)
N

+
t−1+1:N +

t
|θ (i)

N
+

t−1

)

q
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N

+
t−1+1:N +

t
|θ (i)

0:N +
t−1

,y0:t

) (14)

where

q
(

θ (i)( j)
N

+
t−1+1:N +

t
|θ (i)

0:N +
t−1

,y0:t

)

=
N +

t

∏
n=N

+
t−1+1

q
(

θ (i)( j)
n |θ (i)

0:n−1,y0:t

)

.

(15)
A simple choice for this proposal function is
q
(

θ (i)( j)
N

+
t−1+1:N +

t
|θ (i)

0:N +
t−1

,y0:t

)

= f
(

θ (i)( j)
N

+
t−1+1:N +

t
|θ (i)

N
+

t−1

)

, leading

to w(i)( j)
t ∝ w̄(i)

t−1

w̆(i)
t−1

g
(

yt |θ
(i)( j)
Nt

)

.

Algorithm 2 RAO–BLACKWELLIZED VRPF

Require: y0:K , u0:K , r̂d
1:Nd

, r̂p
1:Np

, r̂c
1:Nc

Ensure: Target tracking x̂1:K .

1: Initialize
{

θ (i)
0

}M

i=1
, P0 = diag

(

σ2
x

LIN
0

)

, K0 = 14×2 and
{

w̄(i)
0

}M

i=1
= 1

M .
2: for t = 1 to K do
3: Compute the covariance matrix Pt|t−1 as in (13).
4: Compute the Kalman gain matrix Kt as in (12).
5: Assign a selection weight w̆(i)

t−1 = w̄(i)
t−1.

6: Compute Mi = max
(

1,bMw̆(i)
t−1c

)

.

7: Select Mi replicates of particle i according to w̆(i)
t−1

→ θ (i)( j)
0:N +

t−1
, where i = 1, ...,M and j = 1, ...,Mi.

8: for i = 1 to M do
9: if N

(i)
t is complete then

10: Update weight: w(i)(1)
t ∝ Miw̄

(i)
t−1

w̆(i)
t−1

g(yt |θ
(i)
Nt

).

11: Reset Mi = 1.
12: Set θ (i)(1)

0:N +
t

= θ (i)
0:N +

t−1
.

13: else
14: for j = 1 to Mi do
15: Set θ (i)( j)

0:N +
t−1

= θ (i)
0:N +

t−1
.

16: Set n = N
+

t−1
(i).

17: while N
(i)( j)

t is incomplete do
18: Set n = n+1.
19: τ(i)( j)

n+1 − τ(i)( j)
n ∼ G(γτ ,ϕτ ).

20: Draw x
NL (i)( j)
n ∼ N(µ(i)( j),Σ)

21: Compute x
LIN (i)( j)
n as in (11).

22: Build θ (i)( j)
n .

23: end while
24: Set N

+
t

(i)( j)
= n.

25: Append new states to particle:
θ (i)( j)

0:N +
t

=
(

θ (i)
0:N +

t
,θ (i)( j)

N
+

t−1+1:N +
t

)

.

26: end for
27: For each replicate j update particle weights:

w(i)( j)
t ∝ w̄(i)

t−1

w̆(i)
t−1

g
(

yt |θ
(i)( j)
Nt

)

.

28: end if
29: Restack the particles and weights from the replicates

→ Particle (i)( j) becomes particle j +∑i′<i Mi.
30: Renormalize weights such that ∑∑i Mi

i=1 w(i)
t = 1

→ w̄(i)
t .

31: end for
32: x̂t = ∑M

i=1 w̄(i)
t s

(

θ (i)
Nt

)

.
33: end for

5. COMPUTER SIMULATIONS

In order to provide illustrative numerical results, we have particular-
ized the system model to the following network deployment. Let us
assume a 2D field R, a square centered at (0,0) with sides of 100
m length. On R, there are Nc = 4 mobile communications’ base
stations, distributed as rc

1:4 ∼ [Re{ρ};Im{ρ}], where ρ is complex-
Gaussian distributed as CN(30× [0,−1,1+ j,1− j]T ,25I4). There
also are a total number of Np = 20 power-aware sensors, with the
same measurement function that the DFCs (equation (4)). The cho-
sen values have been PTx = 0 dBm, d0 = 1 m, P̄L(d0) = 30 dB,
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n = 3 (a typical value for urban area cellular radio) and ε is a ran-
dom variable with a log–normal distribution with zero mean and
σ = 3 m. The n–th sensor only transmits its measurements to the
DFCs if both the distance to the target and the distance to the DFC
is d < 30 m. We have supposed a random, uniformly distributed
sensor deployment over R. In addition, there are Nd = 4 DFCs,
two of them with direct line–of–sight with Ns = 5 GNSS satel-
lites. The DFCs are distributed as rd

1:4 ∼ [Re{ρ};Im{ρ}], where
ρ ∼ CN(25× [−1− j,−1 + j,1 + j,1− j]T ,2I4). Results are av-
eraged over L = 100 independent computer simulations, each one
with a different network deployment and target trajectory. Parame-
ters of Algorithm 1 have been set to dmin = 10−4, dmax = 100, c = 2,
Niter = 5000 for r̂d

1:Nd and Niter = 1000 for each r̂c and r̂p. Results
are shown in table 1, where the measure of performance is

RMSE =

√
√
√
√

1
LN

L

∑
l=1

N

∑
n=1

∥
∥rn − r̂l

n
∥
∥2 (16)

rd rc rp

RMSE (m) 1.32 2.46 3.16

Table 1: RMSE of the estimated node positions

Then, we have simulated 100 seconds of target movement fol-
lowing the motion model expressed in equation (1). We assume
that the target is equipped with a unit of inertial measurements
with some bias, in the form atrue,t = at + δat . Since the posi-
tion is extracted by dead–reckoning of at , the presence of bias is
critical and must be taken into account. This is the reason why
the acceleration bias is included in the state vector and the mea-
sured acceleration in the input signal. Thus, general model (1) has
been particularized to xNL

t = rt , xLIN
t =

[
vT

t δaT
t
]T , with ANL =

(

TsI2
T 2

s
2 I2

)

, ALIN =

(

I2 TsI2
02 I2

)

, ut = at , BNL =
T 2

s
2 I2,

BLIN =

(
TsI2
02

)

, CNL =
T 3

s
6 I2, and CLIN =

(
T 2

s
2 I2
TsI2

)

. GNSS

availability has not been considered for the handset. Other param-
eters used in the simulations are Ts = 0.25 s, TOBS = 0.5 s, K = 400
samples, M = 3000 particles, β = 0.2, and G(γτ = 0.5,ϕτ = 2)
for the Gamma distribution. The estimation performance has
again been evaluated by means of the RMSE, this time defined as

RMSE =

√

1
LK ∑L

l=1 ∑K
t=1

∥
∥xt − x̂l

t
∥
∥

2.

rt vt δat
RMSE 1.83 m 0.58 m/s 0.003 m/s2

Table 2: RMSE of the target tracking

6. CONCLUSIONS

This paper has proposed a methodology for handset tracking in
scenarios where GNSS, mobile communication systems and sen-
sor networks are present. The solution is not intrusive, in the sense
that required modifications in the existing systems are minimum:
only communication capabilities are needed, which are commonly
embedded in modern handsets, and a set of Data Fusion Centers for
collecting measures and performing computations. The appropri-
ateness of Particle Filtering methods has been justified in a general
framework, and their applicability has been shown for a concrete
scenario. In addition, we have proposed a modification of a re-
cently proposed tracking algorithm which considerably reduces the
computational load. The complete system has been simulated, and
the obtained numerical results are encouraging. Although the work

has been focused on a very specific scenario, equations and method-
ology are quite general and can be easily adapted to other systems
and network configurations. Future work should be pointed to ac-
curate statistical modeling for the different sources and fine–tuning
of system’s parameters.
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