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1Unité Signaux et Systèmes (U2S), Ecole Nationale d’Ingénieurs de Tunis (ENIT)
BP 37, 1002 Tunis, Tunisia

email: imensamaali@yahoo.fr, m.turki@enit.rnu.tn
2 CRIP5 / UFR de math́ematiques et informatique , Université Paris Descartes
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ABSTRACT

An audio signal can be represented by a Time-Varying Auto-
Regressive (TVAR) model, whose parameters can be esti-
mated by a particle filter. Since the original parameters are
unavailable for real signals, an evaluation of the estimation
may be traditionally performed through indirect criteria such
as the SNR of the signal denoised by a Kalman filter based
on the TVAR estimated model or through a statistical analy-
sis based on the observation. We propose a new evaluation
method based on the statistical characterization of the output
of the inverse TVAR estimated model. The proposed criteria
are much more suitable and coherent when correlated to the
direct criterion (cepstral distance), which is related to the
estimated TVAR parameters.

1. INTRODUCTION

Non-stationary signals, like audio signals, may be repre-
sented through Time-Varying Auto-Regressive (TVAR) pro-
cesses, where the AR coefficients evolve continuously in
time. The current tendency is to estimate such models
through Monte Carlo methods: the principle of these algo-
rithms is to explore the space of solutions thanks to a popu-
lation of particles, each of them corresponding to a candidate
model [2].

When the original model of the signal is known, the per-
formances of these algorithms can be easily evaluated by
comparing the true and the estimated model. However, for
natural signals, the original model is rarely available. Con-
sequently, the quality of the TVAR estimation is traditionally
evaluated through the reduction of the observation noise ob-
tained by a Kalman filter using the estimated model [1].

The estimated model is also validated by statistical tests
on the seriesut defined by:

ut = p(Yt ≤ yt |y1:t−1), (1)

whereY1, ...,YN are the random variables associated to the
observationsy1, ...,yt . This method has the drawback of
being computationaly complex.

After a brief presentation of the TVAR model and its esti-
mation by particle filtering in Section 2, the classical criteria
for model validation will be presented in Section 3. We will
propose a new method for the evaluation of the TVAR esti-
mation in Section 4. In Section 5, the proposed method will
be evaluated and compared to the classical one.

2. TVAR MODEL AND PARAMETERS
ESTIMATION

2.1 TVAR model

The output,xt , of a TVAR process of orderp is modeled at
time t > 0 as follows:

xt =
p

∑
i=1

ai,txt−i +σet et , (2)

where et is a white gaussian noise(et ∼ N (0,1)), at ≡
(a1,t , ...,ap,t) is the vector of TVAR coefficients andσ2

et
is

the variance of the TVAR innovation sequence, all depend-
ing ont.

The signal,xt , is assumed to be corrupted by an additive
white gaussian noise, so the observation at timet > 0 is given
by

yt = xt +σnt nt , (3)

wherent is a white gaussian noise(nt ∼N (0,1)) andσ2
nt

is
the time varying variance of the observation noise.

The variances of observation and innovation noise are de-
fined by their corresponding logarithms,i.e. φet ≡ logσ2

et
and

φnt ≡ logσ2
nt
.

The orderp is assumed to be fixed and known. The
unknown parameters are then the TVAR coefficients, the
variances of the excitation and the observation noise. Each
of the three components of the unknown parameter vector
θt = (at ,φet ,φnt ) is supposed to evolve according to a first-
order Markov process, which can be defined by its initial
state and by the distribution of its state transition. Those dis-
tributions are defined by:

p(at |at−1) ≡ N (at ;at−1;∆a); (4)

p(φet |φet−1) ≡ N (φet ;φet−1;δ 2
e ); (5)

p(φnt |φnt−1) ≡ N (φnt ;φnt−1;δ 2
n ), (6)

whereN (x;m;P) denotes a gaussian density with argument
x, meanm, and covarianceP.

An estimate of the parameter vectorθt is given by a con-
ventional particle filter method.

2.2 Particle filter

The principle of the particle filtering is to generate a set ofN

particlesθ (i)
|i=1:N, each of them representing a stateθ0:t of the

system which is likely to occur.
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According to the SIS particle filter algorithm [2],
the particles evolve according to the stage of predic-
tion, p(θt |θt−1) = p(at |at−1)p(φet |φet−1)p(φnt |φnt−1), and
the weights are updated according to the observation (stage

of correction: w̃(i)
t = p(yt |θ (i)

t )). However, the particle fil-
ter as described presents a major drawback. The increase
of the scattering of the weights has ominous effects on the
quality of the estimation and induces a long-term divergence
of the filter: this phenomenon is known as ”degeneration”
of the weights. In order to avoid this phenomenon, a new
stage called re-sampling has been introduced. It consists in
duplicating the particles of strong weight and eliminating the
particles of weak weight.

The TVAR parameters vector is then estimated by a

Monte Carlo method:̂θt ≈
N
∑

i=1
θ (i)

t w̃(i)
t . An estimatex̂ of the

original signalx is performed by a Kalman filter based on the
estimated TVAR parameters [1].

3. VALIDATION OF THE TVAR ESTIMATION:
DIRECT AND INDIRECT CRITERIA

This part presents classical criteria used to assess the quality
of the TVAR estimation:
• a direct criterion relying on the comparison between the

original and estimated parameters. For audio signals, this
can be performed through the cepstral distance.

• indirect criteria based either on the SNR improvement or
on statistical tests carried out on the observation.

3.1 Cepstral distance measurement

For signals with known TVAR model (synthetic TVAR sig-
nals for example), the quality of the TVAR estimation ob-
tained by the particle filtering can be evaluated by the com-
parison between the trajectories of the original and the esti-
mated TVAR coefficients.

The AR coefficients are related to the cepstrum by the
relation [3]:

ct(i) =−at(i)−
i−1

∑
n=1

(1− n
i
)at(n)ct(i−n). (7)

One can compare the true and the estimated models by the
cepstral distance, which is the euclidian distance between the
cepstra,

dC
t =

√
p

∑
i=1

(ct(i)− ĉt(i))2. (8)

The cepstral distance, as shown here, allows to aggregate the
evaluation of all TVAR estimated coefficients in a single and
perceptually significant criterion. It will be taken as refer-
ence in the following.

3.2 SNR criteria

When the estimated TVAR parameters are used to denoise
the observed signaly by a Kalman filtering, a classical mea-
sure of performance of the particle filter algorithm is the Sig-
nal to Noise Ratio improvement (SNR improvement),i.e.
the difference between the SNRs after and before denois-
ing. Referring to the experimental results of Vermaak [1],
the SNR improvement increases as the number of particles,
N, increases up to 100.

However, in another experiment, we notice that the crite-
rion of the SNR improvement is not relevant to measure the
quality of the TVAR estimation. Figure1 shows 400 samples
of the test signal generated by a second-order TVAR process.
The corresponding TVAR parameters, depicted in Figure2,
follow a first-order Markov process as defined in section2.1
with fixed parameters∆a1 = ∆a2 = 10−2 for the TVAR coef-
ficients andδ 2

e = δ 2
n = 10−3 for the log-variance.
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Figure 1: Time variations of the synthetic second-order
TVAR signal
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Figure 2: Time variations of the TVAR parameters for the
signal in Figure1

The variations of the SNR improvement according to the
input SNR are shown in Figure3. They were obtained by a
single run of the algorithm for each value of the input SNR,
using 500 particles. The use of a single run is allowed by
the small variance of the results when using 500 particles, as
shown in [1].

The SNR improvement decreases as the input SNR in-
creases, whereas the cepstral distance decreases, indicating a
better model estimation. One could suggest to take simply
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Figure 3: SNR improvement, output SNR and cepstral dis-
tance.

the SNR output as a measure of the quality but its growth
does not match the decrease of the cepstral distance: the lat-
ter stops decreasing from input SNR = 20 dB while the output
SNR goes on increasing.

Another drawback of the SNR criterion is its dependence
on the denoising phase: what is evaluated is not the quality of
the TVAR estimation but the quality of the denoising using
this estimation.

At last, such a criterion implies that the original signalx
is available, which is not realistic for a natural signal.

3.3 Conventional statistical approach for model ade-
quacy

Let Y1, ...YN be the random variables associated to the obser-
vationsy1, ..yt . If the model is correct, the sequence

ut = p(Yt ≤ yt |y1:t−1) (9)

is a realization of an independent random variable uniformly
distributed on[0,1]. By letting the time seriesvt = φ−1(ut),
whereφ is the standard normal cumulative distribution func-
tion, the TVAR model is correct ifvt is i.i.d according to
N (0,1) [1].

According to [1], the computing of theut requires in-
tegration over the model parameters. The latter is approxi-
mated by a Monte Carlo estimation using the particle filter.
Therefore, an estimate ofut is given by:

ût , 1
N

N

∑
i=1

p(Yt ≤ yt |θ (i)
1:t ,y1:t−1), (10)

whereθ (i)
t is the i-th particle at timet.

The statistical tests employed here aim at testing the nor-
mality and the whiteness of the time seriesvt and are briefly
described below:

Whiteness
We measure the correlation by awhiteness indexgiven

by the Ljung-Box test. This index is defined by:

qLB
K = N(N+2)

K

∑
i=1

r̂2
i

(N− i)
, (11)
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Figure 4:Diagram of the proposed method.

whereN = sample size,K = number of autocorrelation lags
and r̂ i denotes theith autocorrelation coefficient of the time
series. For a white signal,qLB

k is asymptotically Chi-Square
distributed.

Normality
The Bowman-Shenton test evaluates the hypothesis that

the time series has a normal distribution. The test is based
on the skewnessγ1 = µ3

µ(3/2)
2

and kurtosisγ2 = µ4

µ(2)
2

−3 of the

time series, withµi the ith central moment of the random
variable associated with the time series around its meanµ.
The statistic value associated to this test is given by:

qBS= γ2
1 + γ2

2 . (12)

For a true gaussian distribution, the statisticqBS should be
closer to 0.

4. PROPOSED APPROACH

Assuming that a signalx is produced by a TVAR system ex-
cited by a stationary gaussian white noise, the estimation is
good if there exists a stationary gaussian white noise that can
producex by exciting the estimated TVAR model. The pro-
posed method is then based on the evaluation of the statistical
properties of the estimated excitation,ê(t), that can generates
the TVAR signalx(n). Indeedê(t), which is defined by

ê(t) =
1

σ̂et

(
x(t)−

p

∑
i=1

âi,tx(t− i)
)

, (13)

must be stationary, white and gaussian. Note thatâ =
(âi,t , ..., âp,t) is the vector of estimated TVAR coefficients and
σ̂et corresponds to the estimated variance of the TVAR inno-
vation sequence.

Since the original signalx is not available for natural sig-
nals under noisy observation, we replace it by the estimated
signalx̂, given by the Kalman filter. With this approximation,
an estimation for the excitation may be defined as follows:

ê(t) =
1

σ̂et

(
x̂(t)−

p

∑
i=1

âi,t x̂(t− i)
)

. (14)

According to (14), the principle of the method can be then
illustrated with a diagram (see Figure4).

Besides the normality and whiteness that are classically
evaluated, we have introduced the assessment of the esti-
mated excitation stationarity. Indeed, the stationarity crite-
rion is all the more crucial since the original TVAR signal is
non stationary.
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Stationarity
The method we choose to detect non stationarity is based

on the stationarity index used in [5], which is the Kol-
mogorov distance between the time frequency representa-
tions (TFR) of the signal at different times. The latter is given
by:

SI(n) =
∫ p

τ=0

∫ +∞

f=−∞
|NI1(n;τ, f )−NI2(n;τ, f )|d f dτ. (15)

NI1(n;τ, f ) andNI2(n;τ, f ) represent a normalization of re-
spectively subimagesI1(n;τ, f ) andI2(n;τ, f ):

NIk(n;τ, f ) =
|Ik(n;τ, f )|∫ p

τ=0

∫ +∞
f=−∞ |Ik(n;τ, f )|d f dτ

, (16)

where the two subimagesI1(n;τ; f ) andI1(n;τ; f ) with equal
durationp are extracted from the global TFR on both sides
of instantn:

I1(n;τ, f ) = TFR(n− p+ τ, f ); (17)
I2(n;τ, f ) = TFR(n+ τ, f ). (18)

The parameterp delimits the considered analysis du-
ration at each instantn and allows the selectivity/sensivity
control of the SIs: higherp lead to smoother SIs. As used in
[4], we fixedp to 20.

We propose to measure the stationarity of the estimated
excitationêby the variance of its stationarity index. To eval-
uate the normality and the whiteness ofê, we use the respec-
tive criteria presented in section3.3.

5. EXPERIMENTAL RESULTS

The experiments aim at validating our approach and compare
it to the one presented in subsection3.3. Thus, we propose
to study the correlation between the cepstral distance and the
statistical criteria performed on both residual time seriesv as
defined in subsection3.3and the estimated excitation̂e.

The test signal is a synthetic TVAR signal of order 2 (see
Figure1), with ∆a = 10−2I2 for the TVAR coefficients and
δ 2

e = δ 2
n = 10−3 for the log-variance (see Figure2). From

Figure1, one can see that the time variations of the synthetic
TVAR signal are similar to those of a natural speech signal.

At a first stage, we investigated the quality of TVAR esti-
mation according to the particles’ numberN. For each exper-
iment, the time seriesv and the estimated excitation̂e were
computed and analyzed using the three statistical tests pre-
sented in sections3.3and4. Since the subsection3.2stressed
the need of a new criterion especially for input SNR> 20
dB, we fixed SNR to 30 dB. The TVAR estimation was per-
formed for different values ofN.

Figure5 compares the variations, overN, of the standard-
ized statistical criteria and the cepstral distance for both time
seriesv and ê. These reported results were obtained by an
averaging over 30 independent runs for each value ofN. As
expected, the estimation quality is improved by the increase
of N: both statistical criteria and cepstral distance decrease as
the particles’ number increases up to 100. As a preliminary
conclusion, the whiteness, the normality and the stationarity
of ê andv appear as good indicators of the TVAR estimation
quality, since they follow the same evolution as the cepstral
distance.
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Figure 5: Cepstral distance compared to statistical criteria
(whiteness (a), normality (b) and stationarity (c)) for bothê
andv, according to the particle’s number.

At a second stage, the estimation of the TVAR parame-
ters through particle filter was performed for various values
of the input SNR(−10 : 2 : 40dB) and for various values of
the particles’ numberN (10 : 10 : 150particles). This simu-
lation was repeated 30 times for each pair (SNR,N). Figure
6 shows the correlation of the statistical criteria with the cep-
stral distance for both time seriesv andê. Each experiment
is represented by a point of coordinates(dC , I) wheredC is
the cepstral distance andI refers to one of the three indices
(whiteness / normality / stationarity) forv or ê.

These reported results demonstrate that the statistical in-
dices related to the estimated excitationê are well correlated
to the cepstral distance. The correlation degrees depends on
the estimation quality . Indeed, for cepstral distances below
0.6, the whiteness, the normality and the stationarity are al-
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Figure 6:Correlation between statistic criteria and cepstral distance for both the estimate excitationê ((1), (2), (3)), and the
residual time seriesv ((4), (5), (6)).

most linearly related to the cepstral distance. Such significant
correlation is not observable forv.

To support these results, we computed the correlation co-
efficients between the cepstral distance and each criterion.
The obtained results, summarized in Table1, confirm that
the proposed approach is more coherent with the cepstral dis-
tance than the conventional assessing method (time seriesv).

Whiteness Normality Stationarity
ê 0.93 0.6 0.95
v 0.06 0.80 -0.7

Table 1:Correlation coefficients between the statistical crite-
ria and the cepstral distance for both the estimated excitation
êand the time seriesv.

The low complexity is another advantage of the proposed
method. Whereas the classical validation method based on
v, requires the computation of aner f c for each particle, our
method requires a simple FIR filtering based on the estimated
TVAR model.

6. CONCLUSION

We have shown that the indirect criteria based on the SNR
are not relevant for the evaluation of a TVAR estimation. We
have proposed a new evaluation method based on the mea-
sure of the normality, the stationarity and the whiteness of
the estimated excitation. The latter is the output of the in-
verse estimated TVAR system.

With a lower complexity than the classical method based
on residual time seriesv, the proposed method leads to better
results: the whiteness, normality and stationarity indices are
strongly correlated to the cepstral distance between the true
and the estimated TVAR models.

Note that the proposed method does not aim at perform-
ing a binary validation (valid / not valid). It is thought as a

quantitative measure of the quality of the TVAR model es-
timation, which could be used for example to compare two
TVAR estimations. In addition, the great advantage of this
method is that it does not need any knowledge of the original
model, neither of the original signal, contrary to the evalua-
tion through SNR criteria.
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tives De La Ŕeduction De Bruit, GRETSI, Juan les Pins,
pp. 587–590, 1993

[4] S. Larbi, M. Jaidane,Audio Watermarking: A Way To
Stationarize Audio Signals, IEEE Trans. Signal Process-
ing, Vol. 53 (2), pp. 816–823, 2005.

[5] H. Laurent, C. DoncarliStationarity index for abrupt
changes detection in the time-frequency plane, IEEE
Signal Processing Letters, Vol. 5, no 2, pp. 43-45, 1998.

©2007 EURASIP 802

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP


	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

