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ABSTRACT

The Hidden Markov Auto-Regressive model (HMARM)
has recently been proposed to model non-Gaussian Auto-
Regressive signals with hidden Markov-type driving noise.
This model has been shown to be suitable to many signals,
including voiced speech and digitally modulated signals re-
ceived through ISI channels. The HMARM facilitates a blind
system identification algorithm that has a good computa-
tional efficiency and data efficiency. In this paper, we solve
an implementation issue of the HMARM identification, which
can otherwise degrade the efficiency of the model and hin-
der extensive evaluations of the algorithm. Then we study in
more detail the properties associated with the autoregressive
(AR) spectral analysis for signals of interest.

1. INTRODUCTION

Exploiting the non-Gaussianity of signals in spectral anal-
ysis can often offer significant improvements in estimation
accuracy over traditional Gaussianity based methods. In [1]
and [2], Li and Andersen show that specially designed non-
Gaussian models for specific types of signals can exploit the
structures in the signals and achieve higher computational
and data efficiency than general purpose non-Gaussian meth-
ods such as the higher order statistics methods and Gaussian
Mixture Model based methods. The Hidden Markov Auto-
Regressive model (HMARM) proposed in [1] is tailored for
signals generated by exciting an autoregressive (AR) filter
with either a finite-alphabet symbol sequence or a hidden
Markov sequence. Due to the non-Gaussian nature of the
excitation, this type of signal belongs to the class of non-
Gaussian AR signals. Li et. al. proposed an efficient learning
algorithm for the HMARM to jointly estimate the AR coef-
ficients and the excitation symbols or the parameters of the
hidden Markov sequence. The joint estimation is what dis-
tinguishes the method from other identification algorithms of
models that have similar source-filter structure: most known
methods estimate the source parameters and the filter param-
eters in a sequential way, resulting in lower efficiencies. The
HMARM algorithm is an exact EM algorithm, which solves
for a set of linear equations iteratively and converges in a
few iterations. It is shown that compared to the classical au-
tocorrelation method of AR spectral analysis, the HMARM
has a smaller bias, a smaller variance, and a better shift in-
variance property. In [2], the HMARM is extended for ro-
bust analysis of noisy signals by introducing an observation
noise model to the system. At moderate noise levels, the al-
gorithm achieves a high estimation accuracy without a priori
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knowledge of the noise variance. Applications of the model
to different signals, including noise robust spectral analysis
of speech signals and blind channel estimation, are demon-
strated in [1] [2], and promising results are obtained.

One critical issue in the frame based implementation of
the HMARM algorithm in [1] is that, if a signal is segmented
into frames, the HMARM could have problems estimating
the parameters for those frames that do not contain the on-
set of the signal. This is because when estimating the AR
parameters of the current frame, the estimator has no knowl-
edge about the excitation in the previous frame, but the large
impulses in the previous excitation can cause large "ripples"
in the beginning of the current frame, which then causes the
state estimator in the HMARM to make wrong decisions.
Since the parameter estimations are based on the state deci-
sions, these estimates become erroneous too. In the previous
papers, this problem is solved by pre-processing the frame
to remove the "ripples" caused by the previous frame. For
simplicity of that approach, all samples before the first im-
pulse in the current frame are set to zero. This solution is
somewhat troublesome since it requires an impulse detector
in the residual domain, whose accuracy affects the perfor-
mance of the whole system. This and other ways of subtract-
ing the ripples also lower the computation efficiency and data
efficiency, since they add extra complexity and discard data
samples. In this paper, we address this problem by exploit-
ing the Markovian property of the AR model in a way analo-
gous to the covariance method for AR spectral analysis. Our
proposed solution costs no extra complexity, and is highly
reliable.

The rest of the paper is organized as follows. Section 2
describes the covariance implementation, and discusses its
benefits. Then, in Section 3, we investigate some interesting
properties of the HMARM using the proposed implementa-
tion in application to spectral analysis.

2. COVARIANCE METHOD FOR THE HMARM

The causality problem associated with the frame based im-
plementation1 of the HMARM is functionally different from
the boundary problem in the least-squares (LS) method. The
classical LS solution to the AR spectral analysis assumes the
excitation to the AR filter to be a stationary white Gaussian
sequence. With this assumption, the only parameter of the
excitation statistics, the variance, is decoupled from the es-
timation of the AR filter coefficients. Therefore, the exci-
tation has no effect on the AR filter estimates. However,
the HMARM has a more sophisticated model for the excita-
tion, and the estimations of the excitation parameters and the

1In this context, the frames have no overlap.
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AR parameters affect each other. Specifically, the HMARM
models the excitation as a hidden Markov sequence. During
the estimation, the states of the excitation sequence at each
time instant are first estimated by calculating the state prob-
abilities. Based on the state decisions, the AR filter coeffi-
cients and the parameters of the hidden Markov model are
estimated by a set of coupled linear equations, c.f. [1] and
[2] for derivations. For convenience, we list below the signal
model and the final equations of the estimator.

For a signal generated by the following model,

x(t) =
p

∑
k=1

g(k)x(t − k)+ r(t) (1)

r(t) = v(t)+u(t), (2)

where x(t) is the signal, g(k) is the kth AR coefficient, and
r(t) is the excitation sequence consisting of a Markovian se-
quence v(t) and additive white Gaussian noise u(t), the esti-
mates of the parameters are obtained from solving the follow-
ing p + m equations, where p is the order of the AR model,
and m is the number of states of the HMM. For k = 1, · · · , p,
and j = 1, · · · ,m:

m

∑
j

T−1

∑
t=1

γ( j, t)
(

x(t)−mx( j, t)
)

x(t − k) = 0, (3)

T−1

∑
t

γ( j, t)
(

x(t)−mx( j, t)
)

= 0, (4)

where γ( j, t) is the posterior probability of the states, and

mx( j, t) =
p

∑
k=1

g(k)x(t − k)+mr( j), (5)

where mr( j) is the mean of state j.
The state posterior γ( j, t) is estimated by a forward-

backward induction, based on an initial estimate of the AR
coefficients. The LS estimates of the AR coefficients are
used as the initialization. With the voiced speech signal as
an example, the voiced speech can be modeled as a noisy
impulse train filtered by a vocal tract filter, and a two-state
HMM is sufficient for representing the impulse train: a state
with a mean equal to the magnitude of the impulses, and a
state with a zero mean. For a frame that does not contain the
onset of the impulse train, there must be ripples, or ringing,
at the beginning of the frame, which is originated from an
impulse in the previous frame. If the ringing is large enough,
it will be erroneously interpreted by the algorithm as having
a non-zero-mean state at the beginning of the frame although
the true state is a zero-mean state. The wrong decision on
the state certainly has a negative impact on the subsequent
estimation of parameters. To illustrate the problem, in Fig.
1, we plot the log-spectral distance (LSD) between an esti-
mated spectrum and the true spectrum for frames of signal
beginning at different time instants. The signal is a synthetic
speech signal, generated by filtering a noisy impulse train
with a 10th order AR filter (the first 200 samples of the signal
and its excitation are shown in Fig. 2). The first impulse, i.e.
the onset, is located at the 50th sample. A hundred frames
with length of 320 samples are taken from the signal by shift-
ing the frame one sample each time. The figure shows that
for the first 50 frames, i.e. all the frames that contain the on-
set, the spectral distortions of the HMARM spectra are low
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Figure 1: The log-spectral distances between the true AR
spectrum and the estimates.
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Figure 2: The synthetic signal waveform (upper panel) and
its excitation (lower panel).

and constant, indicating accurate estimates and a good shift-
invariance property of the HMARM analysis. In the same
period, the LSD for the LS estimates of the signal spectra
fluctuates a lot, indicating a poor shift-invariance property.
In the rest 50 frames, where the onset impulse is absent, the
HMARM method loses its nice property and the distortion of
the HMARM method is much higher and fluctuating almost
as much as the LS method. Note that here, the problem with
the LS method and the one with the HMARM method are dif-
ferent: the LS estimates have a large variance because it fails
to represent the non-Gaussianity of the impulse train struc-
ture in the excitation; the HMARM has a good model for the
impulse train structure, so it succeded to bring down the dis-
tortion and estimation variance in the first 50 estimates, but
it failed to do so in the last 50 estimates due to the causality
problem discussed above.

The results of the HMARM shown in Fig. 1 are without
any preprocessing. To avoid the problem, in [1] and [2], a
preprocessor detects the position of the first impulse of the
excitation in the current frame, and sets all samples before
this position to zero, such that large ripples trailing from the
previous frame are removed. The problem with this solu-
tion is that removing samples reduces data efficiency of the
algorithm. The reliability of the impulse detector is also a
concern. Another solution is to calculate the ripples from
the previous frame, using the estimated AR filter and the im-
pulses of the previous frame, and subtracting it from the cur-
rent frame. This solution also reduces data efficiency, since
a certain part of the signal energy is discarded, which could
have been used by the estimator. Furthermore, the ringing
will be subtracted using an inaccurate estimate of the AR co-
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efficients. Moreover, these solutions add extra complexity to
the algorithm.

The solution we propose in this paper is based on the ob-
servations that the HMARM has a built in linear predictor,
i.e. (5), and that an AR(p) process is a Markovian process
with vector states of p-dimension. So, instead of calculating
the long trailing ripples from the previous frame using esti-
mated parameters and subtract it from the following frames,
it is better to initialize the predictor of the current frame with
the p samples in the end of the previous frame, which gives
the state estimator all the information about the past. thereby
the causality problem is avoided.

To implement this solution, we only have to change the
way the data matrix and the p covariance vectors are popu-
lated. They are used in the matrix form of the predictor (5)
and the equations system (3) in the following forms:

⎡
⎢⎢⎢⎢⎣

x0 x−1 x−2 · · · x−p+1
x1 x0 x−1 · · · x−p+2
x2 x1 x0 · · · x−p+3
...

...
...

...
...

xT−1 xT−2 xT−3 · · · xT−p

⎤
⎥⎥⎥⎥⎦

, (6)

where T is the frame length, and

[x1x1−k, x2x2−k, · · · , xT xT−k]
t
,k = 1, · · · , p. (7)

In the frame based implementation the samples with neg-
ative indices are of value zero. To provide the estimator a
correct starting state, the samples in the previous frame must
be put into the appropriate positions of the matrices. In the
case that the previous frame is missing, the first p rows of
the matrices in (6) and (7) must be removed, so that there is
no un-populated elements (the zeros) in the matrices. This is
formally similar to the covariance method of the LS analy-
sis of AR models [3]. Therefore, we term it the covariance
method HMARM (HMARM-c), and the original implemen-
tation the autocorrelation method HMARM (HMARM-a).
The LSD of the two implementations are plotted in Fig. 3
for comparison. It is clear from this figure that the covari-
ance method HMARM maintains its good performance for
all frames. Notice that for frames that contain the onset im-
pulse, the performance of the covariance method HMARM
is similar to the autocorrelation method HMARM. This is in
contrast to the LS, whose covariance method implementation
always outperforms its autocorrelation method implementa-
tion, given that the signal length is small.

3. HMARM FOR SPECTRAL ANALYSIS

Now, we discuss some properties of the HMARM that can be
beneficial in the AR spectral analysis. The HMARM here-
after refers to the covariance method implementation.

3.1 Window design and covariance methods

As shown in [1] and [2], the HMARM estimate of the AR
spectrum has significantly lower bias and variance than the
LPC analysis, which is an autocorrelation LS method. The
variance studied therein is the shift variance, where the set
of realizations of an AR process is generated by shifting a
time window many times with one sample as the shift step
length. Other known methods for reducing the shift variance
of the LS analysis are the window design and the covariance
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Figure 3: The log-spectral distances between the true AR
spectrum and the estimates. HMARM-a: the autocorrelation
method of the HMARM; HMARM-c: the covariance method
of the HMARM.

method LS. In [1], it has been shown that applying a Ham-
ming window reduces the shift variance of the LPC analysis,
but the reduced variance is still significantly larger than that
of the HMARM. Besides, any window other than the rectan-
gular window has the side effect of reduced spectral resolu-
tions. Here, we discuss the covariance method LS analysis,
and compare the three methods under a more general vari-
ance analysis.

The covariance method LS reduces the shift variance by
avoiding the boundary effect. This is done by feeding a num-
ber of samples preceding the current frame to the data matrix.
In this way, the covariance matrix of the signal becomes non-
Toeplitz. Nevertheless, the optimality of the method is still
based on the assumption that the excitation is white station-
ary Gaussian. Therefore, for the signals of interest in this
work, the large variance caused by the mismatch between
the assumption and the signal is still there. To reveal a more
general statistics than only the shift variance, we let the slid-
ing window shift so many times that the beginning frames
and the ending frames contain entirely different samples. In
this way, it is possible to show a variance consisting of both
the shift variance and the variance due to different realiza-
tions. We investigate the statistical properties of the three
estimators, with a synthetic speech signal and a bipolar sig-
nal received through an AR channel. The synthetic speech
signal is the one used in the previous example (Fig. 2), and
the received bipolar signal is generated by filtering a random
[-1,1] sequence with an AR filter. They are the two typical
non-Gaussian AR signals with different characteristics: the
excitation of the speech signal is spectrally colored due to
the periodic impulses, and has a Gaussian component due
to the noise; while the transmitted bipolar sequence is spec-
trally white, and very non-Gaussian since there is no Gaus-
sian noise in it. Tab. 1 shows the biases and variances of the
three methods. The statistics are obtained from estimating
600 frames of an AR process, and the frames are obtained by
moving a 320-sample window 600 times by one sample each
time.

The results show that: 1) the HMARM has a consis-
tently smaller variance than the autocorrelation method LS,
especially for a signal that has no Gaussian componets, and
2) generally, the Hamming windowing and the covariance
method do not reduce the variance of an LS AR analysis.
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Speech Bipolar
bias variance bias variance

HMARM-c 0.0861 27.68 8.8×10−15 4.7×10−24

LS-c 0.1524 169.39 0.1595 190.41
LS-a-w 0.1276 185.90 0.1862 560.95
LS-a 0.1879 179.22 0.3100 160.46

Table 1: Comparison of biases and variances. HMARM-
c: the covariance method HMARM, LS-c: the covariance
method LS, LS-a-w: the autocorrelation method LS with
Hamming window, LS-a: the autocorrelation method LS.

3.2 Avoiding spectral sampling effect

Having a more sophisticated model for the excitation makes
the estimation accuracy of the HMARM superior to the tradi-
tional Gaussian AR model when applied to spectral analysis
of certain non-Gaussian signals. This is because the excita-
tion to an AR filter is often not spectrally white and/or non-
Gaussian. With the HMARM, correlation in the excitation
can be separated from that caused by the AR filter. Thus the
estimates of the AR spectral envelope are not affected by the
excitation. An example of related problems for the Gaussian
AR model is the spectral sampling effect due to the impulse
train structure in voiced speech.

A voiced speech signal is commonly modeled by AR fil-
tering of an impulse train. The impulse train has a comb-
shape spectrum. Although the LPC analysis is intended for
estimating the spectral envelope of the signal, which mod-
els the vocal tract resonance property, the comb-shape ex-
citation spectrum has a spectral sampling effect on the es-
timated spectral envelope. This causes the following prob-
lems. Firstly, when a formant peak happens to locate at one
of the harmonic frequencies of the impulse train, the esti-
mated spectral envelope will have an abnormally sharp peak.
This is a well known problem for the LPC analysis in speech
coding, especially for high pitch speech [4][5]. Secondly, in
the case that the formant peaks do not locate at a harmonic
frequency, the peaks of the estimated spectral envelope tend
to drift to the neighboring harmonic frequencies. This ef-
fect is undesired in applications such as speech synthesis and
prosody manipulation. We compare the spectral envelopes
estimated by the LPC and the HMARM, using two synthetic
speech signals with pitch frequencies of 133Hz and 200Hz.
Fig. 4 shows that the LPC spectral envelope has an abnor-
mally sharp peak, while the HMARM estimate does not have
the problem. Fig. 5 shows that the spectral peaks of the LPC
estimate drift towards the harmonic frequencies, while the
HMARM estimate has the peaks in correct positions.

3.3 Avoiding over training

Another problem associated with parametric modeling is
known as over training, or over fitting. In the specific case
of AR spectral analysis, over training is referred to the phe-
nomena that when modeling the signal with a model order
larger than the true order, the AR spectrum tends to fit to the
FFT spectrum instead of the spectral envelope. Here we take
the bipolar signal as an example. The transmitted signal is
a randomly generated bipolar signal with a white spectrum.
The signal is convolved with an AR channel before it is re-
ceived. The receiver seeks to de-convolve the channel distor-
tion by first estimating the channel. In general, the model or-
der is unknown, and using a too large order may result in over

Figure 4: The AR spectra estimated by the HMARM (up-
per) and the LPC (middle), and the true spectrum (lower).
The vertical bars show the harmonic frequencies. The pitch
frequency is 133Hz.

training. In this example, the channel is AR(10), but we try
to model it using an AR(40) model since we have no access
to the true order of the channel. In Fig. 6 we show that the
HMARM largely avoids the effect of over fitting, while the
LPC spectral envelope starts representing the random peaks
due to the spectrum of the transmitted signal.

4. CONCLUSION

In this paper, we propose a covariance-method like imple-
mentation of the HMARM system identification algorithm.
The method solves the causality problem that can cause the
state estimator to fail in a frame based HMARM analy-
sis. The proposed method costs no additional complexity
to the system, and shows in experiments to be highly reli-
able. Based on the results of the new implementation, a few
interesting issues concerning the AR spectral analysis are ad-
dressed. Examples are given for speech and digitally modu-
lated signals with promising results.
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Figure 5: The AR spectra estimated by the HMARM (up-
per) and the LPC (middle), and the true spectrum (lower).
The vertical bars show the harmonic frequencies. The pitch
frequency is 200Hz.

Figure 6: The AR spectra estimated by the HMARM (upper)
and the Least Squares method (middle) with order 40, and
the true spectrum of order 10 (lower).
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