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ABSTRACT

JPEG2000 is the state-of-the-art compression standard. Its
high performance is achieved by using EBCOT algorithm. In
this paper, we present two methods to improve the computa-
tion efficiency, hardware utilization and area reduction for
pass-parallel context formations (CF) of EBCOT. The first
one called Sample-Parallel Pass-Type Decison (SPPD)
method improves the performance in deciding the pass types
of all four samples in the same column, while the second one
called Column-Based Pass-Parallel Coding (CBPC) method
codes all four samples in the same column concurrently.
Smulation results based on TSMIC CMOS 0.15um process
indicate that the CF architecture based on the proposed tech-
niques reduces 13.83% of the encoding time, 18.28% of the
hardware cost, and increase 34.78% of the hardware utiliza-
tion, compared to the original pass-parallel CF.

1. INTRODUCTION

The block diagram of JPEG2000 encoder [1] is shown in
Figure 1. In the encoding process, the source image is first
processed by discrete wavelet transform followed by scalar
quantization. Then the quantized coefficients are partitioned
into code blocks which will be encoded by EBCOT algo-
rithm [2-3] which exhibits high compression efficiency.
EBCOT is a two-tiered architecture; Tier-1 is a context-based
adaptive arithmetic coder, which is composed of a context
formation (CF) engine and a binary arithmetic coder (BAC).
Tier-2 is responsible for rate-distortion optimization and bit-
stream formation. When realizing CF, generally it takes 5
memory blocks to encode each bit plane in three passes,
where every sample of the bit plane will be coded in one of
these passes without any overlapping with the other two
passes. Since a context-decision pair (CX,D) is generated
sample by sample and pass by pass, conventional CF archi-
tectures take a long time to encode samples for a code block.
Consequently, numerous techniques [4-9] are devoted to
developing efficient techniques for CF implementations.

The sample-skipping architecture [5] exploits the char-
acteristics of CF algorithm and also the sample number
coded in three coding passes in different bit plane to decide
whether some samples can be skipped. It involves three
strategies to accelerate CF computation, including pixel
skipping (PS), magnitude refinement parallelization (MRP),
and group-of-columns skipping (GOCS) Thus, the number of
required clock cycles can be reduced up to 60%.
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Figure 1. The block diagram of JPEG2000 encoder

The overhead introduced by GOCS is an additional
memory block. To reduce the memory requirement, a mem-
ory-saving architecture [6] defines some new state variables
so as to reduce the required on-chip memory by 20% ap-
proximately compared with that of [5].

The technique proposed in [10-11], is an improved
high-speed design from the original CF algorithm. It is based
on a new algorithm for deciding the coding pass of all the
four samples in a column serially from the first to the fourth
sample, only within one single clock cycle. But it results in a
long critical path in deciding the coding pass for the fourth
sample.

The pass-parallel architecture in [8-9] merges the in-
volved three coding passes into a single pass, in order to im-
prove the overall system performance and reduce memory
requirement at the same time. Doing so, there is no need to
generate context-decision, sample by sample and pass by
pass. Moreover, context-decisions of all three coding passes
for all the four samples in a column can be generated in one
single clock cycle using column-based pass-parallel CF algo-
rithm. As reported in [8], the overall system performance in
terms of computation time can be improved by more than
25%. However, this scheme has two drawbacks: high hard-
ware requirement and long critical path.

In this paper, an improved pass-parallel architecture is
proposed, which can reduce the hardware requirement and
ameliorate the computation performance. The organization of
this paper is as follows. Section 2 reviews the CF scheme in
EBCOT algorithm and gives a brief description of the pass-
parallel CF technique. The proposed pass-parallel CF is in-
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troduced in Section 3. The performance analysis and com-
parisons are presented in Section 4. Then, we will make a
brief conclusion in the end.
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Figure 2. Code block, bit plane, stripe, column, and sample
of EBCOT

2. CONTEXT FORMATION IN EBCOT
ALGORITHM

In the encoding process, after the DWT and quantization

operations, subband coefficients are partitioned into code

blocks, where each block is a two-dimensional array which
consists of integer wavelet coefficients with or without quan-
tization, typically 64x64 or 32x32 in dimension. Then

EBCOT algorithm [2] will be performed on these code

blocks. The coefficients of each code block have to be ex-

pressed in sign-magnitude representations and divided into
one sign bit plane and several magnitude bit planes. A bit
plane is composed of many stripes; a stripe is composed of
many columns, and a column is composed of four samples,

as shown in Figure 2.

As shown in Figure 1, EBCOT consists of two tiers,
where Tier-1 is a context-based adaptive arithmetic coder
composed of a context formation (CF) engine and a binary
arithmetic coder (BAC) and Tier-2 is in charge of rate-
distortion optimization and bit-stream formation. First, each
code block is coded by EBCOT Tier-1 CF module. CF gen-
erates context labels (CX) and decisions (D) for the binary
arithmetic coder BAC to produce bit streams. After all code
blocks are encoded, EBCOT Tier-2 picks up important bits
according to the rate-distortion information from RD Opti-
mization block to form the final output bit streams.

Each coding pass of a code block is scanned bit plane
by bit plane, from the most significant bit plane (MSB) with
at least a non-zero element to the least significant bit plane
(LSB). In every bit plane, the scanning order is stripe by
stripe from top to bottom. In every stripe, the scanning order
is column by column from left to right. In every column, the
scanning order is sample by sample from top to bottom. Each
sample is coded by its context decision (CX, D) pair and sent
to BAC. The (CX, D) pair of each sample is decided by the
following primitivies:

1) Five coding states: sign value ( ¥ ), magnitude value ( »),
significance state ( o), refinement state ( ), and already-
coded state ( 77)

2) Four coding primitives: zero coding (ZC), sign coding
(SC), magnitude refinement coding (MRC), and run-
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Figure 3. The pass-parallel coding windows of [8]. (a) The
whole context window (b) Part-II window (c) Part-I window

length coding (RLC).

3) Three coding passes: significance propagation pass (SPP
or Pass 1), magnitude refinement pass (MRP or Pass 2),
and cleanup pass (CUP or Pass 3).

For more details for context-decision using these primitives,

please refer to [3].

21 Passparalle Context Formation

According to the CF flow [2-3], samples in a bit plane are

coded pass by pass. However, each sample is coded by only

one of the three coding passes; it implies that most of com-
putation time is wasted. If the pass type of a sample can be
determined and the sample can be coded simultaneously, the

overall compression performance can be improved. Thus, [8]

proposed a technique to process the three coding passes

within the same bit-plane in parallel. Besides, a column-

based operation [4] is adopted where the four samples in a

column is coded one by one using the context formation en-

gine. In addition, a “stripe casual” mode defined in JPEG

2000 [1] is used to eliminate the dependence between con-

secutive stripes.

To deal with wrong pass type decisions due to the depend-

ence among these three coding passes, the context window

employed in [8] consists of two parts: one for Pass 1 and

Pass 2 decisions while the other for Pass 3 which is delayed

by one stripe, as shown in Figure 3. Furthermore, they use 4

different state variables S; S; V,, X, instead of those state

variables described in the original EBCOT algorithm [3].

That is, two significance variables, significance state 1 (S;)

and significance state 3 (S;) are introduced to replace three

original significance state variable (), refinement state
variable ( {7), and coded state variable ( 77), while variables

Vo and X, represent the magnitude and sign values, respec-

tively. In this method, the required memory for a 64x64 code

block is 4K bits less than that of a conventional design.

However, it has several disadvantages:

1) Huge coding operation requirement: context-decision
pairs are decided in both parts of context window. It takes
totally 23 coding operations (i.e., 11 coding operations
for samples B; to By, 12 for samples C; to Cy).

2) High storage-element (SE) requirement: due to parallel
processing of pass-type decision, it totally takes 68 SEs
to store state variables S; S; V, and X,

3) Low pass type decision performance: it takes a long time
to decide the pass type of sample C,4, because the signifi-
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cant state and pass type of sample C; should be decided
in advance. Thus it results in a long critical path.

3. PROPOSED PASS-PARALLEL ARCHITECTURE

In this paper we propose two methods to improve the coding
performance of the pass-parallel CF while reducing the
hardware requirement at the same time. The first one is
called Sample-Parallel Pass Type Decision (SPPD) method
which is composed of two novel checking and decision algo-
rithms, namely, Pass Type Checking and Fast Pass Type De-
cision algorithms. The Pass Type Checking algorithm de-
cides “false” pass types of all four consecutive samples in
parallel. The Fast Pass Type Decision algorithm corrects
these “false” pass types to the “true” ones by carefully ana-
lyzing the relationship between adjacent samples. The sec-
ond one is called Column-Based Pass-Paralld Coding
(CBPC) method. By delaying all coding passes by one col-
umn, i.e., to column B, 8 coding operations for context deci-
sions generation are saved, thus the power consumption is
also reduced.

31 Sample-Parallel Pass Type Decision

Consider the context window shown in Figure 3. In order to
simultaneously decide the “false” pass type for each sample
in column C in parallel, five types of state variables are used
in Part-I window. The first three are classified as S;, S; and
Vi which record the significance states for the samples coded
in Pass 1, in Pass 3, and the magnitude bit of each sample in
Pass 2, respectively. The remaining two state variables de-
noted as f, B records the pass type state of each sample,
where Sy, £ are defined below:

[00], if sample belongs to Pass 3

[01], if sample belongs to Pass 1
[ﬁl s ﬁo] =

[10], if sample belongs to Pass 2, not the first time
[11], if sample belongs to Pass 2, first time

Then the corresponding equations of pass type, signifi-
cant states S; and S; for each sample can be derived from the
state variables f, f; and V,, as demonstrated in equations (1-
2). Since samples belong to Pass 2 are already significant in
the previous bit plane, it is not necessary to define the sig-
nificance state for such samples.

State variables fyand S, are not only able to replace S,
and S; of a sample, but also carry the pass type and MRC
context information. Thus, with these state variables, there is
no need to code samples in both Part-I and Part-II context
windows. That means the same computation performance as
that of [8] can be achieved, but only one suite of hardware is
needed. Thus the power consumption is also reduced.

S,(B,)=Bi(B,) | By(B,) & V,(B,) (M
S;(B,)=Bi(B,) [ ~By(B,) & V,(B,) )
S,(B,)IS;(B,)= Bi(B,) | Vy(B,) €)

After introducing fy, B, and illustrating their relation-
ship with the original state variables used in [8], the proposed
SPPD algorithm can be actualized by the following three
steps:
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Table 1. False pass-type decision for sample C,

Column B Column C Column D row
Si(Bu)=1 SiCw) =1 Si(Dn) =1 n
(eq. B,) (eq. Cy) (eq. D)

Si(Byi1)=1 Si(Cai1) \ S3(Cai) =0 Si(Dni1) \ S;(Dni) =1 ntl
(eq. Bni1) (eq. Cor1) (eq. D yi1)
Si(Bn2)=1 Si(Cns2) | S3(Crs) = 1 Si(Dn2) [ S3(Dni2) = 1 n+2
(eq. B o) (eq. Ci2) (eq. D i)

3.1.1 Pass-Checking Algorithm

For all the 4 samples in column C, the equations listed in
Table 1 will be used to decide their pass types simultaneously.
The obtained pass types at this step are denoted as “false”
pass type (FPT(C;) to FPT(C,)). Note that the equations in
row N+2 will be set to zero for deciding pass type of C, due
to stripe causal mode. Besides, FPT with significance state
that denoted as FPTS(C,) can be derived by FPT(C,) &
VO(Cn)-

3.1.2 Passtype correction: case 1

For sample C,, the pass type determined by FPT is correct.
However, for samples C, to C4, FPT values assigned by step
1 need some modifications. Let’s take samples C; and C, for
example: Suppose sample C; is decided as Pass 1 and sig-
nificant while sample C, is decided as Pass 3 concurrently,
using the equations in Table 1. Since sample C; belongs to
Pass 1 and is significant, the pass type of sample C, should
be changed from Pass 3 to Pass 1.

3.1.3 Passtype correction: case 2

If sample C,is decided as Pass 1 and significant while sam-
ple C,., is decided as Pass 3 and significant, then we have to
correct the pass type of sample C,., by changing the pass
type from Pass 3 and significant to Pass 1 and significant,
wherencanbe 1, 2, or 3.

Once the pass types of all the four samples in column C
are decided, they are stored in the state variables fyand ;. In
the next clock cycle, these state variables will be used in
Part-1I window to perform coding operations. Note that sam-
ples in column B in the next clock cycle are identical to sam-
ples in column C in the current clock cycle.

32 Column-Based Pass-Parallel Coding

All the coding operations for all the four consecutive sam-
ples in the same column are performed in Part-II window.
There are six types of state variables located in this window,
which are classified as S;, S5, Vo, Xo, fo and f,. Figure 4
shows the state variables used in Part-II window and how
they are composed.

These state variables are used for coding operations, in-
cluding ZC, SC, MRC, RLC, UC (uniform coding) opera-
tions as mentioned in Section 2. Samples in column B of
Part-II window are coded concurrently by appropriate coding
operations according to the pass types stored in the state vari-
ables fyand f,. For example, if a sample is decided as Pass 1
and significant, i.e., ~f; (B,) & Sy (B,) & Vo(B,) =1, ZC and
SC are applied to encode this sample.

The pass type and significance state of a sample can be
obtained from the following logic equations of f;and £, and
V. Finally, appropriate coding operations can be employed.
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pass 1:~ B,(B,) & B,(B,)
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Figure 4. State variables used in Part-II window of the new
“CBPC” algorithm (a)S;, (b)S;, (¢)Vo, (d)Xo, (¢) fo, () S

4. PERFORMANCE ANALYSIS

With the proposed two new techniques, we are able to im-
prove the computation performance, while reduce the hard-
ware requirement, and enhance the hardware utilization of
the original pass-parallel architecture, as verified below.

41  Memory Requirement

Since the proposed methods code all samples in Part-II win-
dow, the storage elements (SEs) that temporarily store state
variables X, for column D in Part-I window can be saved. It
totally takes 63 SEs, which is 5 SEs less than the original
architecture [8]. According to the cell-library data sheet [12],
at least 181.44 pm?® of area size is saved.

42 HardwareArea

Since all samples in a column, no matter what pass type they
belong to, are coded in parallel in Part-II window, there is no
need to code samples in Part-I window. Thus only 15 coding
operations are required. It saves 4 ZC and 4 SC operations in
comparison to the original pass-parallel architecture. Table 2
shows the coding cells required for the original and proposed
pass-parallel architectures, while Table 3 shows the area size
and the power consumption of zero-coding and sign-coding
cells, based on TSMC 0.15um 1p7m process. As illustrated
in Table 4, about 4055.12 pm? of area size is saved by apply-
ing the proposed architecture. Compared to the original CF
module, it shows that about 18.28% of area size is reduced.
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Table 2. Number of coding cells for samples C; to Cyand B;
to B, of the original and proposed pass-parallel architectures

Sample Original Pass-Parallel Total Proposed Pass-Parallel | Total
C ZC, SC, MRC None
C, 7C, SC, MRC 12 None 0
Cs ZC, SC, MRC None
Cy ZC, SC, MRC None
B ZC,SC ZC,SC, MRC
B, 7C, SC RLC 11 | zC,SC,MRC | RrLC 15
Bs | 2C.SC uct 2 7C, SC,MRC__| uc™h 2
By ZC,SC ZC,SC, MRC
(1) Uniform-Coding if all samples in a column belong to Pass 3

Table 3. Area and power consumption analysis of zero-
coding and sign-coding cells

Area Size Power Consumption
(um’) (Watt)
ZC cell 711.37 3.667e-04
SC cell 302.41 1.826e-04

Cell Library: TSMC 0.15um 1p7m standard cell library

Circuit Compiler: Synopsys Design Compiler Version W-2004.12-SP3
for linux 72, medium effort, not ungrouped.

Power Compiler: Synopsys PrimePower Version W-2004.12-SP2 for
linux, Vector_Free Power Analysis average power
mode, clock period is 3ns

Table 4. Area and power consumption analysis of original
and proposed context formation architectures

Area Size Area Size Power Consumption
(um?)® (pm*)® (Watt)®
Original CF 22182.12 217749.08 1.904¢-03
Proposed CF 18127.31 213694.27 1.873e-03

(1) Area estimation without state variable memories.
Cell Library: TSMC 0.15um 1p7m standard cell library
Circuit Compiler: Synopsys Design Compiler Version W-2004.12-
SP3 for linux 72, medium effort, not ungrouped.
Power Compiler: Synopsys PrimePower Version W-2004.12-SP2
for linux, Vector_Free Power Analysis average power mode, clock
period is 3ns
(2) Area estimation with state variable memories (Four IWIR1024x4
memories to store state variables ¥, y, 61, and 63 of a code block.
48891.72 um? for each one, compiled from Virage® ts15d2p11rfsb07
Rev: 3.4.3 (build REL-3-4-3-2003-06-23))

43  Hardware Utilization

From the previous discussion, both the original pass-parallel
CF and the proposed CF code all 4 consecutive samples in
one clock cycle, but there are some differences between them.
First, the original CF codes samples in both Part-I and Part-II
windows, but the proposed CF codes samples in Part-II win-
dow only. The former design takes 23 coding cells to code
samples, and the latter one takes only 15 coding cells. As a
result, the hardware (coding operations) utilization rate of the
proposed CF is higher than the original CF (by about 34.78%
improvement).

44  Execution Time

Both the original architecture and the proposed architecture
decide pass types of all 4 consecutive samples in a column
within one clock cycle. From the previous discussion, the
original architecture takes a longer time to decide the pass
type of sample C,, but for the proposed method, the pass
type of each sample is decided individually and concurrently,
then a pass type adjustment algorithm called Fast Pass Type
Decision is adopted. Therefore, the pass type decision path of
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sample C, in the proposed architecture is shorter than the
original one. From this result we know that the operation
clock cycle of the proposed architecture is shorter than the
original one, and thus a higher operation frequency can be
achieved. The computation time of the proposed CF with and

without applying the SPPD algorithm is illustrated in Table 5.

The computation performance is improved by about 13.83%.
Furthermore, Table 6 shows that the proposed methods out-
perform the other CF designs with a shortest critical path in
deciding the pass type of the samples.

Table 5. Computation time of proposed CF with and without
SPPD

Fastest CLK (ns) Maximum Frequency (MHz)

CF w/o SPPD 3.54 282.49

CF w/ SPPD 3.11 321.54

Cell Library: TSMC 0.15pm 1p7m standard cell library
Environment: WCCOM, Process variable = 1.3,

Voltage = 1.08V, Temperature=70°C, worst_case_tree
Circuit Compiler: Synopsys Design Compiler Version W-2004.12-SP3 for

linux 72, medium effort, not ungrouped

Table 6. Performance comparison in pass type decisions of
various CF designs

Proposed
Pass-Parallel

Sample-Parallel
[10],[11]

Pass-Parallel Original

Architecture [9] Pass-Parallel

Critical
Path Delay 1.00 1.73 1.10 1.59
(ns)

Note:

1. The area of coding cells of the Sample-Parallel architecture [10-11] is the same as
the proposed Pass-Parallel architecture, but one extra code-state memory (1) is
needed in the former.

2. The Sample-Parallel architecture [10-11] is sample-parallel, but not pass-parallel;
the proposed architecture is both sample-parallel and pass-parallel, thus overall

coding performance is improved.

5. CONCLUSION

In this paper, we present our research work on the design of
the context formation module of EBCOT Tier-1 in
JPEG2000. Since EBCOT Tier-1 coder exhibits high coding
efficiency with high computational complexity cost, we pro-
pose an efficient architecture for its realization with small
area and high speed by two techniques: Sample-paralleled
pass type decision (SPPD) and column-based pass-parallel
coding (CBPC) techniques. SPPD can reduce the processing
time by 13.83%, while CBPC can save about 18.28% of
hardware area, compared with the original pass-parallel
method.
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