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ABSTRACT
JPEG2000 is the state-of-the-art compression standard. Its
high performance is achieved by using EBCOT algorithm. In
this paper, we present two methods to improve the computa-
tion efficiency, hardware utilization and area reduction for
pass-parallel context formations (CF) of EBCOT. The first
one called Sample-Parallel Pass-Type Decision (SPPD)
method improves the performance in deciding the pass types
of all four samples in the same column, while the second one
called Column-Based Pass-Parallel Coding (CBPC) method
codes all four samples in the same column concurrently.
Simulation results based on TSMC CMOS 0.15μm process
indicate that the CF architecture based on the proposed tech-
niques reduces 13.83% of the encoding time, 18.28% of the
hardware cost, and increase 34.78% of the hardware utiliza-
tion, compared to the original pass-parallel CF.

1. INTRODUCTION

The block diagram of JPEG2000 encoder [1] is shown in
Figure 1. In the encoding process, the source image is first
processed by discrete wavelet transform followed by scalar
quantization. Then the quantized coefficients are partitioned
into code blocks which will be encoded by EBCOT algo-
rithm [2-3] which exhibits high compression efficiency.
EBCOT is a two-tiered architecture; Tier-1 is a context-based
adaptive arithmetic coder, which is composed of a context
formation (CF) engine and a binary arithmetic coder (BAC).
Tier-2 is responsible for rate-distortion optimization and bit-
stream formation. When realizing CF, generally it takes 5
memory blocks to encode each bit plane in three passes,
where every sample of the bit plane will be coded in one of
these passes without any overlapping with the other two
passes. Since a context-decision pair (CX,D) is generated
sample by sample and pass by pass, conventional CF archi-
tectures take a long time to encode samples for a code block.
Consequently, numerous techniques [4-9] are devoted to
developing efficient techniques for CF implementations.

The sample-skipping architecture [5] exploits the char-
acteristics of CF algorithm and also the sample number
coded in three coding passes in different bit plane to decide
whether some samples can be skipped. It involves three
strategies to accelerate CF computation, including pixel
skipping (PS), magnitude refinement parallelization (MRP),
and group-of-columns skipping (GOCS) Thus, the number of
required clock cycles can be reduced up to 60%.
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Figure 1. The block diagram of JPEG2000 encoder

The overhead introduced by GOCS is an additional
memory block. To reduce the memory requirement, a mem-
ory-saving architecture [6] defines some new state variables
so as to reduce the required on-chip memory by 20% ap-
proximately compared with that of [5].

The technique proposed in [10-11], is an improved
high-speed design from the original CF algorithm. It is based
on a new algorithm for deciding the coding pass of all the
four samples in a column serially from the first to the fourth
sample, only within one single clock cycle. But it results in a
long critical path in deciding the coding pass for the fourth
sample.

The pass-parallel architecture in [8-9] merges the in-
volved three coding passes into a single pass, in order to im-
prove the overall system performance and reduce memory
requirement at the same time. Doing so, there is no need to
generate context-decision, sample by sample and pass by
pass. Moreover, context-decisions of all three coding passes
for all the four samples in a column can be generated in one
single clock cycle using column-based pass-parallel CF algo-
rithm. As reported in [8], the overall system performance in
terms of computation time can be improved by more than
25%. However, this scheme has two drawbacks: high hard-
ware requirement and long critical path.

In this paper, an improved pass-parallel architecture is
proposed, which can reduce the hardware requirement and
ameliorate the computation performance. The organization of
this paper is as follows. Section 2 reviews the CF scheme in
EBCOT algorithm and gives a brief description of the pass-
parallel CF technique. The proposed pass-parallel CF is in-
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troduced in Section 3. The performance analysis and com-
parisons are presented in Section 4. Then, we will make a
brief conclusion in the end.

Figure 2. Code block, bit plane, stripe, column, and sample
of EBCOT

2. CONTEXT FORMATION IN EBCOT
ALGORITHM

In the encoding process, after the DWT and quantization
operations, subband coefficients are partitioned into code
blocks, where each block is a two-dimensional array which
consists of integer wavelet coefficients with or without quan-
tization, typically 64x64 or 32x32 in dimension. Then
EBCOT algorithm [2] will be performed on these code
blocks. The coefficients of each code block have to be ex-
pressed in sign-magnitude representations and divided into
one sign bit plane and several magnitude bit planes. A bit
plane is composed of many stripes; a stripe is composed of
many columns, and a column is composed of four samples,
as shown in Figure 2.

As shown in Figure 1, EBCOT consists of two tiers,
where Tier-1 is a context-based adaptive arithmetic coder
composed of a context formation (CF) engine and a binary
arithmetic coder (BAC) and Tier-2 is in charge of rate-
distortion optimization and bit-stream formation. First, each
code block is coded by EBCOT Tier-1 CF module. CF gen-
erates context labels (CX) and decisions (D) for the binary
arithmetic coder BAC to produce bit streams. After all code
blocks are encoded, EBCOT Tier-2 picks up important bits
according to the rate-distortion information from RD Opti-
mization block to form the final output bit streams.

Each coding pass of a code block is scanned bit plane
by bit plane, from the most significant bit plane (MSB) with
at least a non-zero element to the least significant bit plane
(LSB). In every bit plane, the scanning order is stripe by
stripe from top to bottom. In every stripe, the scanning order
is column by column from left to right. In every column, the
scanning order is sample by sample from top to bottom. Each
sample is coded by its context decision (CX, D) pair and sent
to BAC. The (CX, D) pair of each sample is decided by the
following primitivies:
1) Five coding states: sign value (χ), magnitude value (ν),

significance state (σ), refinement state (ζ), and already-
coded state (η)

2) Four coding primitives: zero coding (ZC), sign coding
(SC), magnitude refinement coding (MRC), and run-

Figure 3. The pass-parallel coding windows of [8]. (a) The
whole context window (b) Part-II window (c) Part-I window

length coding (RLC).
3) Three coding passes: significance propagation pass (SPP

or Pass 1), magnitude refinement pass (MRP or Pass 2),
and cleanup pass (CUP or Pass 3).

For more details for context-decision using these primitives,
please refer to [3].

2.1 Pass-parallel Context Formation
According to the CF flow [2-3], samples in a bit plane are
coded pass by pass. However, each sample is coded by only
one of the three coding passes; it implies that most of com-
putation time is wasted. If the pass type of a sample can be
determined and the sample can be coded simultaneously, the
overall compression performance can be improved. Thus, [8]
proposed a technique to process the three coding passes
within the same bit-plane in parallel. Besides, a column-
based operation [4] is adopted where the four samples in a
column is coded one by one using the context formation en-
gine. In addition, a “stripe casual”mode defined in JPEG
2000 [1] is used to eliminate the dependence between con-
secutive stripes.
To deal with wrong pass type decisions due to the depend-
ence among these three coding passes, the context window
employed in [8] consists of two parts: one for Pass 1 and
Pass 2 decisions while the other for Pass 3 which is delayed
by one stripe, as shown in Figure 3. Furthermore, they use 4
different state variables S1, S3, V0, X0 instead of those state
variables described in the original EBCOT algorithm [3].
That is, two significance variables, significance state 1 (S1)
and significance state 3 (S3) are introduced to replace three
original significance state variable (σ), refinement state
variable (ζ), and coded state variable (η), while variables
V0 and X0 represent the magnitude and sign values, respec-
tively. In this method, the required memory for a 6464 code
block is 4K bits less than that of a conventional design.
However, it has several disadvantages:
1) Huge coding operation requirement: context-decision

pairs are decided in both parts of context window. It takes
totally 23 coding operations (i.e., 11 coding operations
for samples B1 to B4, 12 for samples C1 to C4).

2) High storage-element (SE) requirement: due to parallel
processing of pass-type decision, it totally takes 68 SEs
to store state variables S1, S3, V0, and X0.

3) Low pass type decision performance: it takes a long time
to decide the pass type of sample C4, because the signifi-
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cant state and pass type of sample C3 should be decided
in advance. Thus it results in a long critical path.

3. PROPOSED PASS-PARALLELARCHITECTURE

In this paper we propose two methods to improve the coding
performance of the pass-parallel CF while reducing the
hardware requirement at the same time. The first one is
called Sample-Parallel Pass Type Decision (SPPD) method
which is composed of two novel checking and decision algo-
rithms, namely, Pass Type Checking and Fast Pass Type De-
cision algorithms. The Pass Type Checking algorithm de-
cides “false”pass types of all four consecutive samples in
parallel. The Fast Pass Type Decision algorithm corrects
these “false”pass types to the “true”ones by carefully ana-
lyzing the relationship between adjacent samples. The sec-
ond one is called Column-Based Pass-Parallel Coding
(CBPC) method. By delaying all coding passes by one col-
umn, i.e., to column B, 8 coding operations for context deci-
sions generation are saved, thus the power consumption is
also reduced.

3.1 Sample-Parallel Pass Type Decision
Consider the context window shown in Figure 3. In order to
simultaneously decide the “false”pass type for each sample
in column C in parallel, five types of state variables are used
in Part-I window. The first three are classified as S1, S3 and
V0 which record the significance states for the samples coded
in Pass 1, in Pass 3, and the magnitude bit of each sample in
Pass 2, respectively. The remaining two state variables de-
noted as β0, β1 records the pass type state of each sample,
whereβ0,β1 are defined below:

1 0

[00], if sample belongs to Pass 3
[01], if sample belongs to Pass 1

[ , ]
[10], if sample belongs to Pass 2, not the first time
[11], if sample belongs to Pass 2, first time









Then the corresponding equations of pass type, signifi-
cant states S1 and S3 for each sample can be derived from the
state variablesβ0,β1 and V0, as demonstrated in equations (1-
2). Since samples belong to Pass 2 are already significant in
the previous bit plane, it is not necessary to define the sig-
nificance state for such samples.

State variablesβ0 andβ1 are not only able to replace S1
and S3 of a sample, but also carry the pass type and MRC
context information. Thus, with these state variables, there is
no need to code samples in both Part-I and Part-II context
windows. That means the same computation performance as
that of [8] can be achieved, but only one suite of hardware is
needed. Thus the power consumption is also reduced.

1 n 1 n 0 n 0 nS (B )= (B ) | (B ) & V (B )  (1)

3 n 1 n 0 n 0 nS (B )= (B ) | ~ (B ) & V (B )  (2)

1 n 3 n 1 n 0 nS (B )|S (B )= (B ) | V (B ) (3)

After introducing β0, β1 and illustrating their relation-
ship with the original state variables used in [8], the proposed
SPPD algorithm can be actualized by the following three
steps:

Table 1. False pass-type decision for sample Cn+1

Column B Column C Column D row

S1(Bn)=1
(eq. Bn)

S1(Cn) = 1
(eq. Cn)

S1(Dn) = 1
(eq. Dn)

S1(Bn+1)=1
(eq. Bn+1)

S1(Cn+1) | S3(Cn+1) = 0
(eq. Cn+1)

S1(D n+1) | S3(D n+1) = 1
(eq. D n+1)

S1(B n+2)=1
(eq. B n+2)

S1(Cn+2) | S3(Cn+2) = 1
(eq. Cn+2)

S1(D n+2) | S3(D n+2) = 1
(eq. D n+2)

n

n+1

n+2

3.1.1 Pass-Checking Algorithm
For all the 4 samples in column C, the equations listed in
Table 1 will be used to decide their pass types simultaneously.
The obtained pass types at this step are denoted as “false”
pass type (FPT(C1) to FPT(C4)). Note that the equations in
row n+2 will be set to zero for deciding pass type of C4 due
to stripe causal mode. Besides, FPT with significance state
that denoted as FPTS(Cn) can be derived by FPT(Cn) &
V0(Cn).
3.1.2 Pass type correction: case 1
For sample C1, the pass type determined by FPT is correct.
However, for samples C2 to C4, FPT values assigned by step
1 need some modifications. Let’s take samples C1 and C2 for
example: Suppose sample C1 is decided as Pass 1 and sig-
nificant while sample C2 is decided as Pass 3 concurrently,
using the equations in Table 1. Since sample C1 belongs to
Pass 1 and is significant, the pass type of sample C2 should
be changed from Pass 3 to Pass 1.
3.1.3 Pass type correction: case 2
If sample Cn is decided as Pass 1 and significant while sam-
ple Cn+1 is decided as Pass 3 and significant, then we have to
correct the pass type of sample Cn+1 by changing the pass
type from Pass 3 and significant to Pass 1 and significant,
where n can be 1, 2, or 3.

Once the pass types of all the four samples in column C
are decided, they are stored in the state variablesβ0 andβ1. In
the next clock cycle, these state variables will be used in
Part-II window to perform coding operations. Note that sam-
ples in column B in the next clock cycle are identical to sam-
ples in column C in the current clock cycle.

3.2 Column-Based Pass-Parallel Coding
All the coding operations for all the four consecutive sam-
ples in the same column are performed in Part-II window.
There are six types of state variables located in this window,
which are classified as S1, S3, V0, X0, β0 and β1. Figure 4
shows the state variables used in Part-II window and how
they are composed.

These state variables are used for coding operations, in-
cluding ZC, SC, MRC, RLC, UC (uniform coding) opera-
tions as mentioned in Section 2. Samples in column B of
Part-II window are coded concurrently by appropriate coding
operations according to the pass types stored in the state vari-
ablesβ0 andβ1. For example, if a sample is decided as Pass 1
and significant, i.e., ~β1 (Bn) &β0 (Bn) & V0(Bn) = 1, ZC and
SC are applied to encode this sample.

The pass type and significance state of a sample can be
obtained from the following logic equations of β0 and β1 and
V0. Finally, appropriate coding operations can be employed.
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Figure 4. State variables used in Part-II window of the new
“CBPC”algorithm (a)S1, (b)S3, (c)V0, (d)X0, (e) β0, (f) β1

4. PERFORMANCE ANALYSIS

With the proposed two new techniques, we are able to im-
prove the computation performance, while reduce the hard-
ware requirement, and enhance the hardware utilization of
the original pass-parallel architecture, as verified below.

4.1 Memory Requirement
Since the proposed methods code all samples in Part-II win-
dow, the storage elements (SEs) that temporarily store state
variables X0 for column D in Part-I window can be saved. It
totally takes 63 SEs, which is 5 SEs less than the original
architecture [8]. According to the cell-library data sheet [12],
at least 181.44 µm2 of area size is saved.

4.2 Hardware Area
Since all samples in a column, no matter what pass type they
belong to, are coded in parallel in Part-II window, there is no
need to code samples in Part-I window. Thus only 15 coding
operations are required. It saves 4 ZC and 4 SC operations in
comparison to the original pass-parallel architecture. Table 2
shows the coding cells required for the original and proposed
pass-parallel architectures, while Table 3 shows the area size
and the power consumption of zero-coding and sign-coding
cells, based on TSMC 0.15μm 1p7m process. As illustrated
in Table 4, about 4055.12 µm2 of area size is saved by apply-
ing the proposed architecture. Compared to the original CF
module, it shows that about 18.28% of area size is reduced.

Table 2. Number of coding cells for samples C1 to C4 and B1
to B4 of the original and proposed pass-parallel architectures

Sample Original Pass-Parallel Total Proposed Pass-Parallel Total
C1 ZC, SC, MRC None
C2 ZC, SC, MRC None
C3 ZC, SC, MRC None
C4 ZC, SC, MRC

12

None

0

B1 ZC, SC ZC, SC, MRC
B2 ZC, SC ZC, SC, MRC
B3 ZC, SC ZC, SC, MRC
B4 ZC, SC

RLC
UC(1) *2

11

ZC, SC, MRC

RLC
UC(1) *2

15

(1) Uniform-Coding if all samples in a column belong to Pass 3

Table 3. Area and power consumption analysis of zero-
coding and sign-coding cells

Area Size
(µm2)

Power Consumption
(Watt)

ZC cell 711.37 3.667e-04
SC cell 302.41 1.826e-04

Cell Library: TSMC 0.15µm 1p7m standard cell library
Circuit Compiler: Synopsys Design Compiler Version W-2004.12-SP3

for linux 72, medium effort, not ungrouped.
Power Compiler: Synopsys PrimePower Version W-2004.12-SP2 for

linux, Vector_Free_Power_Analysis average_power
mode, clock period is 3ns

Table 4. Area and power consumption analysis of original
and proposed context formation architectures

Area Size
(µm2)(1)

Area Size
(µm2)(2)

Power Consumption
(Watt)(1)

Original CF 22182.12 217749.08 1.904e-03
Proposed CF 18127.31 213694.27 1.873e-03
(1) Area estimation without state variable memories.

Cell Library: TSMC 0.15µm 1p7m standard cell library
Circuit Compiler: Synopsys Design Compiler Version W-2004.12-
SP3 for linux 72, medium effort, not ungrouped.
Power Compiler: Synopsys PrimePower Version W-2004.12-SP2
for linux, Vector_Free_Power_Analysis average_power mode, clock
period is 3ns

(2) Area estimation with state variable memories (Four 1W1R1024x4
memories to store state variablesע, χ, σ1, and σ3 of a code block.
48891.72μm2 for each one, compiled from Virage® ts15d2p11rfsb07
Rev: 3.4.3 (build REL-3-4-3-2003-06-23))

4.3 Hardware Utilization
From the previous discussion, both the original pass-parallel
CF and the proposed CF code all 4 consecutive samples in
one clock cycle, but there are some differences between them.
First, the original CF codes samples in both Part-I and Part-II
windows, but the proposed CF codes samples in Part-II win-
dow only. The former design takes 23 coding cells to code
samples, and the latter one takes only 15 coding cells. As a
result, the hardware (coding operations) utilization rate of the
proposed CF is higher than the original CF (by about 34.78%
improvement).

4.4 Execution Time
Both the original architecture and the proposed architecture
decide pass types of all 4 consecutive samples in a column
within one clock cycle. From the previous discussion, the
original architecture takes a longer time to decide the pass
type of sample C4, but for the proposed method, the pass
type of each sample is decided individually and concurrently,
then a pass type adjustment algorithm called Fast Pass Type
Decision is adopted. Therefore, the pass type decision path of
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sample C4 in the proposed architecture is shorter than the
original one. From this result we know that the operation
clock cycle of the proposed architecture is shorter than the
original one, and thus a higher operation frequency can be
achieved. The computation time of the proposed CF with and
without applying the SPPD algorithm is illustrated in Table 5.
The computation performance is improved by about 13.83%.
Furthermore, Table 6 shows that the proposed methods out-
perform the other CF designs with a shortest critical path in
deciding the pass type of the samples.

Table 5. Computation time of proposed CF with and without
SPPD

Fastest CLK (ns) Maximum Frequency (MHz)

CF w/o SPPD 3.54 282.49

CF w/ SPPD 3.11 321.54

Cell Library: TSMC 0.15µm 1p7m standard cell library

Environment: WCCOM, Process variable = 1.3,

Voltage = 1.08V, Temperature=70ºC, worst_case_tree

Circuit Compiler: Synopsys Design Compiler Version W-2004.12-SP3 for

linux 72, medium effort, not ungrouped

Table 6. Performance comparison in pass type decisions of
various CF designs

Architecture
Proposed

Pass-Parallel
Sample-Parallel

[10], [11]
Pass-Parallel

[9]
Original

Pass-Parallel
Critical

Path Delay
(ns)

1.00 1.73 1.10 1.59

Note:
1. The area of coding cells of the Sample-Parallel architecture [10-11] is the same as

the proposed Pass-Parallel architecture, but one extra code-state memory (η) is
needed in the former.

2. The Sample-Parallel architecture [10-11] is sample-parallel, but not pass-parallel;
the proposed architecture is both sample-parallel and pass-parallel, thus overall
coding performance is improved.

5. CONCLUSION

In this paper, we present our research work on the design of
the context formation module of EBCOT Tier-1 in
JPEG2000. Since EBCOT Tier-1 coder exhibits high coding
efficiency with high computational complexity cost, we pro-
pose an efficient architecture for its realization with small
area and high speed by two techniques: Sample-paralleled
pass type decision (SPPD) and column-based pass-parallel
coding (CBPC) techniques. SPPD can reduce the processing
time by 13.83%, while CBPC can save about 18.28% of
hardware area, compared with the original pass-parallel
method.
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