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Unité de Recherche en Imagerie Satellitaire et ses Applications (URISA),
Ecole Supérieure des Communications de Tunis (SUP’COM)
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ABSTRACT
In this paper, we are interested in compactly coding
hyperspectral images for applications requiring a pro-
gressive and exact reconstruction. For this purpose,
a two-step procedure is envisaged. Firstly, a spectral
clustering of the whole data set is carried out. Then,
within each spectral cluster, a band-ordering of the
images is operated and the spectral and spatial simi-
larities are simultaneously taken into account through
an extended version of a lifting-based decomposition
scheme. Our contribution relies on coupling these two
steps and in optimizing the band-ordering procedure.

1. INTRODUCTION

The hyperspectral imagery consists in capturing the
same scene in several narrow and adjacent spectral
bands. The Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS) is one of the famous hyperspectral
sensor that delivers images calibrated in 224 contiguous
spectral channels corresponding to wavelengths rang-
ing from 400 to 2500 nm [1]. The target applications
are identification and measurement of earth and atmo-
sphere constituents. AVIRIS produces 76 Giga Bytes of
data per day, such amount of data is a bottleneck in han-
dling image databases. Therefore, compression is re-
quired. Generally, lossless (or lossy-to-lossless) coding
methods are selected since no artifact due to the com-
pression is allowed in the ground and physical measure-
ments. For instance, predictive coding techniques have
been successfully used in order to exploit the spatial
and spectral correlation between spectral bands [2, 3].
Vector quantization were also considered in a lossy to
lossless procedure [4]. In order to ensure both the pro-
gressiveness and the exactness of the reconstruction, a
great attention was paid to wavelet-based decomposi-
tions. More precisely, three dimensional wavelet trans-
forms were firstly considered [5, 6]. However, the main
drawback of such approach is the need of decoding the
whole dataset in order to retrieve a given spectral im-
age. In [7], a first solution was proposed to fulfill the
random access functionality by adding some markers
in the binary stream to enable the 2D decoding with-
out the need to decode all the volume set. Similarly,

in [9, 10], an alternative solution was also envisaged
with a two-step procedure. The first step consists of a
clustering of the components according to their spec-
tral features. The second step amounts to apply to the
components within the same cluster an extended ver-
sion of the integer wavelet decomposition, nicknamed
Vector Lifting Scheme (VLS) [8]. In this case, the ran-
dom access property holds since the decoding of any
component in a given cluster only involves some of the
components of that cluster. Our work aims at improv-
ing such approach by introducing more flexibility. Our
contribution is two-folded. More precisely, we firstly
propose to adapt the number of resulting cluster instead
of setting it to a predetermined value. Secondly, we im-
prove the ordering of the spectral components required
by the vector lifting decomposition.
Our paper is organized as follows. Section 2 is devoted
to the presentation of the adaptive clustering method we
applied. In Section 3, we briefly describe the VLS. In
Section 4, the optimal component ordering that ensures
the best performances of the VLS within each cluster is
described. Finally, in Section 5, we present some ex-
perimental results and some conclusions are drawn in
Section 6.

2. CLUSTERING

Let s(1), . . . ,s(B) denote a B-channel hyperspectral im-
age of size M ×N. We aim at grouping these B spec-
tral components into C clusters and representing each
class by a prototype example. Among the numerous
clustering methods, we have preferred to consider clus-
tering techniques that does not fix a priori the num-
ber of classes. Nowdays, the Competitive Agglomer-
ation Algorithm (CAA) is recognized to be one of the
most powerful unsupervised clustering technique [11].
It combines the advantages of both partitional and hi-
erarchical classification techniques. Indeed, the CAA
starts by partitioning data into a great number of clus-
ters, then it follows an agglomeration rule (which is the
property of hierarchical methods) to merge two or more
most appropriate clusters. Nevertheless, CAA outper-
forms the conventional hierarchical approach because
it is not static since points belong to their clusters in
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a fuzzy way. Furthermore, the search of the optimal
number of classes is computationally attractive. Gener-
ally, it is used to employ the CAA for image segmen-
tation purposes [11, 12]. However to the best of our
knowledge, within the framework of hyperspectral im-
age coding, only the k-means algorithm was considered
at the stage of the spectral classification. We would
like to introduce a more flexible clustering algorithm
(namely the CAA) to improve the performances of this
prior stage.
Concerning the features set F = { f (1),. . . , f (B)} of the
B channels, several alternatives have been investigated.
In this work, we focus on the spatial average and the
most frequent intensity. Preliminary experiments have
indicated that they lead to the same clustering result.
This is the reason why we have retained as a feature
f (b) of a component b its spatial means defined by:

f (b) =
1

MN

M

∑
m=1

N

∑
n=1

s(b)(m,n). (1)

Let Φ = {φ1, . . . ,φC} represents the set of C prototypes.
The CAA aims at minimizing the following objective
function:

J (F ,Φ,U;α) =
C
∑

c=1

B
∑

b=1
(ucb)2d2( f (b),φc)

−α

C

∑
c=1

(
B

∑
b=1

ucb)2 (2)

where α is a positive parameter, d( f (b),φc) is the dis-
tance between the feature f (b) and the prototype φc, ucb
is the degree of membership of band b to cluster c and
U= [ucb] is the C×B constrained fuzzy C-partition ma-
trix. Obviously, the constraint ∑

C
c=1 ucb = 1 should be

satisfied for any b. Instead of using the Euclidean dis-
tance, the Mahanalobis one is used to handle general
cluster shapes:

d2( f (b),φc) =
( f (b)−φc)2

σ2
c

(3)

where σ2
c is the variance of group c:

σ
2
c = ∑

B
b=1(ucb)2( f (b)−φc)2

∑
B
b=1(ucb)2

. (4)

The objective function J of the CAA combines two
terms. Its left term corresponds to the fuzzy C-means
objective function [13], it is minimal when the number
of clusters C is equal to the number B of features (each
cluster contains one component). The right term is the
sum of cardinalities, its minimum value is achieved
when number C = 1. Therefore, the CAA attempts

to ensure a tradeoff between the sum of the distances
between clusters and the most compact partition.
The minimization of the criterion J is iteratively
performed and, an empirical rule is proposed for the
evolution of the tradeoff parameter α with the iteration
number k.

α(k) = η0 exp(−k/τ)

C
∑

c=1

B
∑

b=1
(ucb)2d2( f (b),φc)

C
∑

c=1
[

B
∑

b=1
ucb]2

(5)

η0 and τ are the constants ensuring the exponential de-
crease of α . In our experiments, we have retained the
same empirical values mentioned in [11].

3. VECTOR LIFTING

Once the clusters of spectral bands are produced, the
goal is to exploit both the spectral and spatial correla-
tion within a given class through a multiresolution rep-
resentation. The concept of VLS has been found to be a
very efficient multiresolution tool to achieve such goal
[8]. The principle is to replace the spatial predictor usu-
ally employed in conventional lifting schemes [14] by a
hybrid one that operates spatial and spectral prediction.
For the sake of clarity, a separable decomposition is em-
ployed and, a single spectral reference channel b1 is re-
tained for the spectral prediction of the current compo-
nent b2. Therefore, it is enough to describe the VLS for
1D signals (for instance, the row of the components).
The idea is to estimate the even samples s(b2)(2n) by
the odd neighboring samples s(b2)(2n+n1) and also by
samples s(b1)(n + n2) of the reference channel (where
n1, n2 ∈ Z) . The prediction error is then computed and
it is used to update the odd samples s(b2)(2n+1) to gen-
erate a coarse decimated version s(b2)

1 of s(b2). The pro-
cedure is recursively repeated through J and a sequence
of J (3J in the 2D case) of detail coefficients {d(b2)

j }J
j=1

is produced along with a coarse version s(b2)
j :

d(b2)
j (n) = s(b2)

j (2n)−b(p(b2)
j )T s̃(b2)

j (2n)c (6)

where p(b2)
j is the vector of prediction weights and

s̃(b2)
j (2n) gathers all the reference samples. The classi-

cal LS is a special case that considers in s̃(b2)
j (2n) only

samples from b2 such as the well known 5/3 integer
wavelet transform [14]:

s̃(b2)
j (2n) =

(
s(b2)

j (2n−1)
s(b2)

j (2n+1)

)
. (7)

Generally, the prediction vector p(b2)
j is chosen so as the

variance of the detail coefficients d(b2)
j is minimized. If
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the rounding operator is omitted, it is straightforward
to show that the minimum variance predictor should be
solution of normal equations.
Sophisticated VLSs could be designated for instance,
involving more than one reference channel but at a price
of an additional complexity. In our simulations, we
have designed the following 4 VLSs that differ in the
considered spectral mask.
• VLS1 is a straightforward extension of the 5/3 trans-
form:

s̃(b2)
j (2n) =

s(b2)
j (2n−1)

s(b2)
j (2n+1)
s(b1)

j (2n)

 . (8)

• VLS2 is defined by an extended spectral mask:

s̃(b2)
j (2n) =


s(b2)

j (2n−1)
s(b2)

j (2n+1)
s(b1)

j (2n)
s(b1)

j (2n−1)
s(b1)

j (2n+1)

 . (9)

• VLS3 assumes some symmetries in the weights of
adjacent samples:

s̃(b2)
j (2n) =

s(b2)
j (2n−1)+ s(b2)

j (2n+1)
s(b1)

j (2n)
s(b1)

j (2n−1)+ s(b1)
j (2n+1)

 . (10)

• VLS4 also introduces some symmetries in the predic-
tion coefficients:

s̃(b2)
j (2n) =


s(b2)

j (2n−1)+ s(b2)
j (2n+1)

s(b1)
j (2n)

s(b1)
j (2n−1)+ s(b1)

j (2n+1)
s(b1)

j (2n−2)

 . (11)

For all the VLS, the update operation is computed sim-
ilarly to the LS one:

s(b2)
j+1(n)= s(b2)

j (2n−1)−b0.25(d(b2)
j (n−1)+d(b2)

j (n))c.
(12)

It is easy to check that these VLSs are perfectly re-
versible provided that b1 does not involve samples from
b2 in its prediction. Consequently, it is mandatory to
perform a component ordering to choose what refer-
ence channel belonging to the underlying cluster could
be used as a reference to a current channel.

4. COMPONENT ORDERING

Component ordering designates the component permu-
tation that specifies the channels that are coded first so

as they act as good predictors for the subsequent ones.
There are five possible orderings: forward monotonic,
reverse monotonic, best forward, best reverse [3] and,
the optimal ordering proposed by Tate [15]. The two
first methods impose a given coding order whereas the
remaining ones are adapted to the content of the compo-
nents. Indeed, the three last approaches attempt to min-
imize a coding performance criterion on a set of spec-
ified candidates. In our work, we have focused on the
Tate’s method because it is known as the most flexible
one. Furthermore, we have retained the entropy as an
optimality criterion. Indeed, the entropy is a suitable
measure of the sparsity of the multiresolution represen-
tation that is independent of the further coding stage.
In each cluster c of cardinality |c|, we calculate the re-
sulting entropies of all coded couples of components.
The cost matrix is the squared matrix |c| × |c| whose
generic element b1 × b2 is the entropy of band b2 that
is coded using a VLS with band b1. Therefore, the
problem of reaching the minimum entropy reduces to a
problem of minimum weighted tree search whose nodes
are the spectral channels and whose edges are the en-
tropy values. Once, the cost matrix is calculated, we
sort its elements in the ascending order. Then, we take
the nodes so as that no cycle is generated. It should
be noted that a cycle is a connected and closed chain
of spectral features such as a component is always pre-
dicted by another one. The procedure is iterated un-
til all the nodes are processed. In our algorithm, we
check if spatial coding (the 5/3 transform, for instance)
should be preferred to the hybrid one. Indeed, if the
entropy of a given channel coded by the 5/3 transform
is lower than the one achieved by a VLS, we switch to
the intra-channel coding mode. Then, this channel be-
comes a potential root of the subsequent components.
Such flexibility in the choice of the spatial/hybrid mode
and the possibiliy of having several references in the
cluster makes this new component ordering more flexi-
ble and general than the one described in [10]. Besides,
the possibility of having more than one root allows the
constitution of sub-clusters. It is worth noting that the
component-ordering could be viewed as a complemen-
tary step of the clustering one that could palliate its lim-
itations due the retained features. Finally, the eventual
generated sub-classes could facilitate the access to one
component within a sub-cluster. Hence, the random ac-
cess procedure could be accelerated.

5. EXPERIMENTAL RESULTS

We have employed AVIRIS images Cuprite, Jasper
Ridge and Lunar Lake (B = 224) 1. Each component
is coded at 16 bpp and has a size of 512×614. We
have eliminated in our data set the black components

1The test images were downloaded from the NASA database
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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as indicated in Table 1. Figure 1 provides the profile of
the spatial mean and the most frequent intensity along
the spectral axis, in the case of the Cuprite scene. It can
be easily deduced that both features have the same evo-
lution and, hence, that corroborates why we preferred
to retain the spatial mean as a suitable feature f (b) since
it could be easily computed. In Table 2, we indicate
the different values of entropies corresponding to the
considered reversible decomposition methods. The
multiresolution decomposition is applied over 3 stages
(J = 3). The 3D decomposition method corresponds
to the volumetric wavelet decomposition described in
[6]. It can be noted that the 3D decomposition leads
to the most compact representations. However, for a
fast decoding, it is preferred to make use of VLS more
than a basic LS. To this respect, the VLS2 ensures
the best performances for all the tested images. This
is the reason why we have retained in the subsequent
experiments the VLS2 which considers the largest
hybrid mask. An examination of the evolutions with
the spectral number of the original entropies and those
resulting from the 5/3 transform and our method in
Fig. 2 (in the case of Cuprite scene) corroborates the
outperformance of VLS2 w.r.t. the LS 5/3 method.
The peaks correspond to the coding of the root pictures
that is coded in an intra mode (we have chose the 5/3
transform). It can be noted that hybrid coding is often
better than spatial one. Such freedom degree in the
choice of the spatial/hybrid mode and the possibility
of having several references in the cluster yields to a
marked decrease of the entropy w.r.t. the method [9]
as shown in Table 3. It is clearly that our approach
is more efficient, with a gain around 0.2785 bpp. We
illustrate this flexibility by the example of the cluster
containing three spectral components {s(4),s(5),s(6)}.
The underlying cost matrix is:

W =

6.9607 6.9020 6.9994
7.1430 6.8597 6.9984
7.2898 6.9109 7.0010

 .

Fig. 3 shows the resulting entropies with our component
ordering method that allows in the cluster two refer-
ences and those obtained with the classical one where a
single reference is adopted. With our method, the clus-
ter has an average entropy around 6.9396 bpp, whereas
the entropy with the conventional one is 7 bpp.

6. CONCLUSIONS

In this paper, we have designed a two-stage coding
method for hyperspectral images. The first stage of
spectral clustering employs a performant unsupervised
algorithm. Then, within each spectral group, a VLS
was applied to exploit the spectral and spatial redundan-
cies. We have improved the performances of such sec-

ond stage by optimizing the channel ordering required
by the hybrid predictor involved in the VLS. The exper-
imental results have indicated a substantial gain w.r.t.
nonadaptive two-stage coding technique. Several direc-
tions can be investigated to extend this work. In partic-
ular, it would be interesting to investigate other spectral
features, that could both improve the spectral clustering
and the subsequent VLS.
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Table 1: Effective data set employed.
Scene Suppressed components Effective B
Cuprite 1, 2, [108, 111],

[155, 166] 206
Jasper ridge 1, 2, 3, [108, 113],

[153, 161], 223, 224 204
Lunar Lake 1, 2, 3, [108, 113],

[153, 161], 223, 224 204

Table 2: Entropies (in bpp) corresponding to different
codings ways.

Jasper ridge Cuprite Lunar lake
Original 9.4675 9.1824 9.4034

3D 4.7401 4.8234 4.6806
5/3 8.4892 7.8055 7.7483

VLS1 7.8955 7.3012 7.6534
VLS2 7.6153 7.1435 7.5430
VLS3 7.6455 7.1992 7.6065
VLS4 7.6589 7.1999 7.6133

Table 3: Entropies (in bpp) of some spectral bands of
Jasper Ridge.

Band Original [9] Our method
17 9.1116 6.2688 6.9326
18 9.5547 8.1648 6.9167
19 9.5385 6.1794 6.9562
20 9.5987 8.2512 6.9446

Average 9.4520 7.2160 6.9375

Figure 1: Average and most frequent intensity of
Cuprite.

Figure 2: Evolution of the entropy with the spectral
component.

Figure 3: Optimal w.r.t. classic component ordering.
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