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ABSTRACT 

In this paper, we present a novel approach for determining 
the theoretical compression bound for Wyner-Ziv coded 
video sequences transmitted over error-prone channels. 
This estimation takes into account the amount of motion 
inside each particular frame, as well as the transmission 
channel conditions. We compare the analytical results with 
those of a practical Wyner-Ziv coding system where a 
turbo-decoder acts as a joint decoder for recovering the 
compressed information and correcting errors due to 
transmission channel impairments. Furthermore, we show 
how the entropy limits can be used for estimating the 
optimal amount of information to be transmitted per frame, 
in case of a broadcasting application where a feedback 
channel is not available. Simulation results show a small 
degradation in the system rate-distortion performance, 
compared to the case of source-channel coding based on 
feedback information from the receiver. 

1. INTRODUCTION 

During the last few years, distributed source coding [1-4] 
has made tremendous progress in the world of video 
communication. Its aim is to counteract the high complexity 
of conventional compression techniques such as the H26x 
or MPEG standards based on predictive interframe coding. 
The concept emerged from Slepian's and Wolf's theory  [5]: 
Given two statistically dependent sources X and Y, with Y 
being separately compressed to its entropy limit H(Y), X 
can be transmitted at a rate which is very close to the 
conditional entropy H(X/Y), known as the Slepian-Wolf 
limit. The application of this concept to lossy source coding 
is known as the Wyner-Ziv coding  [6], which permits a 
simple encoder structure and a much more efficient 
compression for source X, provided that Y is perfectly 
recovered as side information at the receiver. This scenario 
was applied in wireless sensor networks  [3] where several 
information sources are collected and processed by a 
central base. It was also proposed for low-complexity video 
encoders in  [7] where intra-frame source compression is 
realized by adequate puncturing of the parity bits generated 
at the output of a turbo-encoder. The systematic 
information is not transmitted but rather replaced by side 
information available at the receiver, leading to inter-frame 
decoding. One of the major drawbacks of this scheme is 
that it employs a feedback channel between the transmitter 
and the receiver. Therefore, its application in a real-time 

environment or a broadcasting application is rather 
impossible. On the other hand, the theoretical lower bound 
on the achievable compression performance of such a 
distributed coding system still needs to be determined, 
especially for the realistic case of an error-prone 
transmission system. In  [8], a source-channel codec was 
proposed for a broadcasting system: a Wyner-Ziv bitstream 
is generated at a fixed rate and employs an MPEG decoded 
bitstream as side information. In this work, we first 
consider a source-coding system employing feedback 
information. Then, we generalize our study to the case of a 
broadcasting system: still employing independent frame 
encoding, the transmitter relies on a low-complexity 
estimation of the theoretical bounds to vary the necessary 
amount of transmitted data for each particular frame, 
depending on the transmission channel conditions and on 
the amount of motion in the frame.  

The remainder of the paper is organized as follows: in 
section 2, we start by describing the joint source-channel 
codec based on rate-compatible punctured turbo-coding  [9]. 
Then, in section 3, we present our approach for the 
estimation of the system’s compression limit in the 
presence of noise. Simulation results, as well as theoretical 
curves, are presented and discussed in section 4. 

2. DESCRIPTION OF THE JOINT SOURCE-
CHANNEL CODING SYSTEM 

The distributed joint source-channel coding system 
considered in this study can be represented by the block-
diagram in Figure 1. The intra-frame encoding system 
compresses only the even frames in the video sequence. 
Odd frames are considered to be perfectly recovered at the 
receiver as side information used as systematic data for 
source-channel decoding and in the reconstruction of even 
frames. Side information of a particular even frame is 
generated by an average interpolation of the two adjacent 
(preceding and succeeding) odd frames  [7].  

It can be verified that the statistics of the residual 
signal d resulting from subtracting an even frame from the 
corresponding interpolated frame follow a Laplacian 

distribution: ( ) dP d e
2

−αα
= .         (1) 

The parameter α can be approximately estimated on the 
receiver side using the available odd frames. It can also be 
estimated by the encoder and transmitted as side 
information to the receiver. 
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Figure 1. Block-diagram of the pixel-domain joint source-channel coding system. 
 
Compression of the even frames starts by a uniform 

scalar quantization to obtain M-bit representations of the 
eight-bit pixels. In this work, we consider M = 1, 2 or 4 in 
order to obtain different source coding rates. The source-
channel encoder consists of a parallel concatenation of two 
16-state quadri-binary convolutional encoders separated by 
an internal interleaver and resulting in a minimum global 
coding rate of 2/3. The generator polynomials in octal 
notation are (23, 35, 31, 37, 27)8 from  [10]. As for the 
interleaver length, it is set to the size of the quantized video 
frame. At the encoder output, systematic information is 
discarded, while parity information is punctured and 
transmitted to the decoder. Therefore, the system maximum 
compression rate is 0.5, which corresponds to the case 
where all the generated parity bits are transmitted. At the 
receiver side, turbo-decoding is realized by iterative Soft 
Input Soft Output (SISO) decoders based on the Max-Log-
MAP (Maximum A Posteriori) algorithm  [11]. However, 
we modified the metric calculations in order to take into 
account the 16 possible transitions between any couple of 
trellis states. Moreover, the conditional probabilities in the 
turbo-decoding process must rely on the residual signal 
statistics between the even frames and the side information, 
on one hand, and the channel conditions (the Additive 
White Gaussian Noise channel over which the parity 
information is transmitted) on the other (see equation  (3) 
developed later). 

In the case of a transmission system with a feedback 
channel, the decoder requests parity bits from the 
transmitter until a symbol error rate of 10-3 is reached. 
However, in the case of a broadcasting application, the 
system must rely on a pre-determined amount of parity 
information that can be estimated using the theoretical 
compression limits (Hf) calculated by the transmitter for the 
even frames: for a fixed transmission rate (for example, the 
average bitrate Dt obtained by the system with feedback), 
the theoretical limits are used by the encoder to determine a 
quasi-optimal partitioning scheme of the total amount of 
parity bits between the different frames. The transmission 
rate for a particular frame f will be:  
Df = Dt ⋅ Hf / Ht, where Ht is the sum of the compression 
limits over the sequence frames. 

After source-channel decoding, the reconstruction 
block is used to recover an eight-bit version of the even 
frame using the available side information  [7]: each 
decoded symbol is compared to the corresponding side 
information. If the latter lies within the same quantization 
interval of the decoded symbol, the reconstructed pixel will 
take the value of the side information. Otherwise, it will be 

clipped to the interval boundary closest to the side 
information.  

3. ANALYTICAL ESTIMATION OF THE SYSTEM 
LOWER COMPRESSION BOUND  

To derive the theoretical compression bound of the 
practical pixel-domain Wyner-Ziv coding system in figure 
1, we consider (figure 2) a discrete source Z being 
transmitted over an AWGN channel to yield a received 
discrete sequence X. In addition, side information Y is 
available at the decoder in such a way that the residual 
difference between Z and Y exhibits a Laplacian 
distribution. Since variables X, Y and Z are quantized 
representations of the video frame pixels, we further 
assume the presence, in the proposed model, of a hard 
decision device at the channel output. Throughout the 
paper, {i1, i2, ..., iM} will denote the binary representation of 
a pixel i, i1 being the most significant bit. Note that, in the 
absence of AWGN, the system compression limit would be 
the conditional entropy H(Z|Y). Due to the presence of 
AWGN, the uncertainty about the transmitted source 
increases and so the new compression limit is H(X|Y). 
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Figure 2. Theoretical model for the derivation of the system 

compression limit in the presence of noise. 
 

Let N be the additive noise vector: N = {n1, n2, ..., nM}, 
where nk has a normal distribution with zero mean and 
variance σ2. The hard decision function at the output of the 
AWGN channel is given by: fd(v) = 1 if v≥0, 0 otherwise. 

The theoretical achievable compression rate for noisy 
transmission is estimated using: 

( ) ( ) ( )
M M2 1 2 1

i 0 j 0

H X | Y P Y j g P X i | Y j
− −

= =

= − = ⋅ = =⎡ ⎤⎣ ⎦∑ ∑ , (2) 

where ( ) ( )2g x x log x= ⋅ . The conditional probability can be 
calculated by: 

( ) ( )( )
M2 1

d
k 0

P X i | Y j P Z k, f U N i | Y j
−

=

= = = = + = =∑ . (3) 
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Since the additive noise is independent from the source 
bits:  
( )

( ) ( )( )
M

1 1 2 2 M M

2 1

d
k 0

P x i , x i ,..., x i | Y j

P Z k | Y j P f U N i | Z k .
−

=

= = = = =

= = + = =∑
 (4) 

The noise samples being independent, we can write: 

( )( ) ( )( )
M

d d r r r r r
r 1

P f U N i | Z k P f u n i | z k .
=

+ = = = + = =∏ (5) 

Let ( ) ( ) ( )N r rP P n 1 P n 1 (1/ 2)erfc 1/ 2= > = < − = σ , (6) 

where erfc(⋅) stands for the complementary error function. 
It can be verified that:  

( )( ) N r r
d r r r r r

N r r

1 P , if  i k
P f u n i | z k

P , if  i k

− =⎧⎪+ = = = ⎨
≠⎪⎩

. (7) 

On the other hand, the conditional probability 
( )P Z k | Y j= =  is calculated using the Laplacian 

distribution of the residual signal between the even frames 
and the corresponding side information: 

( ) Z YdP Z Y d c e
2

−−αα
− = = , (8) 

where 8 M
Z Yd d 2 −
− = ⋅  and c is a scaling factor used to take 

into account the discrete and bounded values of the 
quantized pixels Y and Z.  

M

i

M

2 1
d

i (2 1)

c (2 ) e
−

−α

=− −

= α ∑ , with 8 M
id i 2 −= ⋅ . Therefore:  

8 M M
8 M

8 M

2 (2 1)
2

2

1 ec (2 / ) 1 2e
1 e

−
−

−

−α −
−α

−α

⎡ ⎤−⎢ ⎥= α +
⎢ ⎥−⎣ ⎦

. (9) 

On the other hand: 
( ) ( ) ( )

j

P Z Y d P Z k d j | Y j P Y j− = = = = + = =∑  (10) 

The number of non-zero terms in (10) is equal to the 
number 

k jdL
−

 of couples (k,j) that yield the residual 

difference k – j = d. In the case of an equiprobable source, 
these couples can be considered to be equally likely: For 
example, considering a 2-bit quantization, the possible 
values of d are 0, ±64, ±128 and ±192, with a decreasing 
order of probability of occurrence. For a particular value of 
the difference, for example d = 64, couples (64,0), (128,64) 
or (192, 128) have the same probability to occur. Therefore:   

( ) ( )
k j

M

d

2P Z k d j | Y j P Z Y d
L

−

= = + = = − = . (11) 

For an M-bit quantization, the residual difference takes the 
following values: 8 M M M

id i 2 , i (2 1),..., 2 1−= ⋅ = − − − . (12) 
We can express 

idL in terms of i by the following 

relationship: 
i

M
dL 2 i= − . (13) 

Finally: 

( )

( ) ( ){ }

M M

M k j

r r r r
k j

2 1 2 1

i 0 j 0

d M2 1 M

N i k N i kM
dk 0 r 1

H X | Y

1 2 eg c 1 P P 1 ,
2 L2

−

−

− −

= =

−α−

− −
= =

= −

⎡ ⎤⎛ ⎞α⎢ ⎥⎜ ⎟− δ + − δ
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

∑ ∑

∑ ∏
 (14) 
where δ is the Kronecker delta function. 

Note that, in the absence of noise, PN = 0. Therefore, 

( )( )d
0, if  i k

P f U N i | Z k
1, if  i k

≠⎧⎪+ = = = ⎨
=⎪⎩

.  (15) 

In this case, H(X|Y) reduces to: 

( )
M M i j

i j

d2 1 2 1 M

M
di 0 j 0

1 2 eH Z | Y g c
2 L2

−

−

−α− −

= =

⎡ ⎤α⎢ ⎥= −
⎢ ⎥
⎣ ⎦

∑ ∑ .  (16) 

In the following section, we will compare the 
analytical results obtained by equation (14) with an 
approximate calculation of H(X|Y). The latter can be 
derived by mapping the AWGN channel to a Binary 
Symmetric Channel (BSC) by an equivalence of the 
stability functions of the two channels  [12]. This mapping 
was adopted in  [13] for the design of source-channel codes. 
The relationship between the crossover probability p of the 
BSC and the symbol energy per noise density ratio (ES/N0) 
of the AWGN channel can be written as:  

s

0

E1p 1 1 exp 2
2 N

⎛ ⎞⎛ ⎞⎜ ⎟= − − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. (17) 

On the other hand, the theoretical compression limit of a 
binary source transmitted over a BSC channel is related to 
its entropy limit H(Z|Y) by  [1]: 

( ) ( )
( )

H Z | Y
H X | Y

C p
= , (18) 

where C(p) is the capacity of the BSC channel. 

4. PRACTICAL RESULTS 

In Figures 3 to 5, we represent the achievable compression 
rate (R: xdB) obtained by simulating the source-coding 
system, as well as the theoretical lower bound (H: xdB) 
obtained for different values of the ES/N0 ratio and different 
numbers of quantization bits per pixel (M). 50 even frames 
were considered for the Carphone video sequence and 180 
for the Foreman sequence. The curves labeled 'R' and 'H' 
are obtained in the absence of noise, whereas the label 
'H: xdB (M)' designates the theoretical compression bound 
estimated by the channel mapping method.  

The results obtained for the Carphone sequence with 
M = 4 show a gap in the achieved compression towards the 
theoretical limit between 0.06 and 0.14 for the case of 
noiseless transmission. In the case where ES/N0 = 1 dB, the 
gap range increases to [0.11 ; 0.18]. The high values of the 
gap, of the achievable compressions and of the theoretical 
limits correspond to the low values of the parameter α 
measured for M = 4 (figure 6). In fact, a low value of α 
indicates a high level of motion in the frame, making the 
corresponding side information less reliable for the turbo-
decoding process. In this case, a greater amount of parity 
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information is required from the encoder. Besides, we 
noticed that, starting from ES/N0 = 3 dB, the theoretical 
limits for both noisy and noiseless transmission become 
almost similar, whereas the practical system performances 
become almost identical to the noiseless case for 
ES/N0 ≥ 5 dB.  
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Figure 3. Achievable compression rate for M = 4 (Carphone). 
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Figure 4. Achievable compression rate for M = 1 (Carphone). 
 
Similar effects were observed for M = 2 and M = 1. 

However, at ES/N0 = 1 dB, the gap range increases to [0.14 
; 0.25] for M = 2 and [0.12 ; 0.33] for M = 1 (figure 4). The 
high values observed in the practical compression levels, 
for both cases of noisy and noiseless transmissions, are due 
to the fact that when the number of quantization levels is 
low, the correlation between the quantized pixels of the 
even frames and those in the interpolated frames decreases 
dramatically, which can be observed from the very low 
values of the parameter α. This leads to important 
fluctuations in the achievable compression levels from a 
frame to another and explains the wider ranges in the 
performance gaps compared to those obtained for M = 4. 

In the case of the Foreman sequence, the level of 
motion throughout the sequence is much more important 
than for the Carphone case (note the very low values of the 
alpha parameter for a certain number of frames in figure 6). 
In fact, as seen in figure 5, the maximum gap in the system 
compression performance is very important and reaches 
almost 0.2 for M = 4. Furthermore, the entropy limit is 
sometimes higher than the system maximum compression 
limit (0.5), as in frames 136 to 166. In this case, the 
decoding bit error rate will saturate at higher values than 
the 10-3 target, leading to a more important distortion than 
for the rest of the sequence.  

On the other hand, we clearly notice that, in general, 
the theoretical entropy limits obtained by our method are 
very close to the approximate calculation method. In fact, 
the latter is less accurate when the compression limits are 

high, especially for low ES/N0 ratios, i.e. for high values of 
the mapped BSC cross-over probability. However, the 
closeness between the results of the two estimation methods 
proves the validity of our theoretical model. 
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Figure 5. Achievable compression rate for M = 4 (Foreman). 
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Figure 6. The alpha parameter of the Laplacian distribution for the 

Carphone (C) and Foreman (F) sequences. 
 
Finally, in figures 7 and 8, we show the rate-distortion 

curves, i.e. the average PSNR as a function of the average 
transmission bit rate, obtained for different values of the 
ES/N0 ratio. The bit rates correspond to 15 even frames per 
second. The theoretical limits (labeled 'TL') are estimated 
by considering only the influence of quantization, i.e. we 
suppose perfect recovery of the M-bit frame at the input of 
the reconstruction block. For the Carphone sequence 
quantized at M = 4, we find a gap between the theoretical 
and achieved bit rate from 145 kbps (for a noiseless 
transmission) to 218 kbps (for ES/N0 = 1 dB). For M = 2, 
the gap is almost 150 kbps at ES/N0 = 1 dB and it decreases 
to 91 kbps for M = 1. The loss in bit rate in the practical 
compression system due to noise, measured for M = 4, is 13 
kbps for ES/N0 = 5 dB, 46 kbps for ES/N0 = 3 dB, and 
reaches 124 kbps for ES/N0 = 1 dB. In the case of a 
broadcasting application (curves labeled 'B'), for the same 
data rate, a loss in the PSNR between 0.85 and 1.1 dB is 
noticed for M = 2 and 4, towards the system with a 
feedback channel. By observing the broadcasting system 
performance at low data rates, we conclude that, in the 
presence of high noise levels, it is preferable for the 
decoder to rely on the side information, since the 
transmitted parity information does not permit a noticeable 
enhancement in the PSNR. 

In the case of the Foreman sequence, the gap towards 
the theoretical performances is between 100 and 140 kbps 
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for M = 4. However, a loss in the PSNR between 2 and 3 
dB is noticed due to the high motion in a great part of the 
sequence. We also estimated the system performances for 
the case where the frames corresponding to a theoretical 
compression limit higher than 0.5 are dropped at the 
transmitter and replaced by their corresponding side 
information in the receiver (curves labeled 'D'). This 
technique permits a considerable gain in the RD 
performance: for M = 4, a gain in the bit rate between 93 
and 127 kbps is observed with a slight increase in the 
system PSNR.  
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Figure 7. Rate-Distortion curves for the Carphone sequence 
transmitted in the presence of noise. 
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Furthermore, when a broadcasting application is 

considered (curves labeled 'D-B'), the loss in PSNR is only 
0.3 dB at ES/N0 = 1 dB and reaches 1 dB at ES/N0 = 5 dB. 
For the Foreman sequence, this system permits a 
transmission at data rates very close to the theoretical 
bound, but with a loss in the PSNR that can reach 3.4 dB. 
This loss could be reduced by using complex interpolation 

techniques for the generation of side information, like 
motion compensation techniques  [7]. 

5. CONCLUSION 

In this paper, we presented an analytical approach for 
estimating the compression limits of a pixel-domain 
Wyner-Ziv video coding system with a transmission over 
error-prone channels. We also implemented a practical 
source-coding system where compression is achieved using 
rate-compatible puncturing of turbo-coded sequences. 
Simulation results show a behavior of the practical 
compression system performance comparable to the 
theoretical results: the achievable compression limit for a 
frame is highly dependent on its content and on the channel 
conditions. Using the analytical results, the compression 
level can be predicted for each frame by the encoder and 
used in a broadcasting system, with a minor loss in the 
decoding PSNR, compared to the classical feedback-based 
coding system. 
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