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ABSTRACT 
In this paper a time synchronization algorithm for IEEE 
802.11a/g OFDM-WLAN standard is evaluated and some 
modifications are proposed to improve its performance. The 
original synchronization algorithm utilizes coarse and fine 
estimation. In this paper fine time estimation is done using a 
cross-correlation as the original algorithm does, but differ-
ent solutions are evaluated to cope with the problems of the 
coarse estimation in the original algorithm. The perform-
ances of these alternatives are tested by simulation in multi-
path channels, at low signal to noise ratio and with carrier 
frequency offset. Also, the computational cost is evaluated. 

1. INTRODUCTION 

IEEE 802.11a is a WLAN standard from IEEE [1] that 
works in the 5 GHz and 2.4 GHz bands and achieves data 
rates up to 54 Mbps. For the physical layer, Orthogonal Fre-
quency Division Multiplexing (OFDM) is used, since it al-
lows getting high bit rates in highly dispersive fading envi-
ronments. Data are transmitted in bursts, always preceded 
by a preamble (Figure 1). This preamble consists of ten 
identical short symbols (SS) of 16 samples and two identical 
long symbols (LS) of 64 samples with a cyclic prefix (GI) of 
32 samples. As it is shown in Figure 1, once signal detection 
and automatic gain control (AGC) are completed (at sample 
ni), fine and coarse time synchronization begin. The purpose 
of the time synchronization is to find the starting-point of GI 
(sample nGI), so channel estimation can be correctly done 
using the long symbols, and a reference for the first OFDM 
symbol is obtained. 

Several time synchronization methods for OFDM sig-
nals can be found in the literature, some of them make use 
of the preamble structure of the IEEE 802.11a/g, such as [2, 
3, 4]. Among them, the algorithm proposed in [2] can 
achieve a good performance with a moderate computational 
cost. In this paper some modifications are introduced that 
improve its performance and reduce its computational cost. 

This paper is organized as follows. Section 2 describes 
the time synchronization algorithm proposed in [2] and 
comments on its main drawback. Section 3 presents three 
modifications of the original algorithm to cope with the 
problem commented in Section 2. In Section 4 the perform-
ance of the different algorithms is analyzed and, in Section 5 

the computational cost of every algorithm is given. Finally, 
in Section 6 conclusions are presented. 
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Figure 1 – IEEE 802.11a/g preamble 

2. TIME SYNCHRONIZATION ALGORITHM 

In this section the time synchronization algorithm for the 
IEEE 802.11a/g WLAN standard proposed in [2] is de-
scribed. This is divided in two parts: one for coarse time 
estimation and another for fine time estimation. The per-
formance of the coarse estimation is evaluated and its main 
drawback stated. 

 
2.1 Fine Time Synchronization 
Fine time synchronization tries finding the transition between 
two SS’s (sample n1 in Figure 1), once AGC and signal de-
tection are accomplished. This task is achieved using a cross-
correlation between the received signal x(n) beginning at 
sample ni and the pilot data SS(k): 
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This gives a peak value every 16 samples (the length of 
a SS), whose position indicates the starting point of each SS. 
An average of Nreg blocks of 16 samples is made to reduce 
distortion of peak positions due to channel noise. Parameter 
Nreg is calculated by the coarse estimation stage. 

 
2.2 Coarse Time Synchronization  
Using a maximum likelihood (ML) algorithm similar to [5], 
coarse time synchronization tries finding where the first 
sample of GI (nGI) is. First, this metric is obtained: 
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where 2
sσ  and 2

nσ  are signal and noise power respectively. 
As a result, a plateau, which falls abruptly when the guard 
interval (GI) of the long training sequence begins, is ob-
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tained. Next, the number of SS’s between signal detection 
(sample ni) and the first sample of GI (nGI) is calculated, this 
value is the parameter Nreg: 
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where Thr is a threshold value. 
Once Nreg is known, the position of the first sample of GI 

is calculated as: 
  116 nNn regGI +⋅=  (4) 

 
2.3 Performance evaluation 
This synchronization method has been tested and the optimal 
threshold has been found. As a result, it is concluded that the 
fine time algorithm works correctly, even if the number of 
SS’s used in (1) is as low as 4. 

However, we have observed that the main problem of 
this synchronization method is the coarse time estimation. 
Although this has a good performance when it begins to 
work (instant ni) at samples in the middle of a SS (in [2] it is 
assumed that AGC and signal detection are completed during 
the third SS), some problems arise when it begins to work at 
samples around the boundary of two consecutive SS’s. In that 
case, the GI starting point (4) is often detected with an offset 
of ±16 samples (see Figure 2), giving a synchronization fail-
ure as a result. In this paper, to improve the synchronization 
success rate some modifications are proposed in the coarse 
estimation algorithm, meanwhile the original fine time esti-
mation algorithm from [2] is maintained. 

3. COARSE TIME ESTIMATION ALTERNATIVES 

The problem commented in the previous section is due to the 
rounding to the lowest integer operation that is performed in 
(3), this is the cause of the ±16 samples time offset. The ob-
jective of (3) is to find where the transition between the last 
SS and the GI occurs. In this section three alternatives to (3) 
are evaluated, the first one is a modification of the original 
algorithm, the second one is based on a new metric, and the 
third one is obtained from the literature. 

 
3.1 Alternative 1 
Next we propose a way of circumvent the need of doing a 
rounding to the lowest integer. First, a coarse estimation 
(called ncoarse in Figure 1) of the beginning of GI is obtained: 

  [ ]
⎭
⎬
⎫

⎩
⎨
⎧ <= Thrnfn normML

n
coarse )(argmin ,

 (5) 

Then the last transition point (n1+16, n1+32, n1+48,…) be-
fore ncoarse is found, since this will be the first sample of GI 
(nGI).  

Once the OFDM signal has been detected, the synchro-
nization algorithm begins at sample ni the next procedure: 
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Figure 2 – Deviation with respect to the ideal initial sample 

1) Metric (3) is calculated from ni and during 128 
samples to include the abrupt change that occurs at 
nGI. Then ncoarse is estimated using (5). And q is set 
to 1. 

2) The received signal is cross-correlated to obtain n1 
using (1), with 1−= qN reg . 

3) If coarsenqn >⋅+ 161 , then ( ) 1611 ⋅−+= qnnGI ; if 
not, then 1+= qq  and step 2 is repeated.  

At every iteration, the number of terms in the average 
(Nreg) of (1) is incremented before n1 is re-calculated, so the 
estimation of n1 becomes more and more accurate. 

 
3.2 Alternative 2 
Next we present a new method for coarse time estimation, 
this makes use of a new metric and the iterative procedure 
introduced in Alternative 1. The new metric is calculated as 
follows: 
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This calculates the squared difference between the actual SS 
and the four previous SS’s, and finally these differences are 
added. Therefore, )(2 nf  will be around zero while samples 
from SS’s are processed and it will grow abruptly when sam-
ples from GI start. To set a threshold to check if the abrupt 
change happens, it is necessary to normalize the new metric 
by the average input signal power: 
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Next, coarsen can be obtained as: 

  [ ]
⎭
⎬
⎫

⎩
⎨
⎧ <= Thrnfn norm

n
coarse )(argmin _2

, (8) 

and, GIn  can be calculated by means of the same procedure 
as in Alternative 1. 
 
3.3 Alternative 3 
This algorithm is proposed in [3] for coarse time synchroni-
zation. It is based on the Neyman-Pearson detection ap-
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proach [6] and this compares the probability that the re-
ceived signal belongs to the short training symbol (PSS) 
with the probability that it belongs to the cyclic prefix of 
the long symbol GI (PGI). These probabilities are only 
evaluated at transitions points: qnnq ⋅+= 161 , with 

q = 1, 2, 3… The first time that the next condition: 
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is met means that GIn  has been found. In [3] it is shown that 
(9) is equivalent to )()( qSSqGI nPnP > , where L is the esti-
mated number of paths of the multipath channel, 

T
nnnn rrr ][ 151 ++= Lr  is a signal vector with 16 samples 

from the received signal, and 0G  and 0B  are matrices of 
dimension 16 x L: 
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Once the OFDM signal has been detected, the synchro-
nization algorithm begins at sample ni the next procedure: 

1) Set q = 1. 
2) The received signal is cross-correlated to obtain n1 

using (1) with 1−= qN reg . 
3) If )()( qSSqGI nPnP >  (with qnnq ⋅+= 161 ), then 

qGI nn = ; if not, then 1+= qq  and step 2 is re-
peated. 

4. SIMULATION RESULTS 

The original algorithm and the proposed alternatives have 
been tested for BRAN channel model A, which represents a 
typical office environment with an rms delay spread of 
50 ns, and channel model B which represents an open office 
environment with an rms delay spread of 100 ns [7]. The 
performance results consider the optimal threshold for each 
algorithm, and the optimal length channel (L) for Alterna-
tive 3. It is assumed that AGC and signal detection are 
completed at any sample of the third SS, so ni is randomly 
set following a uniform distribution in the range 32-47. 
This assumption is the same as the one used in [2], as it was 
commented above we have checked that this algorithm 
works even if ni happens during the sixth SS. 

The success rate of the time estimation has been meas-
ured under the following conditions: 104 test frames, each 
one with a different realization of the multipath channel; car-
rier frequency offset (CFO) from 0 to 73% of the sub-carrier 
spacing (this is the maximum value allowed in [1]); and addi-
tive white Gaussian noise with a SNR from 2dB to 18dB.  

Figure 2 shows the deviation from the ideal initial sam-
ple (nGI) achieved with each algorithm. This has been meas-
ured with multipath channel A, 18dB of SNR and no CFO. 
As it has been mentioned above, the original algorithm [2] 
occasionally detects nGI with an offset of ±16 samples. In 
contrast, the proposed alternatives do not have this problem, 
and all of them achieve more or less the same deviation. All 
the algorithms have the same MSE value in the deviation due 
to the fact that all of them use the same fine time algorithm. 
For multipath channel A the MSE value is around 0.65 sam-
ples, whereas the MSE value is around 1.55 for multipath 
channel B. 
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Figure 3 – Correct final synchronization. Channel A. CFO 0% 
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Figure 4 – Correct final synchronization. Channel B. CFO 0% 

Figure 3 and Figure 4 show the probability of correct 
time synchronization for multipath channel A and B, respec-
tively. No CFO is considered. In this paper it is considered 
that a frame is correctly synchronized when deviation from 
the ideal initial sample is between 0 and 4 samples, because a 
deviation lower than 4 samples does not introduce any per-
formance loss [8]. 

Additionally, the effect of the CFO has been studied. The 
fine time synchronization algorithm works perfectly with 
CFO. Figure 5 and Figure 6 show the obtained results for a 
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CFO of 73% of sub-carrier spacing for channel A and chan-
nel B, respectively. 
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Figure 5 – Correct final synchronization. Channel A. CFO 73%, 
solid line CFO compensated, dashed line CFO uncompensated 
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Figure 6 – Correct final synchronization. Channel B. CFO 73%, 
solid line CFO compensated, dashed line CFO uncompensated 

On the one hand, the original algorithm and Alternative 
1 have the same success rate with and without CFO. On the 
other hand, the success rate at 2dB SNR is reduced by 4% 
(channel A) or 8% (channel B) for Alternative 3. Finally, Al-
ternative 2 does not work with CFO higher than 30 kHz, so 
CFO must be estimated and compensated before applying 
this synchronization method as it is shown in the figures.  

The CFO estimation can be obtained by doing an auto-
correlation as it is proposed in [9]: 
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After that, the CFO ( f̂ ) can be estimated as: 
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where sT  is the sampling period and cfon  is the sample 

where the estimated CFO is obtained, this instant must be 

greater than Kin + . The average length (K) must be at least 
of 64 samples to have a standard deviation of the estimated 
CFO lower than 30 kHz. Apart from being necessary in 
Alternative 2, the success rate of Alternative 3 can be im-
proved by compensating the CFO before applying the algo-
rithm. 

In summary, if CFO is compensated, the best algorithms 
are Alternative 2 and Alternative 3, although this last one has 
a lower success rate for channels with higher delay spread 
like channel model B. 

5. COMPUTATIONAL COST 

In this section the computational cost of every alternative 
has been evaluated. Alternative 3 makes use of two 16 x 16 
matrices ( ) H

0
1

0
H
00 GGGG −  and ( ) H

0
1

0
H
00 BBBB −  that can be 

pre-calculated, but 544 complex products (i.e. 2176 real 
products and 1088 real additions) and 510 complex addi-
tions (1020 real additions) are needed to compute (9). If the 
algorithm for coarse estimation begins during the third SS, 
condition in (9) is evaluated 7 times; this gives a total com-
plexity of 15232 real products and 14756 real additions. 
Moreover, this algorithm has an important disadvantage: 
the channel length L must be known a priori, that is, in a 
practical system this must be estimated.  

Alternative 2 makes use of a division in (7), this can be 
avoided if condition in (8) is modified as follows: 
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In that case the computational cost per input sample of 
this alternative is: 1 moving average (MA), 1 complex addi-
tion and 1 squared modulus in (6), and 2 MA, 1 product by a 
constant and 1 squared modulus in (11). Since each MA can 
be done with 2 real additions, and each squared modulus 
costs 2 real products and 1 real addition, this gives a com-
plexity of 5 real products and 10 real additions. Moreover, as 
this algorithm does not work with CFO, it is necessary to 
estimate and remove it from the SS’s before the coarse time 
synchronization is carried out. The CFO compensation needs 
1 complex product per sample, and then Alternative 2 has a 
computational cost per input sample of 9 real products and 
12 real additions. 

Again, if the algorithm begins during the third SS this 
means that (6) and (11) must be evaluated during 128 sam-
ples as it was commented in section 3.1. Therefore, the total 
computational cost is 1152 real products and 1536 real addi-
tions. It must be stated that after time synchronization the 
receiver must carry out channel estimation using the two long 
symbols from the preamble. Before this, the CFO must be 
removed; so, CFO always must be estimated, and for this 
reason it has not been taken into account in the previous 
computational complexity study. 

Original algorithm and Alternative 1 make use of the 
same metric (2), the difference between them is how the 
coarse estimation is done. This metric has a higher computa-
tional cost than Alternative 2 because in (2) is computed 1 
complex valued MA (4 real additions) and 1 real valued MA 
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(2 real additions), 2 squared modulus (4 real products and 2 
real additions), 2 real scaling products one in (2) and another 
to avoid the division, a complex valued autocorrelation (1 
complex product), 2 real additions and a modulus operation 
(it can be calculated with a CORDIC in vectoring mode, this 
can be implemented with (Nbits + 2) · 3 additions [10], where 
Nbits is the number of bit precision needed at the output of the 
CORDIC, for a fixed point implementation without perform-
ance degradation a precision of 10 bits is necessary, then the 
CORDIC would employ 36 additions). Then, original algo-
rithm and Alternative 1 have a computational cost per input 
sample of 10 real products and 12 real additions (and 36 real 
additions for a CORDIC of 10 bit precision), moreover it is 
necessary to estimate the signal and noise power. Again if 
this algorithm works during 128 samples, the total complex-
ity is: 1280 real products and 1536 real additions (and 4608 
real additions for the CORDIC). 

Table 1 shows the computational complexity per input 
sample, and the total cost in brackets: Alternative 1 and 2 are 
calculated during 128 samples, Alternative 3 is calculated at 
7 samples. 

 Alt. 1 Alt. 2 Alt. 3 

Real products 10 
(1280) 

9 
(1152) 

2176 
(15232) 

Real addition 12 +36 
(1536 + 4608) 

12 
(1536) 

2108 
(14756) 

Other 
estimate 

22 , ns σσ  
 estimate 

L 

Table 1 – Comparison of computational cost  

6. CONCLUSIONS 

In this work several algorithms have been studied to solve 
the problem found in the coarse time estimation proposed in 
[2]: the starting-point of GI can be detected with an offset 
of ±16 samples if the synchronization process begins (once 
AGC and signal detection are accomplished) in samples 
around the boundary of two SS’s. All the studied alterna-
tives make use of the same fine time estimation algorithm 
as in [2]. 

Simulation results show that Alternative 2 and Alterna-
tive 3 have the best probability of correct detection. As Alter-
native 3 has higher computational cost and its performance 
decreases when the delay spread increases (like in channel 
model B), it is concluded that the best solution is Alterna-
tive 2 (compared to Alternative 3 this solution reduces the 
number of products in 92.4% and the number of additions in 

89.6%). This solution needs the CFO to be estimated and 
removed before applying the synchronization algorithm. 
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