
IMPROVEMENT OF A TIME SYNCHRONIZATION ALGORITHM FOR
IEEE 802.11a/g WLAN STANDARD

Mª José Canet, Vicenç Almenar, Santiago Flores, and Javier Valls

Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universidad Politécnica de Valencia
Ctra. Nazaret-Oliva s/n, 46730, Gandia, Spain

phone: + (34) 962849346, fax: + (34) 962849313, email: valmenar@dcom.upv.es
web: www.gised.upv.es

ABSTRACT
In this paper a time synchronization algorithm for IEEE
802.11a/g OFDM-WLAN standard is evaluated and some
modifications are proposed to improve its performance. The
original synchronization algorithm utilizes coarse and fine
estimation. In this paper fine time estimation is done using a
cross-correlation as the original algorithm does, but differ-
ent solutions are evaluated to cope with the problems of the
coarse estimation in the original algorithm. The perform-
ances of these alternatives are tested by simulation in multi-
path channels, at low signal to noise ratio and with carrier
frequency offset. Also, the computational cost is evaluated.

1. INTRODUCTION

IEEE 802.11a is a WLAN standard from IEEE [1] that
works in the 5 GHz and 2.4 GHz bands and achieves data
rates up to 54 Mbps. For the physical layer, Orthogonal Fre-
quency Division Multiplexing (OFDM) is used, since it al-
lows getting high bit rates in highly dispersive fading envi-
ronments. Data are transmitted in bursts, always preceded
by a preamble (Figure 1). This preamble consists of ten
identical short symbols (SS) of 16 samples and two identical
long symbols (LS) of 64 samples with a cyclic prefix (GI) of
32 samples. As it is shown in Figure 1, once signal detection
and automatic gain control (AGC) are completed (at sample
ni), fine and coarse time synchronization begin. The purpose
of the time synchronization is to find the starting-point of GI
(sample nGI), so channel estimation can be correctly done
using the long symbols, and a reference for the first OFDM
symbol is obtained.

Several time synchronization methods for OFDM sig-
nals can be found in the literature, some of them make use
of the preamble structure of the IEEE 802.11a/g, such as [2,
3, 4]. Among them, the algorithm proposed in [2] can
achieve a good performance with a moderate computational
cost. In this paper some modifications are introduced that
improve its performance and reduce its computational cost.

This paper is organized as follows. Section 2 describes
the time synchronization algorithm proposed in [2] and
comments on its main drawback. Section 3 presents three
modifications of the original algorithm to cope with the
problem commented in Section 2. In Section 4 the perform-
ance of the different algorithms is analyzed and, in Section 5

the computational cost of every algorithm is given. Finally,
in Section 6 conclusions are presented.

SS SS SS SS SS SS SS SS SS SS GI LS LS

AGC
signal detection ni nGI

fine and coarse
time synchronization

channel estimation

n1 ncoarse

Figure 1 – IEEE 802.11a/g preamble

2. TIME SYNCHRONIZATION ALGORITHM

In this section the time synchronization algorithm for the
IEEE 802.11a/g WLAN standard proposed in [2] is de-
scribed. This is divided in two parts: one for coarse time
estimation and another for fine time estimation. The per-
formance of the coarse estimation is evaluated and its main
drawback stated.

2.1 Fine Time Synchronization
Fine time synchronization tries finding the transition between
two SS’s (sample n1 in Figure 1), once AGC and signal de-
tection are accomplished. This task is achieved using a cross-
correlation between the received signal x(n) beginning at
sample ni and the pilot data SS(k):

 () () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅++= ∑∑

= =

∗

≤≤

Nreg

m kn
kSSkmnxn

0

15

01501 16maxarg . (1)

This gives a peak value every 16 samples (the length of
a SS), whose position indicates the starting point of each SS.
An average of Nreg blocks of 16 samples is made to reduce
distortion of peak positions due to channel noise. Parameter
Nreg is calculated by the coarse estimation stage.

2.2 Coarse Time Synchronization
Using a maximum likelihood (ML) algorithm similar to [5],
coarse time synchronization tries finding where the first
sample of GI (nGI) is. First, this metric is obtained:

() ()

() () ()[]∑

∑

=

=

∗

++++
+

−

−++⋅+=

15

0

22
22

2

15

0

16
2

16)(

kns

s

k
ML

knxknx

knxknxnf

σσ
σ

 (2)

where 2
sσ and 2

nσ are signal and noise power respectively.
As a result, a plateau, which falls abruptly when the guard
interval (GI) of the long training sequence begins, is ob-

©2007 EURASIP 560

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

tained. Next, the number of SS’s between signal detection
(sample ni) and the first sample of GI (nGI) is calculated, this
value is the parameter Nreg:

[]

() () ()[]∑
=

++++
+

=

⎥⎦
⎥

⎢⎣
⎢

⎭
⎬
⎫

⎩
⎨
⎧ <=

15

0

22
22

2,

,

16
2

)()(

16)(argmin

kns

s

ML
normML

normML
n

reg

knxknx

nfnf

ThrnfN

σσ
σ

 (3)

where Thr is a threshold value.
Once Nreg is known, the position of the first sample of GI

is calculated as:
 116 nNn regGI +⋅= (4)

2.3 Performance evaluation
This synchronization method has been tested and the optimal
threshold has been found. As a result, it is concluded that the
fine time algorithm works correctly, even if the number of
SS’s used in (1) is as low as 4.

However, we have observed that the main problem of
this synchronization method is the coarse time estimation.
Although this has a good performance when it begins to
work (instant ni) at samples in the middle of a SS (in [2] it is
assumed that AGC and signal detection are completed during
the third SS), some problems arise when it begins to work at
samples around the boundary of two consecutive SS’s. In that
case, the GI starting point (4) is often detected with an offset
of ±16 samples (see Figure 2), giving a synchronization fail-
ure as a result. In this paper, to improve the synchronization
success rate some modifications are proposed in the coarse
estimation algorithm, meanwhile the original fine time esti-
mation algorithm from [2] is maintained.

3. COARSE TIME ESTIMATION ALTERNATIVES

The problem commented in the previous section is due to the
rounding to the lowest integer operation that is performed in
(3), this is the cause of the ±16 samples time offset. The ob-
jective of (3) is to find where the transition between the last
SS and the GI occurs. In this section three alternatives to (3)
are evaluated, the first one is a modification of the original
algorithm, the second one is based on a new metric, and the
third one is obtained from the literature.

3.1 Alternative 1
Next we propose a way of circumvent the need of doing a
rounding to the lowest integer. First, a coarse estimation
(called ncoarse in Figure 1) of the beginning of GI is obtained:

 []
⎭
⎬
⎫

⎩
⎨
⎧ <= Thrnfn normML

n
coarse)(argmin ,

 (5)

Then the last transition point (n1+16, n1+32, n1+48,…) be-
fore ncoarse is found, since this will be the first sample of GI
(nGI).

Once the OFDM signal has been detected, the synchro-
nization algorithm begins at sample ni the next procedure:

-20 -15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Deviation (samples)

Pr
ob

ab
ili

ty

original
alter. 1
alter. 2
alter. 3

Figure 2 – Deviation with respect to the ideal initial sample

1) Metric (3) is calculated from ni and during 128
samples to include the abrupt change that occurs at
nGI. Then ncoarse is estimated using (5). And q is set
to 1.

2) The received signal is cross-correlated to obtain n1
using (1), with 1−= qN reg .

3) If coarsenqn >⋅+ 161 , then () 1611 ⋅−+= qnnGI ; if
not, then 1+= qq and step 2 is repeated.

At every iteration, the number of terms in the average
(Nreg) of (1) is incremented before n1 is re-calculated, so the
estimation of n1 becomes more and more accurate.

3.2 Alternative 2
Next we present a new method for coarse time estimation,
this makes use of a new metric and the iterative procedure
introduced in Alternative 1. The new metric is calculated as
follows:

 ()[]∑
=

⋅−−=
4

1

2
2 16)(

4
1)(

m
mnxnxnf . (6)

This calculates the squared difference between the actual SS
and the four previous SS’s, and finally these differences are
added. Therefore,)(2 nf will be around zero while samples
from SS’s are processed and it will grow abruptly when sam-
ples from GI start. To set a threshold to check if the abrupt
change happens, it is necessary to normalize the new metric
by the average input signal power:

 ()∑∑
==

++=
15

0

2
15

0
2_2)()(

kk
norm knxknfnf . (7)

Next, coarsen can be obtained as:

 []
⎭
⎬
⎫

⎩
⎨
⎧ <= Thrnfn norm

n
coarse)(argmin _2

, (8)

and, GIn can be calculated by means of the same procedure
as in Alternative 1.

3.3 Alternative 3
This algorithm is proposed in [3] for coarse time synchroni-
zation. It is based on the Neyman-Pearson detection ap-

©2007 EURASIP 561

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

proach [6] and this compares the probability that the re-
ceived signal belongs to the short training symbol (PSS)
with the probability that it belongs to the cyclic prefix of
the long symbol GI (PGI). These probabilities are only
evaluated at transitions points: qnnq ⋅+= 161 , with

q = 1, 2, 3… The first time that the next condition:
 ()() ()()

qqqq nnnn rBBBBrrGGGGr H
0

1
0

H
00

HH
0

1
0

H
00

H −−
> (9)

is met means that GIn has been found. In [3] it is shown that
(9) is equivalent to)()(qSSqGI nPnP > , where L is the esti-
mated number of paths of the multipath channel,

T
nnnn rrr][151 ++= Lr is a signal vector with 16 samples

from the received signal, and 0G and 0B are matrices of
dimension 16 x L:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+−++

+−+

+−−

−

+−

+−

+−

)16,16mod()16,14mod()16,15mod(

)16,2mod()16,mod()16,1mod(

)16,1mod()16,1mod()16,mod(

0

16131415

316012

2161501

11614150

0

Lnnn

Lnnn

Lnnn

L

L

L

L

SSSSSS

SSSSSS
SSSSSS

GIGIGIGI

SSGIGIGI
SSSSGIGI
SSSSSSGI

L

MOMM

L

L

L

MOMMM

L

L

L

B

G
 (10)

Once the OFDM signal has been detected, the synchro-
nization algorithm begins at sample ni the next procedure:

1) Set q = 1.
2) The received signal is cross-correlated to obtain n1

using (1) with 1−= qN reg .
3) If)()(qSSqGI nPnP > (with qnnq ⋅+= 161), then

qGI nn = ; if not, then 1+= qq and step 2 is re-
peated.

4. SIMULATION RESULTS

The original algorithm and the proposed alternatives have
been tested for BRAN channel model A, which represents a
typical office environment with an rms delay spread of
50 ns, and channel model B which represents an open office
environment with an rms delay spread of 100 ns [7]. The
performance results consider the optimal threshold for each
algorithm, and the optimal length channel (L) for Alterna-
tive 3. It is assumed that AGC and signal detection are
completed at any sample of the third SS, so ni is randomly
set following a uniform distribution in the range 32-47.
This assumption is the same as the one used in [2], as it was
commented above we have checked that this algorithm
works even if ni happens during the sixth SS.

The success rate of the time estimation has been meas-
ured under the following conditions: 104 test frames, each
one with a different realization of the multipath channel; car-
rier frequency offset (CFO) from 0 to 73% of the sub-carrier
spacing (this is the maximum value allowed in [1]); and addi-
tive white Gaussian noise with a SNR from 2dB to 18dB.

Figure 2 shows the deviation from the ideal initial sam-
ple (nGI) achieved with each algorithm. This has been meas-
ured with multipath channel A, 18dB of SNR and no CFO.
As it has been mentioned above, the original algorithm [2]
occasionally detects nGI with an offset of ±16 samples. In
contrast, the proposed alternatives do not have this problem,
and all of them achieve more or less the same deviation. All
the algorithms have the same MSE value in the deviation due
to the fact that all of them use the same fine time algorithm.
For multipath channel A the MSE value is around 0.65 sam-
ples, whereas the MSE value is around 1.55 for multipath
channel B.

2 4 6 8 10 12 14 16 18

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

Pr
ob

ab
ili

ty

original

alter.1

alter.2

alter.3

Figure 3 – Correct final synchronization. Channel A. CFO 0%

2 4 6 8 10 12 14 16 18

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

Pr
ob

ab
ili

ty original

alter.1

alter.2

alter.3

Figure 4 – Correct final synchronization. Channel B. CFO 0%

Figure 3 and Figure 4 show the probability of correct
time synchronization for multipath channel A and B, respec-
tively. No CFO is considered. In this paper it is considered
that a frame is correctly synchronized when deviation from
the ideal initial sample is between 0 and 4 samples, because a
deviation lower than 4 samples does not introduce any per-
formance loss [8].

Additionally, the effect of the CFO has been studied. The
fine time synchronization algorithm works perfectly with
CFO. Figure 5 and Figure 6 show the obtained results for a

©2007 EURASIP 562

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

CFO of 73% of sub-carrier spacing for channel A and chan-
nel B, respectively.

2 4 6 8 10 12 14 16 18

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

Pr
ob

ab
ili

ty

original

alter.1

alter.2

alter.3

Figure 5 – Correct final synchronization. Channel A. CFO 73%,
solid line CFO compensated, dashed line CFO uncompensated

2 4 6 8 10 12 14 16 18

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

Pr
ob

ab
ili

ty original

alter.1

alter.2

alter.3

Figure 6 – Correct final synchronization. Channel B. CFO 73%,
solid line CFO compensated, dashed line CFO uncompensated

On the one hand, the original algorithm and Alternative
1 have the same success rate with and without CFO. On the
other hand, the success rate at 2dB SNR is reduced by 4%
(channel A) or 8% (channel B) for Alternative 3. Finally, Al-
ternative 2 does not work with CFO higher than 30 kHz, so
CFO must be estimated and compensated before applying
this synchronization method as it is shown in the figures.

The CFO estimation can be obtained by doing an auto-
correlation as it is proposed in [9]:

 () ()16)(
1

0
++⋅+= ∑

−

=

∗ knxknxnz
K

k

 (11)

After that, the CFO (f̂) can be estimated as:

s

cfo

T
nz

f
162

)(ˆ
π

∠
= , (12)

where sT is the sampling period and cfon is the sample

where the estimated CFO is obtained, this instant must be

greater than Kin + . The average length (K) must be at least
of 64 samples to have a standard deviation of the estimated
CFO lower than 30 kHz. Apart from being necessary in
Alternative 2, the success rate of Alternative 3 can be im-
proved by compensating the CFO before applying the algo-
rithm.

In summary, if CFO is compensated, the best algorithms
are Alternative 2 and Alternative 3, although this last one has
a lower success rate for channels with higher delay spread
like channel model B.

5. COMPUTATIONAL COST

In this section the computational cost of every alternative
has been evaluated. Alternative 3 makes use of two 16 x 16
matrices () H

0
1

0
H
00 GGGG − and () H

0
1

0
H
00 BBBB − that can be

pre-calculated, but 544 complex products (i.e. 2176 real
products and 1088 real additions) and 510 complex addi-
tions (1020 real additions) are needed to compute (9). If the
algorithm for coarse estimation begins during the third SS,
condition in (9) is evaluated 7 times; this gives a total com-
plexity of 15232 real products and 14756 real additions.
Moreover, this algorithm has an important disadvantage:
the channel length L must be known a priori, that is, in a
practical system this must be estimated.

Alternative 2 makes use of a division in (7), this can be
avoided if condition in (8) is modified as follows:

 ()∑∑
==

+⋅<+
15

0

2
15

0
2)(

kk
knxThrknf . (11)

In that case the computational cost per input sample of
this alternative is: 1 moving average (MA), 1 complex addi-
tion and 1 squared modulus in (6), and 2 MA, 1 product by a
constant and 1 squared modulus in (11). Since each MA can
be done with 2 real additions, and each squared modulus
costs 2 real products and 1 real addition, this gives a com-
plexity of 5 real products and 10 real additions. Moreover, as
this algorithm does not work with CFO, it is necessary to
estimate and remove it from the SS’s before the coarse time
synchronization is carried out. The CFO compensation needs
1 complex product per sample, and then Alternative 2 has a
computational cost per input sample of 9 real products and
12 real additions.

Again, if the algorithm begins during the third SS this
means that (6) and (11) must be evaluated during 128 sam-
ples as it was commented in section 3.1. Therefore, the total
computational cost is 1152 real products and 1536 real addi-
tions. It must be stated that after time synchronization the
receiver must carry out channel estimation using the two long
symbols from the preamble. Before this, the CFO must be
removed; so, CFO always must be estimated, and for this
reason it has not been taken into account in the previous
computational complexity study.

Original algorithm and Alternative 1 make use of the
same metric (2), the difference between them is how the
coarse estimation is done. This metric has a higher computa-
tional cost than Alternative 2 because in (2) is computed 1
complex valued MA (4 real additions) and 1 real valued MA

©2007 EURASIP 563

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

(2 real additions), 2 squared modulus (4 real products and 2
real additions), 2 real scaling products one in (2) and another
to avoid the division, a complex valued autocorrelation (1
complex product), 2 real additions and a modulus operation
(it can be calculated with a CORDIC in vectoring mode, this
can be implemented with (Nbits + 2) · 3 additions [10], where
Nbits is the number of bit precision needed at the output of the
CORDIC, for a fixed point implementation without perform-
ance degradation a precision of 10 bits is necessary, then the
CORDIC would employ 36 additions). Then, original algo-
rithm and Alternative 1 have a computational cost per input
sample of 10 real products and 12 real additions (and 36 real
additions for a CORDIC of 10 bit precision), moreover it is
necessary to estimate the signal and noise power. Again if
this algorithm works during 128 samples, the total complex-
ity is: 1280 real products and 1536 real additions (and 4608
real additions for the CORDIC).

Table 1 shows the computational complexity per input
sample, and the total cost in brackets: Alternative 1 and 2 are
calculated during 128 samples, Alternative 3 is calculated at
7 samples.

 Alt. 1 Alt. 2 Alt. 3

Real products 10
(1280)

9
(1152)

2176
(15232)

Real addition 12 +36
(1536 + 4608)

12
(1536)

2108
(14756)

Other
estimate

22 , ns σσ
 estimate

L

Table 1 – Comparison of computational cost

6. CONCLUSIONS

In this work several algorithms have been studied to solve
the problem found in the coarse time estimation proposed in
[2]: the starting-point of GI can be detected with an offset
of ±16 samples if the synchronization process begins (once
AGC and signal detection are accomplished) in samples
around the boundary of two SS’s. All the studied alterna-
tives make use of the same fine time estimation algorithm
as in [2].

Simulation results show that Alternative 2 and Alterna-
tive 3 have the best probability of correct detection. As Alter-
native 3 has higher computational cost and its performance
decreases when the delay spread increases (like in channel
model B), it is concluded that the best solution is Alterna-
tive 2 (compared to Alternative 3 this solution reduces the
number of products in 92.4% and the number of additions in

89.6%). This solution needs the CFO to be estimated and
removed before applying the synchronization algorithm.

ACKNOWLEDGEMENT

This work was supported by FEDER, the Spanish Ministerio
de Educación y Ciencia under grants TEC2005-08406-C03-
01 and TEC2006-14204-C02-01.

REFERENCES

[1] IEEE standard 802.11a: Wireless LAN medium access
control (MAC) and physical layer (PHY) specifications:
high-speed physical layer in the 5 GHz band, December
1999.

[2] Sekchin Chang and B. Kelley, “Time synchronization
for OFDM-based WLAN systems” Electronics Letters
Vol.39, No.13, June 2003

[3] Yik-Chung, Kun-Wah Yip, Tung-Sang Ng, and Erchin
Serpedin, “Maximum-Likelihood symbol synchroniza-
tion for IEEE 802.11a WLANs in unknown frequency-
selective fading channels”, IEEE Trans. on wireless
communications, vol.4, no.6, 2005.

[4] E.G Larsson, G. Liu, J. Li, and G.B. Giannakis, "Joint
Symbol Timing and Channel Estimation for OFDM
Based WLANs", IEEE Commun. Letters, 2005, 5, (8),
pp. 325-327

[5] Beek, J.J., Sandell,M., and Börjesson, P.O.: “ML estima-
tion of time and frequency offset in OFDM system”,
IEEE Trans. Signal Process., 1997, 45, (7), pp. 1800-
1805.

[6] S. M. Kay, Fundamentals of Statistical Signal Process-
ing, Vol.2: Detection.Theory, New York: Prentice-Hall,
1998.

[7] J. Melbo and P. Schramm, “Channel models for
HIPERLAN/2 in different indoor scenarios’, 3ERI085B,
HIPERLAN/2 ETSI/BRAN contribution, 1998

[8] J. Heiskala, J. Terry. OFDM Wireless LANs: A theoreti-
cal and practical guide. SAMS Publishing, 2001.

[9] T.Schmidl, and D.Cox. “Robust Frequency and Timing
Synchronization for OFDM”. IEEE Trans. On Comm.
Vol 45, No. 12, December 1997.

[10] F. Angarita, T. Sansaloni, A. Pérez-Pascual, and J. Valls,
"Efficient FPGA implementation of CORDIC algorithm
for circular and linear coordinates", International Con-
ference in Field Programmable Logic and Applications
(FPL2005), Tampere, Finland, Ago. 2005

©2007 EURASIP 564

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

