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Abstract. Oversampled filter banks (OSFBs) have recently been
considered for channel coding since their redundancy introduced
into the transmitted signal permits more freedom in the design of
joint transmitter and receiver. Further specifically, they can be ex-
ploited to transmit over low noise subspaces or even mitigate disper-
siveness of the channel. In this paper we propose a joint precoding
and equalisation design using OSFBs, which find a compromise be-
tween transmitting over the low-noise subspace of channel noise’s
polyphase components, and the high-gain subspace of the channel’s
polyphase components. Polynomial building blocks are permitted
and the minimisation of the mean square error (MSE) at the re-
ceiver output is achieved. We describe the design, and highlight the
communalities and differences of this approach to existing methods.
Simulation results show the benefit of the proposed system design
compared to existing design approaches.

1. INTRODUCTION

In recent years, oversampled filter banks (OSFBs) have been
considered for channel coding applications, which aim to
harness the degrees of freedom (DOFs) due to the redun-
dancy released by oversampling to minimise the influence
of channel noise on the received signal. Labeau has shown
that the redundancy due to oversampling injected into the
transmission can be exploited to find that solution amongst
a manifold of reconstructing filter banks that projects onto
the low-noise subspace [4]. Further in [5] the receive filter
bank has been designed to minimise channel noise under the
only constraint of paraunitarity, which provides more DOFs
than [4]. The transmit filter bank is easily derived due to the
paraunitarity of the design. In [6], we have shown that this
can yield good results in a PLC scenario. However, these
methods are only suitable for non-dispersive channels or af-
ter equalisation.

For the mitigation of both channel dispersion and chan-
nel noise, filterbank based transmitter and receiver designs
that exploit redundancy have been investigated by Scaglione
et al. in a number of publications, see e.g. [1, 2], and Mer-
tins [3]. While these methods are more general than [4, 6],
they are block-based and significant design effort in terms
of DOFs is invested into inter-block interference (IBI) can-
cellation, particularly for low oversampling ratios. Further,
the design requires the number of polyphase components, or
block size, to be larger than the channel length in order for
the design to be viable in the case of [2] or converge in the
case of [3].

Therefore in this paper, we propose a novel OSFB de-
sign for precoding and equalisation which addresses both
channel noise and dispersion but is not restricted to block
transmission. Similar to [3], the precoder is set to minimise
the mean square error (MSE) made in estimating the trans-
mitted signal, while the extended Wiener solution provides
the design for the equaliser. However, a novel design based

on a recently proposed broadband eigenvalue decomposition
for polynomial matrices which enables us to admit poly-
nomial precoder and equalisers. The designed filter banks
find a compromise between transmitting over the low-noise
subspace of channel noise’s polyphase components, and the
high-gain subspace of the channel’s polyphase components.
Furthermore, we consider a waterfilling algorithm [7] to
maximise the capability of the precoder and equaliser design
for data transmission. Simulations are based on a PLC noise
model as reported in [11], and demonstrate that greater de-
sign freedom and enhanced performance, particularly for low
oversampling ratios, can be achieved.

The paper is organised as follows. The channel model
and general system setup is outlined in Sec. 2, while the
design of the proposed precoder and equalisation blocks is
briefly introduced in Sec. 3. Simulation results and a com-
parison to [3] is presented in Sec. 4.

2. CHANNEL MODEL AND SYSTEM SETUP

Fig. 1 shows a general set up of the proposed channel coding
system comprising of a precoder and an equaliser stage(Q is
the waterfilling component which will be introduced later).
In order to describe the overall system, it is advantageous to
represent the signals and systems in the form of decomposed
polyphase components [8]. Thus, in Fig. 1, the SISO chan-
nel transfer function C(z) is replaced by a pseudo-circulant
matrix C(z) comprising of K polyphase components of C(z)
as

C(z) =




C0(z) z−1CK−1(z) · · · z−1C1(z)
C1(z) C0(z) · · · z−1C2(z)

...
...

. . .
...

CK−1(z) z−1CK−2(z) · · · z−1C0(z)


 , (1)

where Ck(z) = ∑n c(nK + k)z−n. Alternatively, C(z) can be
written as a polynomial of matrices C(z) = ∑n
z−nCn. This description is reached by demultiplexing the
channel input and output into K polyphase components [3,
8]. Similarly, the channel noise, W (z) is decomposed into K
polyphase components. In the transmitter, N demultiplexed
polyphase input signal vector X(z) is passed through the pre-
coder H(z), while in the receiver the reconstructed signal
vector is obtained from the equaliser G(z) output. Obvi-
ously, oversampling implies N < K, i.e. the whole system
only rely on N subchannels for transmission. Also, the de-
sired property x̂(n) = x(n−n0) can be obtained in the noise-
free case if H(z) and G(z) are chosen such that the perfect
reconstruction (PR) condition

G(z)C(z)H(z) = z−n0+1IN×N (2)

holds.
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Figure 1: General model of the proposed OSFBs channel coding system.

3. PRECODING AND EQUALISATION DESIGN

The work in [2] is based on oversampled filter banks as pre-
coding and equalisation blocks, whereby inter-block inter-
ference (IBI) is eliminated by dedicating to this task the first
L DOFs for a channel of order L. As a result, the channel
matrix C(z) as well as the noise covariance matrix are no
longer dependent on z. Therefore, non-polynomial matri-
ces H and G can be found for the precoder and equaliser.
Mertins [3] suggested a Wiener solution, but then restricted
the precoder to a non-polynomial type in order to facilitate
the design. Although the design is expected to work for arbi-
trary channel orders, the number of polyphase components K
has to be larger than L in order to obtain a system with satis-
factory performance. Other filter bank based coders produce
precoders and equalisers of polynomial type to minimize the
impact of channel noise [4, 5, 6], but are not suitable for dis-
persive channels. Therefore, we want to focus on a design
method for noisy and dispersive channels that admits poly-
nomial precoders and equalisers.

In this section, we first describe the assumption of the
data and the applied noise type, and then we explain the pre-
coder and equaliser desgin step by step.

3.1 Data Assumption and Noise Description
The data process x[n] ◦—• X(z) is assumed to be white, zero-
mean, wide sense stationary with variance σ2

x , such that its
power spectral matrix, Rxx(z) •—◦ Rxx[τ] =
E

{
x[n]xH[n− τ]

}
, is given by Rxx(z) = σ2

x I. In contrast, we
assume that the noise may be colored and spectrally, spatially
correlated, which can be described via its power spectral ma-
trix Rww(z) as:

Rww(z) = ∑
m

Rww[m]z−m (3)

with
Rww[m] = E

{
w[n]wH[n+m]

}
. (4)

3.2 MSE Under Optimal Receive Filters
For any selected precoder H(z), and a given channel im-
pulse response c(n), the optimal MMSE receive filters can
be found by the Wiener solution [3] as:

G(z) = z−n0+1σ2
x

×[
I+σ2

x H̃(z)C̃(z)R−1
ww(z)C(z)H(z)

]−1

× H̃(z)C̃(z)R−1
ww(z) , (5)

where H̃(z) =HH(z−1) denotes the parahermitian operation.
If G(z) is selected as in (5), the MSE is then given by the
trace of the power spectral matrix Ree(m) = E{e[n]eH [n +
m]} of the error e(n) ◦—• E(z) = X(z)− X̂(z),

Ree[m] ◦—•Ree(z) =

σ2
x
[
I+σ 2

x H̃(z)C̃(z)R−1
ww(z)C(z)H(z)

]−1
(6)

The challenge is now to design the precoder H(z) such that
tr{Ree[m]}|m=0 is minimised.

3.3 Precoder and Equaliser Design
Obviously, minimising tr{Ree[m]}|m=0 can be accomp-
lished by maximising the term

H̃(z)C̃(z)R−1
ww(z)C(z)H(z) (7)

in (6). Our proposed design in this paper is based on a broad-
band eigenvalue decomposition (BEVD) algorithm [9, 10],
which can factorise the middle term C̃(z)R−1

ww(z)C(z), such
that

C̃(z)R−1
ww(z)C(z) = U(z)Γ(z)Ũ(z) (8)

where U(z) is paraunitary, i.e. lossless with U(z)Ũ(z) = I.
The matrix Γ(z) ∈ CK×K should be diagonal,

Γ(z) = diag{Γ0(z),Γ1(z), · · ·ΓK−1(z)} (9)

and spectrally majorised with Γ0(e jΩ) ≥ Γ1(e jΩ) ≥ ·· · ≥
ΓK−1(e jΩ) ∀Ω. This decomposition is also called strong
decorrelation. Now, the term we want to maximise becomes

H̃(z)U(z)Γ(z)Ũ(z)H(z) . (10)

By further denoting the columns of the paraunitary matrix
U(z) as

U(z) = [U0(z) U1(z) · · · UK−1(z)] ∈ CK×K(z) , (11)

we can obviously extract the precoder H(z) from U(z) to
select the higher N elements on the main diagonal of Γ(z),

H(z) =
[
U0(z) U1(z) · · · UN−1(z)

] ∈ CK×N(z) ,
(12)

whereby the polyphase matrix H(z) defines an oversampled
filter bank with K channels decimated by N < K. Note that
due to H̃(z)U(z) = [IN 0N×K−N ] the presence of the only N
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strongest eigenmodes ensure that the MSE tr{Ree[m]}|m=0
is minimised.

Further to the upper design, it needs to be pointed out
that the inversion of the power spectral matrix Rww(z) is
also achieved from BEVD decomposition. Since the parau-
nitary property of U(z), it is straightforward that Rww(z) =
Uww(z)Λww(z)Ũww(z) leads to

R−1
ww(z) = Uww(z)Λ−1

ww(z)Ũww(z) , (13)

which is considerably easier than the inversion afforded via
the Smith-MacMillan decomposition [8].

3.4 Power Allocation Design
According to the above description, it is easy to understand
the performance of each selected subchannel that system re-
lies on is different, i.e. sequenced by the SNR value. There-
fore, it is unfair to allocate the same power for all the sub-
channels from the capacity maximising point of view. To
solve this problem, we simply introduce a waterfilling com-
ponent according to [7] into our design.

Assuming that {λ1, . . . ,λN > 0} corresponds to the first
N elements of the zero-lag slice of Λ(z), a waterfilling algo-
rithm can be applied to pour the total power into each sub-
channel with the amount of {q1, . . . ,qN}. Then, the power
allocation matrix before precoder can be formed as

Q = diag [q1, q2, . . . ,qN ] , (14)

which can be seen from Fig. 1.
As far as the equaliser part is concerned, G(z) can be

constructed from equation (5) as long as H(z) in (5) equals
to H(z) in (12) times Q in (14).

4. SIMULATIONS AND RESULTS

4.1 Power Line Noise Model
Power line communication (PLC) environment is rather un-
favorable, and subject to highly correlated additive Gaus-
sian noise, which can be modeled as [11] Sn( f ) = a +
b| f |c dBm/Hz, where a = 0,b = 38.75,c = −0.72 are
adapted corresponding to a worst case scenario described in
[11].

4.2 BER Performance Comparison and System Estima-
tion Error Discussion
By introducing the power line noise, in the following we try
to compare the performance between our proposed design
and Mertins’ method. Fig. 2 shows the BER comparison be-
tween our OSFB MMSE design and Mertins’ method under
a rather severely dispersive channel with its impulse response
as: C(z) = 1+(0.8+0.9 j)z−1 +0.3z−2, whereby N = 6 and
K = 10 are selected. In both method, total transmit power
is set to be identical for fair. From the figure, we can view
that although K is much larger, even K−N is larger than the
channel order, Mertins’ method still can not perform well due
to the highly correlated noise, while our method can achieve
better BER performance and prove working well. In the later
simulation described in 4.3, we will further explore the mer-
its of our proposed design.

Fig. 3 characterises the polynomial mean square error
matrix Ree(z) in our method for SNR = 13dB. It clearly
shows us the error caused in each subchannel increases along
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Figure 2: SNR BER comparison between our proposed
OSFB MMSE design and Mertins’ for channel=[1 .8+j*.9 .3] with
PLC noise, K=10,N=6.
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Figure 3: (a) Main diagonal elements of the system estima-
tion error Ree(z). (b) Frequency response of each subchannel
estimation error Ree(z).

with the subchannel number. This could also motivate us to
use different modulation techniques in each subchannel so
that the total throughput is increased while the affordable er-
ror rate remains.

4.3 FB Magnitude Responses
In order to provide a clear demonstration of the selection of
each subband filters and their relations to the noise and chan-
nel, the following simulations try to show the magnitude re-
sponses of the selected subchannel filters according to the
given channel and noise. For simplicity, both the channel
and noise are assumed to be lowpass which occupies 50%
and 25% of the total bandwidth, respectively and the order
are set to be both 31.

Since both the channel and noise filter order are 31, we
have to set K = 32 for Mertins’ method to converge and
N = 8 for a ratio of N/K = 1/4 to gain the selected sub-
channel. Meanwhile, for our design, K = 8,N = 2 are used
for the same ratio. In Fig. 4 and Fig. 5, (a) and (b) plot the
magnitude response of the noise and channel in the system
respectively, while (c) in both figure shows the magnitude
responses of N selected subchannel filters in the precoder.

As we can see, due to the permission of utilising poly-
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Figure 4: Magnitude responses of (a) lowpass noise (b) lowpass
channel (c) N selected subband filters of the precoder for Mertins’
design. K = 32,N = 8 filters.

nomial matrix in the precoder, although smaller polyphase
component are selected (even smaller than the channel or-
der), our method still present a better selectivity compared
to Mertins’. Also, accoding to further simulations, Mertins’
disign gives exact solution only when K−N is larger than the
channel order and preformance decreases dramatically when
K−N becomes smaller while our method remains similar.

5. CONCLUSIONS

We have proposed an oversampled filter bank design for
a polynomial precoding and equalisation system, which is
based on an extended Wiener filter solution presented by
[mertins03a]. Different from previous realisations, the pro-
posed design admits true polynomial matrices for precoder
and equaliser. The precoder is designed to minimise the
mean square error made in estimating the transmitted signal,
while the extended Wiener solution provides the design for
the equaliser. Capacity maximising problem has been con-
sidered as well by the waterfilling algorithm. The proposed
system minimises the influence from both channel dispersion
and channel noise, and compares very favourably to work re-
ported in the literature based on a non-polynomial precoding
mechanism.
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