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ABSTRACT

In this paper we propose a filter bank based design for jointly
optimum precoding and block decision feedback equalisa-
tion. Precoding and equalisation using filter banks typically
is block based, and redundancy needs to be injected into the
transmission in order to avoid inter-block interference (IBI).
We target the case where spectral efficiency demands low
levels of redundancy such that IBI remains. For our pro-
posed system, we combine two recently reported idea — one
on equalisation in the presence of IBI, and one on jointly
optimal design of the overall system in the absence of IBI.
The result is a jointly optimal design in terms of both zero-
forcing and minimum mean square error that can operate in
the presence of IBI, i.e. at low levels of redundancy and high
spectral efficiency. We show by means of simulation results,
that the proposed system can provide significantly better per-
formance than a benchmark design.

1. INTRODUCTION

Block transmission has been shown to be a very effective
method to combat inter-symbols interference (ISI) caused by
finite impulse response (FIR) frequency selective channels.
However, in order to eliminate inter-block interference (IBI),
block transmission systems always require an amount of re-
dundancy in form of either cyclic prefix or zero padded in-
tervals whose length must be equal or larger than the channel
order. This requirement makes it difficult for block transmis-
sion systems to be applied to channels with a long impulse
response since a long guard interval will decrease the band-
width efficiency.

An approach to cope with long channel impulse re-
sponses (CIR) is channel shortening [2], where a time do-
main equaliser, rather than inverting the channel, reducesthe
effective channel length to a very short support. The short-
ened support permits the deployment of complex detectors
such as the Viterbi algorithm, although part of the channel
energy (and therefore capacity) is lost [2]. The problem of
long CIRs has also been approached in [3], where a Wiener
filter is employed as equaliser and a precoder minimises the
minimum mean square error (MMSE) of the system. In [5]
Stamouliset. al. have proposed a block decision feedback
equaliser (BDFE) for the case where IBI is present, e.g. if
the redundancy in the transmission does not allow a guard
interval that is longer than the CIR order. These BDFEs
can work well even with small transmit redundancy, how-
ever the precoder in [5] has been chosen independently from
the equaliser and the problem of joint optimisation of pre-
coder and equaliser is still open. In [6], Xuet. al.have pro-
posed jointly optimal designs for precoder and BDFE in the

F )zH

[i]v

( )zW

[i]s

[i]y [i]z [i]s~

[i]r

[i]r

( )zB

( )zG

[i]

N

(a)

(b)
s

N

N

P P

P

(

Figure 1: System model comprising of (a) precoder, channel
and (b) equaliser.

absence of IBI, which can achieve much better performance
than linear designs in [4] but still require sufficient redun-
dancy to suppress IBI.

Combining the designs in [5] and [6] we propose in this
paper a precoding and BDFE scheme which can work in the
case of insufficient redundancy to suppress IBI. Due to the
joint optimisation of the precoder and equaliser, the proposed
design can perform better than the designs in [5] even when
the latter use optimal linear zero-forcing (ZF) or minimum
mean-square error (MMSE) precoders proposed in [4].

The paper is organised as follows. In Sec. 2, the system
model and its components are described. Sec. 3 addresses the
proposed jointly optimal precoder and BDFE design, while
Sec. 4 considers the designs of BDFEs as proposed in [5]
as well as the optimal linear precoders proposed in [4]. The
combinations of the latter two designs form the benchmark
for a numerical example provided in Sec. 5, while conclu-
sions are drawn in Sec. 6.

In our notation, we use lower- and uppercase boldface
font for vector and matrix quantities, respectively. The oper-
atorE{·} denotes expectation,(·)H the Hermitian transpose,
(·)T the transpose operation and(·)† pseudo-inversion.

2. SYSTEM MODEL

We consider a block transmission system over an FIR chan-
nel as illustrated in Fig. 1. The channel is assumed to be
stationary with CIR coefficient[h[0], . . . ,h[L]], whereL is the
channel order. With the input symbol stream,s[n], and the
sampled version of received signal,r[n], we define the in-
put symbol blocks ass[i] = [s[iN], . . . ,s[iN + N− 1]]T , the
symbol blocks at the receiver input asr[i] = [r[iP], . . . , r[iP+
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P−1]]T , the symbol blocks at the input of feed-forward filter
bank asy[i] = [y[iP], . . . ,y[iP + P−1]]T , the symbol blocks
before the decision device as ˜s[i] = [s̃[iN], . . . , s̃[iN+N−1]]T ,
and the output symbol blocks as ˆs[i] = [ŝ[iN], . . . , ŝ[iN +N−
1]]T . Together withx[i], the blocks of noise samples are de-
fined asv[i] = [v[iP], . . . ,v[iP+P−1]]T.

The input symbol blockss[i] are mapped into transmitted
blocks of sizeP by the precoderF ∈ CP×N, which has the
following structure

F =

[

F0
0

]

, (1)

whereF0 is anM×N matrix,P≥ M ≥ N, corresponding to
the optimal precoder proposed in [6]. The form ofF in (1)
shows that redundancy in the form ofP−M zeros is inserted
into a transmitted block. IfP−M < L, this redundancy helps
to reduce IBI but cannot entirely eliminate it.

The channel is given by a polynomial pseudo-circulant
matrix H(z) = ∑∞

n=0Hnz−n. WhenP > L, the polynomial
order ofH(z) is one, and the symbol blocksy[i] at the input
of the feed-forward filter bank are given by

y[i] = H0Fs[i]+H1Fs[i −1]−G1ŝ[i −1]+v[i] (2)

whereH0 andH1 areP×P matrices,

H0=


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


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h[0] 0 0 · · · 0
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. . .

. . .
...

...
. . .

. . . 0
0 · · · h[L] · · · h[0]
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









, (3)

H1=










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





0 · · · 0 h[L] · · · h[1]
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. . . 0
...

...
...

. . .
. . . h[L]

...
. . . 0

...
...

...
0 · · · · · · · · · · · · 0
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
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




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

. (4)

For the caseP > L, the first feedback filter bankG(z) =
∑∞

n=1Gnz−n suffices to be of non-polynomial form and re-
moves the remaining IBI from the received data stream by
settingG1 = H1F. Assuming that the past decisions are cor-
rect, we can re-write (2) as

y[i] = H0Fs[i]+v[i] = HMF0s[i]+v[i] , (5)

whereHM contains the firstM columns ofH0, and obtain

s̃[i] = W0HMF0s[i]+W0v[i]−B0ŝ[i] . (6)

The feed-forward filter is initially setW(z) = W0. Simi-
larly, the inner feedback filter bankB(z) = B0 is here ini-
tially set to non-polynomial form and aims to cancel infra-
block ISI. The feedback filter bankB0 works such that the
symbols in each block ˜s[i] are detected sequentially, start-
ing from theNth symbol, whereby the detected symbols are
weighted by the feedback filter bank and removed fromz[i]
prior to the detection of the next symbol [5, 6].

With the assumption that the past decisions are correct,
the error between the symbols at the input of the decision
device,s̃[i], and the input symbols,s[i], is

e[i] = s̃[i]− s[i] = (W0HMF0−B0− I)s[i]+W0v[i]. (7)

The covariance matrix of the error,Ree = E{e[i]eH[i]}, is
given by

Ree = (W0HMF0−B0− I)(W0HMF0−B0− I)H +

+W0RvvW
H
0 , (8)

where the input signals[i] is assumed to be uncorrelated with
unit variance, and the noise covariance matrix is given by
Rvv.

3. JOINT PRECODING AND BDFE WITH LOW
REDUNDANCY

After the remaining IBI has been removed by the first feed-
back loop, we apply the design of joint optimal precoder and
the BDFE proposed in [6] to remove intra-block ISI. With (2)
being exact for the non-IBI case, and together withHM, we
can now derive the precoder matrixF0 as well as the feed-
forward and feedback matricesW0 andB0, such that the
system can achieve its minimised lower MSE bound.

3.1 ZF Joint Optimal Precoding and BDFE

The design problem for an MSE precoder and BDFE
equaliser that is jointly optimal in the zero-forcing (ZF) sense
can be stated as [6]

min
F0,W0,B0

trace(Ree)

subject to trace(F0F
H
0 ) = P0

W0HMF0 = B0 + I

B0 is strictly upper triangular,

whereP0 is the transmit power.
Considering the following eigenvalue decomposition

(EVD)
HH

MR−1
vv HM = VΛVH , (9)

we denote the firstN columns ofV asVN, the upper left
N×N block of the diagonal matrixΛ holding the eigenvalues
λi , i = 0· · ·(N− 1), asΛN, and letΓ =

√
ΛN. Based on

the geometric mean decomposition [1], we can find a unitary
matrixΘ which satisfies the condition

ΓΘ = UR , (10)

whereU is a unitary matrix andR is an upper-triangular
matrix with equal diagonal elements identical to the geomet-
ric mean of the eigenvalues

√
λi of Γ. The lower MSE bound

can be minimised to the value of(N/P0)(∏N
i=1 λi)

−1/N by ap-
propriate power control, which results in an optimal precoder
matrix of the form

F0 =
√

P0/NVNΘ . (11)

The feedback and feedforward matrices are then given by

B0 =

(

N

∏
i=1

λi

)− 1
2N

R− I (12)

W0 = (B0 + I)(HMF0)
† . (13)
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3.2 MMSE Joint Optimal Precoding and BDFE

The MSE precoder and BDFE equaliser are required to fulfill
the following design problem for the case of joint optimality
in the MMSE sense [6]:

min
F0,W0,B0

trace(Ree)

subject to trace(F0F
H
0 ) = P0

W0 = (B0 + I)RsyR
−1
yy

B0 is strictly upper triangular.

where

Rsy = (HMF0)
H (14)

Ryy = (HMF0)(HMF0)
H +Rvv . (15)

According to [6], the minimisation of the lower MSE bound
will maximise the mutual information between transmitter
and receiver for Gaussian input. Therefore from the EVD
in (9), a water-filling algorithm with a single water level is
applied toΛ in order to obtain a(q×q) diagonal matrixΦ
with

|φii |2 =
P0 + ∑q

j=1
1
λ j

q
− 1

λi
, (16)

wherebyq = min{N̄,N}, N̄ is the maximum integer satisfy-
ing 1/λN̄ < (P0 + ∑N̄

j=1 λ−1
j )/N̄.

From Φ, we constructΦ
′
= [Φ 0q×(N−q)] and thus

the optimal precoder that helps to minimise the MSE lower
bound takes the form

F0 = VqΦ
′
Θ (17)

where matrixVq contains the first columns ofV andΘ is
a unitary matrix satisfying the geometric mean decomposi-
tion [1]

(

IN +Φ
′TΛqΦ

′)1/2
Θ = UR (18)

wherebyΛq is the upper leftq× q block of Λ, U is a uni-
tary andR an upper-triangular matrix with equal diagonal
elements. The feedback and feedforward matrices that help
to achieve the minimised MSE lower bound are given by

B0 = R− I (19)

W0 = σeRRsyR
−1
yy (20)

where

σ2
e = qq/N(P0 +

q

∑
j=1

λ−1
j )−q/N

q

∏
j=1

λ−1/N
j . (21)

4. EXISTING BDFE SYSTEMS WITH OPTIMAL
LINEAR PRECODING

A BDFE which can work in the presence of remaining IBI
has been proposed by Stamouliset. al. in [5], which is re-
ferred to as IBI-BDFE and classified into zero-forcing (ZF-)
IBI-BDFE and MMSE-IBI-BDFE. On the transmitter side, a
precoder can be operated; below we utilise (locally) optimal
ZF and MMSE linear precoders as proposed in [4], which are
similar to those used by [5] except for an additional power
constraint in order to be compatible with our approach de-
veloped in Sec. 3.

4.1 ZF-IBI-BDFE

The ZF-IBI-BDFE system in [5] has a structure similar to
the one in Fig. 1(b), where a first feedback loop with a fil-
ter bankG aims to cancel IBI. The feed-forward and feed-
back filter banks are designed to satisfy the ZF require-
ment W0H0F = B0 + I and the noise-whitening require-
mentW0RvvW

H
0 = Σ, whereΣ is diagonal andB0 upper-

triangular in order to permit sequential detection. Based on
the Cholesky decomposition

(H0F)HR−1
vv (H0F) = AHΣA , (22)

whereA is upper triangular with a unit diagonal, we have [5]

B0 = A− I (23)

W0 = Σ−1A−H(H0F)HR−1
vv . (24)

4.2 MMSE-IBI-BDFE

Instead of using a feedback loop to remove ISI, the MMSE-
IBI-BDFE system setsG(z)= 0, but has more complex feed-
forward and feedback filter banksW(z) andB(z) to combat
ISI. With P≥ L, the feed-forward filter bank is in [5] set to
have three tapsW−1, W0, W1 and the feedback filter bank
two taps,B0 andB1. Equation (2) now is replaced by

y(i) = H0Fs(i)+H1Fs(i −1)+v(i) . (25)

Assuming the input signal is white with unit variance, we
define the following matrices

S =

[

H0F H1F 0
0 H0F H1F
0 0 H0F

]

(26)

Rv̄v̄ =

[

Rvv 0 0
0 Rvv 0

0 0 Rvv+H1F(H1F)H

]

(27)

Rȳȳ = SSH +Rv̄v̄ . (28)

The tap weights of the feed-forward and feedback filter banks
of the IBI-MMSE-BDFE are given by [5]

[W−1 W0 W1] = [0N×N Q22 Q23]S
HR−1

ȳȳ (29)

B0 = Q22− I (30)
B1 = Q23 (31)

whereQ22,Q23 are sub-matrices of the matrixQ∈C(3N×3N)

which is derived from the following Cholesky decomposition

I+SHR−1
v̄v̄ S = QHΣQ (32)

and

Q =

[

Q11 Q12 Q13
0N×N Q22 Q23
0N×N 0N×N Q33

]

. (33)

4.3 ZF Optimal Linear Precoder

A ZF optimal linear precoder has been proposed in [4], which
is designed in conjunction with a linear equaliser such that
the signal-to-noise ratio at the receiver output is maximised.
Linear equalisation is however only viable in the absence of
IBI, hence we replace the linear equaliser and combine the
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precoder with the ZF-IBI-BDFE to form a benchmarker for
the ZF case. The precoder design is accomplished via the
EVD in (9), whereby the ZF linear precoder is given by [4]
F0,ZF = VNΦ, whereΦ is a N×N diagonal matrix with
on-diagonal elements|φii |2 =

(

P0/∑k λ−1
k

)

λ−1
i .

4.4 MMSE Optimal Linear Precoder

Similar to the ZF linear precoder, the MMSE linear precoder
proposed in [4] is meant to operate with a linear equaliser
in the absence of IBI, but here is compined as a locally
optimised precoder with the MMSE-IBI-BDFE of Sec. 4.2.
From the EVD in (9), the MMSE precoder is given by [4]
F0,MMSE = VNΦ where the on-diagonal elements of the di-
agonalN×N matrixΦ are

|φii |2 = max

(

P0 + ∑M̄
k=1 λ−1

k

∑M̄
k=1 λ−1/2

k

λ−1/2
i −λ−1

i , 0

)

(34)

with M̄ the number of|φii |2 > 0.

5. SIMULATION AND RESULT

In order to assess and compare the performance of the pro-
posed design, we consider a channel of orderL = 5 with co-
efficients drawn from a complex Gaussian distribution with
zero mean and unit variance. With a transmit block length of
P = 18, the input block length ofN = M = 16 admits a very
limited amount of redundancy that is insufficient to permit
the suppression of IBI by design of the precoder/equalisation
system. The transmit power is constrained toP0 = 10.

The results in terms of BER performance for QPSK
transmision over the proposed jointly optimal system com-
prising a linear precoder and a BDFE for the ZF and MMSE
case are shown in Fig. 2, averaged over 50 randomised chan-
nel realisations. Jointly optimised linear precoding and linear
equalisation is unsuitable, since linear equalisation such as
in [4] offers no capability to combat IBI. Therefore, we have
considered the two composite schemes outlined in Sec. 4 as
a benchmark:
1. optimal ZF linear precoding [4] combined with ZF-IBI-

BDFE [5], and
2. optimal MMSE linear precoding [4] combined MMSE-

IBI-BDFE [5].
Although ZF and MMSE precoders are referred to as opti-
mal, these are locally, i.e. with view of the transmitter only,
optimised components. Considering the benchmark results
in Fig. 2, it is evident that the proposed design can achieve
a considerably lower BER performance than the benchmark
systems.

6. CONCLUSION

In this paper, we have proposed a design which can work
with low levels of redundancy where linear block transmis-
sion schemes such as in [4] will suffer from inter-block inter-
ference. The proposed approach utilises a non-linear block
decision feedback equaliser suggested in [5]. We have used
this receiver structure to create a jointly optimal design of
both precoder and BDFE, overcoming the required absence
of IBI in previous work [6].

Simulation results have demonstrated the advantage of
the system in terms of BER when compared to a design akin

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
E

R

 

 

Proposed ZF joint optimal with IBI
ZF precoder with ZF−IBI−BDFE
Proposed MMSE joint optimal with IBI
MMSE precoder with MMSE−IBI−BDFE

Figure 2: BER performance of the proposed IBI joint precod-
ing and BDFE equalisation designs and benchmark designs.

to [5] where precoder and equaliser are locally optimised at
the transmitter and receiver.
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