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ABSTRACT

Clustering techniques for equalization have been pro-
posed by a number of authors in the last decade. However,
most of these approaches focus only on time-invariant single-
input single-output (SISO) channels. In this paper we con-
sider the case of fast time-varying multiple-input multiple-
output (MIMO) channels. The varying nature of the mixing
matrix poses new problems that cannot be solved by conven-
tional clustering techniques. By introducing the time scale
into the clustering process we are able to untangle the clus-
ters, which in this way behave like intertwined threads. Then,
a spectral clustering algorithm is applied. Finally, the iden-
tified clusters are assigned to the transmitted symbols using
only a few pilots. The geometry of the transmitted constel-
lation is exploited within the spectral clustering algorithm in
order to reduce the number of clusters. As shown in the pa-
per, the proposed procedure saves a considerable amount of
pilot symbols in comparison to other recently proposed tech-
niques.

1. INTRODUCTION

In recent years, multiple-input multiple-output (MIMO)
wireless communication technology has gained considerable
attention due to its potential to significantly increase spectral
efficiency compared to traditional single-input single-output
(SISO) technology. A number of computationally efficient
algorithms for reliable symbol detection in time-invariant
flat-fading MIMO systems have been developed, such as the
V-BLAST architecture [1].

A direct application of these algorithms to time-varying
channels is difficult, however, due to the need of perfect
channel state information at the receiver side. A number
of adaptive algorithms have been proposed to resolve this
issue, such as an adaptive receiver based on the V-BLAST
algorithm with a generalized decision feedback equalizer
(GDFE) [2], a numerically more robust version of this al-
gorithm [3], and a channel tracking algorithm based on
decision-directed recursive least squares[4]. All of these are
supervisedequalization algorithms, requiring an initializa-
tion phase in which a number of pilot symbol slots are sent.

An approach forblind equalization in communication
problems can be based on clustering techniques, which have
mainly been applied in time-invariant SISO systems, using
for instance radial basis function networks [5] or a cluster-
based MLSE equalizer [6]. Some of these algorithms main-
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tain their performance under slowly time-varying channels.
Extensions to MIMO systems have also been proposed [7, 8].

Most algorithms for equalization of fast time-varying
channels are supervised adaptive algorithms. However,
thanks to the recently proposed advances in the field of ma-
chine learning, some efficient clustering techniques can also
be extended to tackle this problem. In particular, it appears
that the non-convex clustering capabilities of the recently
proposed spectral clustering technique [9] can be applied to
this end.

The main contributions of this work are twofold. First,
it is shown that by incorporating the temporal variable in
the clustering process, it is possible to untangle the differ-
ent clusters representing different input symbol slots. The
major limitation of the method is that the number of clus-
ters increases exponentially as a function of the number of
transmitting antennas,Nt . To relax this limitation, the sec-
ond contribution of this paper is to exploit the geometry of
the transmitted constellation within the spectral clustering
algorithm in order to reduce the number of clusters. Once
these different clusters have been identified, a simple decod-
ing process is applied to relate each cluster with a symbol
slot. It is shown that this can be done by sending as few as
Nt pilot symbol slots.

This paper organized as follows: In Section 2 a detailed
formulation of the problem is given. In Section 3 spectral
clustering is introduced, followed by a description of how
it can be applied directly to this equalization problem. Its
performance can then be enhanced by exploiting the constel-
lation’s geometry, as presented in Section 4, and in Section
5 a decoding stage concludes the algorithm. Test results and
comparisons with the GDFE algorithm are given in Section
6, followed by the conclusions of this work in Section 7.

2. PROBLEM FORMULATION

MIMO systems are used in wireless communications to en-
hance signal diversity, spectral efficiency, or both. In a typ-
ical MIMO flat-fading system withNt transmit andNr re-
ceive antennas, theNr × 1 received vectorx[n] at timen is
expressed as

x[n] = H[n]d[n]+ v[n] (1)

whereH[n] is the Nr × Nt channel matrix whose elements
represent independent flat-fading SISO channels,d[n] con-
tains theNt (in general, complex) symbols transmitted by the
Nt antennas at timen, andv[n] represents both spatially and
temporally white complex zero-mean Gaussian noise.

In MIMO systems withblock fadingchannels, variations
of the channel during the transmission of one block of sym-
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Fig. 1. (a) and (b): Scatter plots of the data received by the
two antennas of a 2×2 BPSK MIMO system with fast time-
varying channels. The points corresponding to the symbols
[+1,+1]T and[−1,−1]T are represented by circles and the
points corresponding to[+1,−1]T and [−1,+1]T by black
dots, emphasizing the symmetry of the used constellation.
Note that no such information is available at receiver side.

bols are so small that they can be ignored. Hence the channel
matrix H[n] = H is considered constant during transmission
of one block of symbols. This is not the case for MIMO
systems withfast time-varyingchannels, where the channel
matrix changes from symbol to symbol due to the Doppler
spread caused by the movement of the transmitter and/or re-
ceiver. In time-varying MIMO systems, depending on the
Doppler spread, the channel matricesH[n] are temporally
correlated. The variations can be modeled for instance by the
Clarke-Gans model [10] which states that if a verticalλ/4
antenna with uniform power distribution is used to transmit
a single tone, the received spectrum is

SEz( f ) =
1.5

π fm

√

1−
(

f− fc
fm

)2
, (2)

where fc and fm are the carrier frequency and the maximum
Doppler shift, respectively.

The proposed method aims to estimate the symbolsd[n]
given the received data pointsx[n]. This problem is illus-
trated in Fig. 1, which shows typical scatter plots of the
complex datax1[n] andx2[n] received by the two antennas in
a time-varying 2×2 MIMO system with binary phase-shift
keying (BPSK) modulation, for which the basic constellation
points ared∈ {+1,−1}. Classical clustering algorithms that
operate directly on the data of these scatter plots will faildue
to overlapping of the clusters. In the next section we pro-
pose a solution to these problems that combines a spectral
clustering approach with the incorporation of the temporal
dimension into the clustering process.

3. CLUSTERING FOR TIME-VARYING CHANNELS

3.1 Spectral clustering

Spectral clustering [9] is a recently proposed successful
method rooted in graph theory [11], capable of clustering
data based on point-to-point similarities. For most problems,
“similarity” is measured as the distance between data points,
defining clusters as connected zones of points and making it
possible to easily cluster non-convex data sets, as illustrated
by Fig. 2.

The similarity between two pointsx[i] andx[ j] is mea-

(a) (b)

Fig. 2. (a) Two sets of intertwined data points, difficult or im-
possible to cluster with conventional clustering algorithms.
(b) Spectral clustering easily divides the points in two sepa-
rate groups, based on the principle that two points should be
in the same group if they are close to each other.

sured through a kernel functionκ(.) such as

κ(x[i],x[ j]) = exp

(

−
d2(x[i],x[ j])

σ2

)

(3)

whered(x[i],x[ j]) is some distance measure between points
x[i] andx[ j] andσ is the kernel size. This kernel function is
almost 1 for points that are close to each other, and lowers as
the distance rises.

Given a set ofN points{x[1],x[2], . . . ,x[N]}, a similarity
matrix (also called “affinity” orkernelmatrix) can be defined
asAi j = κ(x[i],x[ j]). Clustering is performed by analyzing
the spectrum of that matrix. One of the most successful spec-
tral clustering algorithms is the Ng-Jordan-Weiss (NJW) al-
gorithm, introduced in [9]. It can be summarized as follows:

1. Calculate the affinity matrix A using (3), and setAii = 0
for i = 1, . . . ,N.

2. ObtainL = D−1/2AD−1/2, whereD is a diagonal matrix
with Dii = ∑N

j=1Ai j . This normalization will assure that
all clusters have more or less equal size.

3. Form the matrixV = [v1,v2, . . . ,vk] wherev1,v2, . . . ,vk
are thek largest eigenvectors ofL andk is the number of
subsets to retrieve.

4. Treat the rows ofV as points inRk, and normalize them
to unit length. These points correspond to the original
pointsx[i] but form compact clusters now. Cluster them
with an algorithm such as k-means.

5. Assign the original pointx[i] to cluster j if and only if
row i of the matrixV was assigned to clusterj.

3.2 Fine-tuning Spectral Clustering

The choice of the kernel sizeσ in (3) has a high impact on
the clustering quality. It is a measure of when two points are
considered similar, and should be of the same order of the
distance between similar points. Some rules of thumb have
been proposed to set a value forσ , whereas in other cases
this value is set manually.

When the data contains clusters with different local sta-
tistics, there may not be a single value ofσ that works well
for all the data. In [12] a “local” scaling parameterσi is pro-
posed instead of this global parameter. It allows self-tuning
of the point-to-point distances by studying the local statistics
of the neightboring points of every pointxi . This leads to the

©2007 EURASIP 480

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



−2
0

2 −2
0

2
0

50

100

150

Im(x
1
[n])Re(x

1
[n])

t[n
]

−2
0

2 −3
0

3
0

50

100

150

Im(x
2
[n])Re(x

2
[n])

t[n
]

(a) (b)

Fig. 3. Scatter plots of the data of Fig. 1 to which the tem-
poral dimension was added. Threads of data points are now
distinguishable in both figures.

following extension of (3):

κ̃(x[i],x[ j]) = exp

(

−
d2(x[i],x[ j])

σiσ j

)

. (4)

If σi is chosen as
σi = d(xi ,xL) (5)

wherexL is the L’th nearest neighbor of pointxi , then spec-
tral clustering will group together all points with their closest
neighbors that have similarσi . The selection ofL only de-
pends on the data dimension of the embedding space.

3.3 Incorporating the temporal dimension into the clus-
tering problem

The received datax[n] in a fast time-varying MIMO sys-
tem can be preprocessed for spectral clustering by simply
adding the temporal dimension. If the temporal index ist[n],
the combined vector of data points and temporal indices,
x+[n] = [x[n]T ,t[n]T ]T , is an (Nr + 1)× 1 complex vector.
When this extra dimension is added to the scatter plots of
Fig. 1, threads appear due to the temporal correlation be-
tween consecutive channel matrices (see Fig. 3). Given the
non-convex clustering capabilities of spectral clustering al-
gorithms, they should be capable of retrieving the different
threads fromx+[n].

The performance of a suitable spectral clustering algo-
rithm depends mainly on two factors. In the first place, the
number of data pointsN in one block must be larger than
the number of clusters (a rule of thumb is to have at least 10
samples per cluster). Since spectral clustering is a compu-
tationally costly procedure, the number of clusters to detect
should be limited. For constellations with alphabet sizeM
(thecardinality) this number of clusters isMNt , which is ex-
ponential inNt . Taking into account that most commercial
MIMO systems use up toNt = 4 transmit antennas, we will
only treat BPSK systems (M = 2) in this work. Extensions
to more complex modulations will be considered for future
investigation.

In the second place, clusters should be well connected,
i.e., the distance between neighboring points of the same
thread should not be larger than the distance between points
of different threads. This requires a rescaling of the temporal
dimension to match the scale of the spatial dimensions, for
instancet[n] = n/256,n = 0, . . . ,255 for blocks of 256 sym-
bols. Moreover, this means that if a symbol is not sent during
a considerable time, a thread might be incorrectly identified
as two separate threads. However, as will be shown in the

next section, both difficulties can be reduced by using infor-
mation derived from the geometric properties of the constel-
lation.

4. EXPLOITING THE CONSTELLATION
GEOMETRY

In this section we show that the geometrical symmetries of
the transmitted constellation can be used to reduce the num-
ber of clusters.

4.1 Example: 2×2 BPSK MIMO

In the noiseless case (v[n] = 0), Eq. (1) can be written as

x[n] = H[n]d[n] (6)

For a 2× 2 BPSK MIMO system, there will be 4 sym-
bol clusters to detect in the datax[n], corresponding to the
transmitted symbol vectors[+1,+1], [+1,−1], [−1,−1] and
[−1,−1]. In Fig. 1 and Fig. 3 we can observe that for any
cluster following a certain trajectory, there is always another
cluster following a trajectory symmetric with respect to the
origin. This observation is confirmed by (6): since a BPSK
system can emit bothd[n] and−d[n], the data pointx[n] as
well as its opposite−x[n] can be received. These data points
lie in clusters that follow symmetric trajectories. This prop-
erty can be exploited to improve the spectral clustering stage,
by first grouping together the data points that follow symmet-
ric trajectories, as will be shown in Section 4.2. Although
this work is limited to BPSK systems, the extension of the
described property and procedure to otherM-PSK constella-
tions is straightforward.

4.2 Clustering procedure for Nt ×Nr BPSK MIMO sys-
tems

The geometrical property indicated in the previous section
is not limited to 2× 2 systems. In a generalNt ×Nr BPSK
MIMO system with fast time-varying channels, for any clus-
ter following a certain trajectory in time, there is always an-
other cluster following the symmetric trajectory. Combining
the data of two such clusters might provide a more robust
clustering problem. This observation leads to the following
two-phase algorithm: In the first phase, groups of symmet-
ric clusters are detected. One clustering problem needs to be
solved here to find 2Nt−1 clusters. In the second phase, each
group of symmetric clusters is separated into two different
clusters, representingNt independent problems.

4.2.1 Phase 1: Grouping of symmetric clusters.

Spectral clustering is extended to find clusters consistingof
two symmetric clusters at a time. Consider the distance mea-
sure

d(x[i],x[ j]) = min
(

∣

∣x+[i]−x+[ j]
∣

∣

2
,
∣

∣x+[i]−x−[ j]
∣

∣

2
)

, (7)

where x−[ j] = [−x[ j]T ,t[ j]T ]T is the point symmetric to
x+[ j]. As can be seen, this measure is small in two cases:
Firstly for points that are very close to each other, and sec-
ondly for points that are very close to opposite of each other.
If the the modified Gaussian kernel (4) is used with this dis-
tance measure for spectral clustering, neighboring pointsas
well as opposite points will be grouped together, leading to
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Fig. 4. BER curves for a 2×2 BPSK MIMO system.

2Nt−1 clusters. This first phase avoids the incorrect clustering
that might occur when some of the threads have a low num-
ber of data points, by combining the information of symmet-
ric threads.

4.2.2 Phase 2: Retrieving the individual clusters.

After having identified the 2Nt−1 groups of symmetric clus-
ters, the two individual threads for each group need to be
retrieved. Since only two clusters have to be retrieved in
each group in this phase, the inter-cluster distances will be
much larger than the distances between neighboring points
of the same cluster and therefore performing spectral cluster-
ing using conventional Euclidian distances on each group is
sufficient to obtain the 2Nt final symbol clusters.

5. SYMBOL DECODING

Once the symbol clusters have been successfully retrieved,
the original time-varying problem has been reduced to a sim-
pler decoding problem, which is the only supervised part of
the proposed algorithm. Symbols need to be assigned to each
cluster, and to this end a small number of pilot symbol slots
d[i] is transmitted at the start of the symbol block, specifi-
cally Nt . Not that these pilot symbol slots are not needed for
the clustering process.

Defining the matrix of pilot symbols Dp =
[d[1],d[2], . . . ,d[Nt ]] and the matrix of corresponding
received dataXp = [x[1],x[2], . . . ,x[Nt ]], an approximation
of the initial channel matrixH can be obtained as

Ĥ = XpD−1
p . (8)

The algorithm concludes by assigning the symbol slotd
to the cluster whose first data point in time is closest to the
vectorĤd.

6. TEST RESULTS AND COMPARISON

In this section the performance of the proposed spectral clus-
tering is compared to that of the GDFE algorithm.

6.1 An overview of the GDFE algorithm

The generalized decision feedback equalizer (GDFE) algo-
rithm from [2] is an adaptive algorithm for decoding fast
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Fig. 5. BER curves for a 4×4 BPSK MIMO system.

time-varying MIMO systems, based on the V-BLAST archi-
tecture. For each time instant, the symbols are successively
detected and canceled from the received data vector via de-
cision feedback filtering. The filter tap weights and symbol
detection order are updated using an RLS-based time- and
order-update algorithm. Its complexity isO(N3

t ) but it pro-
vides some savings compared to V-BLAST. During its train-
ing period, it needs to send a number of pilot symbols to
initialize the algorithm.

6.2 Comparison

A number of simulations were carried out to illustrate the
performance of the proposed algorithm. The following para-
meters were assumed: a BPSK signal was used, the channels
were independent Rayleigh flat-fading and the temporal vari-
ation of each channel between a transmit and receive antenna
pair was based on the Clarke-Gans model [10]. The symbols
d[n] were grouped into frames consisting ofN = 256 slots.
In the first setup a MIMO system withNt = Nr = 2 anten-
nas was used, in the second setupNt = Nr = 4, and in the
last setupNt = 2 andNr = 4. In all cases the normalized
Doppler frequenciesfdT = 5 · 10−4 and fdT = 10−3 were
considered, wherefd = fc ·v/c with receiver velocityv andc
is the speed of light. For a GSM symbol periodT = 3.7·10−6

seconds and a carrier frequencyfc = 900 MHz, these normal-
ized Doppler frequencies correspond to receivers moving at
162 km/h and 324 km/h, respectively. For a carrier frequency
fc = 1800 MHz, the normalized Doppler frequencies corre-
spond to 81 km/h and 162 km/h, respectively.

The bit error rate (BER) curves of two algorithms were
compared. In the first place the proposed spectral clustering
method (referred to as SPC) was tested, in which fine-tuning
spectral clustering was applied withL = 5. The number of
pilot symbol slots used was fixed asNt for this method. In
the second place, the GDFE algorithm from [2] was applied,
with forgetting factorλ = 0.95.

The BER againstEb/N0 for the 2× 2, a 4× 4 and a
2×4 setup are shown in Fig. 4, Fig. 5 and Fig. 6, respec-
tively. Because the GDFE algorithm is essentially a super-
vised method, it requires transmitting more pilot symbols.
Therefore, apart from its BER curves forNt pilots (both of
which coincide, in all figures), a second set of BER curves
was also displayed for a higher number of pilots, to achieve
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Fig. 6. BER curves for a 2×4 BPSK MIMO system.

the same performance as the spectral clustering algorithm.
For the three cases, the GDFE algorithm needs 32 pilot sym-
bols to achieve similar performance as the presented method
when fdT = 5·10−4, and 8 pilots whenfdT = 1·10−3. Com-
paring Fig. 4 and Fig. 6 shows that the presented algo-
rithm performs significantly better when receiver antennas
are added. This can be explained by observing that the clus-
ters will be more separated in space when dimensions are
added to the data points.

In cases where only a few pilot symbols can be sent, the
spectral clustering algorithm obtains superior performance
for the tested MIMO systems. However, it requires the cal-
culation of the eigenvectors of its affinity matrix, which gen-
erally requiresO(N3) operations. In most cases this can be
lowered toO(N2) [13] taking into account that the affinity
matrix is symmetric and can be approximated by a tridiago-
nal matrix.

This analysis suggests that spectral clustering could be
used as an initialization for the GDFE or any other super-
vised algorithm. Specifically, given onlyNt pilot symbol
slots it can estimate a short symbol vector sequence which
can be used as a pilot sequence for a (computationally more
efficient) supervised algorithm.

7. CONCLUSIONS

We presented a novel clustering algorithm that is capable of
decoding fast flat-fading time-varying BPSK MIMO chan-
nels. This algorithm operates on the received data to which
a temporal dimension is added, and it exploits constellation
geometry to retrieve symbol threads from it. The only su-
pervised part of the presented clustering method is the final
decoding phase.

For moderate numbers of transmitting antennas, the pre-
sented method only needs transmission of very few pilot
symbols to achieve superior BER performance compared to
the tested supervised adaptive algorithm. Its results can fur-
ther be improved by adding more receiver antennas to the
MIMO system.

Future research lines include the extension of this algo-
rithm to communication systems with more clusters, which
are encountered if more transmit antennas are used or if the
constellation alphabet is extended. To that end other system

characteristics could be exploited, apart from the constella-
tion geometry, such as space-time coding and in particular
orthogonal block coding, for instance the popular Alamouti
coding.

REFERENCES

[1] G. J. Foschini, G. D. Golden, R. A. Valenzuela, and
P. W. Wolniansky, “Simplified processing for high
spectral efficiency wireless communication employing
multi-element arrays,”IEEE Journal on Selected Ar-
eas in Communications, vol. 17, no. 9, pp. 1841–1852,
1999.

[2] J. Choi, H. Yu, and Y.H. Lee, “Adaptive MIMO de-
cision feedback equalization for receivers with time-
varying channels,” IEEE Transactions on Signal
Processing, vol. 53, no. 11, pp. 4295–4303, Nov. 2005.

[3] A. A. Rontogiannis, V. Kekatos, and K. Berberidis, “A
square-root adaptive V-BLAST algorithm for fast time-
varying MIMO channels,”IEEE Signal Processing Let-
ters, vol. 13, no. 5, pp. 265–268, May 2006.

[4] E. Karami and M. Shiva, “Decision-directed recur-
sive least squares MIMO channels tracking,”EURASIP
Journal on Wireless Communications and Networking,
vol. 2006, pp. Article ID 43275, 10 pages, 2006.

[5] S. Chen, B. Mulgrew, and P.M. Grant, “A clustering
technique for digital communications channel equaliza-
tion using radial basis function networks,”IEEE Trans-
actions on Neural Networks, vol. 4, no. 4, pp. 570–590,
July 1993.

[6] Y. Kopsinis and S. Theodoridis, “A novel cluster based
MLSE equalizer for M-PAM signaling schemes,”Sig-
nal Processing, vol. 83, no. 9, pp. 1905–1918, 2003.

[7] K. I. Diamantaras, “A clustering approach for the blind
separation of multiple finite alphabet sequences from a
single linear mixture,”Signal Processing, vol. 86, no.
4, pp. 877–891, 2006.

[8] K. I. Diamantaras and T. Papadimitriou, “Blind decon-
volution of multi-input single-output systems with bi-
nary sources,”IEEE Transactions on Signal Process-
ing, vol. 54, no. 10, pp. 3270–3731, October 2006.

[9] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral
clustering: Analysis and an algorithm,” inAdvances in
Neural Information Processing Systems 14, T. G. Diet-
terich, S. Becker, and Z. Ghahramani, Eds., Cambridge,
MA, 2002, pp. 849–856, MIT Press.

[10] T. Rappaport, Wireless Communications: Principles
and Practice, Prentice Hall PTR, 2001.

[11] F. Chung, Spectral Graph Theory, Number 92 in
CBMS Regional Conference Series in Mathematics.
American Mathematical Society, 1997.

[12] L. Zelnik-Manor and P. Perona, “Self-tuning spec-
tral clustering,” inAdvances in Neural Information
Processing Systems 17, L. K. Saul, Y. Weiss, and
L. Bottou, Eds., Cambridge, MA, 2005, pp. 1601–1608,
MIT Press.

[13] G. H. Golub and C. F. Van Loan,Matrix Computations,
The Johns Hopkins University Press, October 1996.

©2007 EURASIP 483

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP


	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

