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ABSTRACT tain their performance under slowly time-varying channels
Clustering techniques for equalization have been prO_Extensmnsto MIMO systems have also been proposed [7, 8].

posed by a number of authors in the last decade. However, MOst algorithms for equalization of fast time-varying

most of these approaches focus only on time-invariantsing| tcr?ank”eis tﬁre supet:wsed adadptn(/je aIgont_hr&s. . I|-|dovvfever,
input single-output (SISO) channels. In this paper we cont12MKS 10 the recently proposed advances in the Tieid or ma-

sider the case of fast time-varying multiple-input muéipl chine learning, some efficient clustering techniques cso al

output (MIMO) channels. The varying nature of the mixingbe extended to tackle this problem. In particular, it appear

matrix poses new problems that cannot be solved by convef12t the non-convex clustering capabilities of the regentl
tional clustering techniques. By introducing the time scal ProPosed spectral clustering technique [9] can be appoied t

: : this end.
into the clustering process we are able to untangle the clus- . _— . .
gp 9 The main contributions of this work are twofold. First,

ters, which in this way behave like intertwined threads.riThe it is shown that by incorporating the temporal variable in

a spectral clustering algorithm is applied. Finally, theeia- the clusteri it ible t tanale the diff
tified clusters are assigned to the transmitted symbolsgusin™ '€ ©/USterng process, 1L1s possibe 1o untangie the [@iite
only a few pilots. The geometry of the transmitted constelENt clusters representing different input symbol slotse Th

lation is exploited within the spectral clustering algéwin in ~ Major limitation of the method is that the number of clus-
order to reduce the number of clusters. As shown in the pg€s increases exponentially as a function of the number of
per, the proposed procedure saves a considerable amount BANSMtting antennasy;. To relax this limitation, the sec-

ilot symbols in comparison to other recently proposed-techPNd contribution of this paper is to exploit the geometry of
giqu eé/. P y prop the transmitted constellation within the spectral cluatgr

algorithm in order to reduce the number of clusters. Once
these different clusters have been identified, a simpledieco
1. INTRODUCTION ing process is applied to relate each cluster with a symbol
In recent years, mu|tip|e_input mu|tip|e_0utput (|\/|||\/|O) S|Ot.. It is shown that this can be done by sending as few as
wireless communication technology has gained considerabM pilot symbol slots. . .
attention due to its potential to significantly increasectize This paper organized as follows: In Section 2 a detailed
efficiency compared to traditional single-input singlegut ~ formulation of the problem is given. In Section 3 spectral
(SISO) technology. A number of computationally efficient clustering is introduced, followed by a description of how
algorithms for reliable symbol detection in time-invatian it can be applied directly to this equalization problem. Its
flat-fading MIMO systems have been developed, such as theerformance can then be enhanced by exploiting the constel-
V-BLAST architecture [1]. lation’s geometry, as presented in Section 4, and in Section
A direct application of these algorithms to time-varying ® @ decoding stage concludes the algorithm. Test results and
channels is difficult, however, due to the need of perfecEomparisons with the GDFE algorithm are given in Section
channel state information at the receiver side. A numbef. followed by the conclusions of this work in Section 7.
of adaptive algorithms have been proposed to resolve this
issue, such as an adaptive receiver based on the V-BLAST 2. PROBLEM FORMULATION

algorithm with a generalized decision feedback equalizefy Mo systems are used in wireless communications to en-
(GDFE) [2], a numerically more robust version of this al- hance signal diversity, spectral efficiency, or both. Ingty
gorithm [3], and a channel tracking algorithm based ongcs MiMO flat-fading system with\e transmit andN, re-

decision-directed recursive least squares([4]. All of @2  ¢ejye antennas, this, x 1 received vectok[n] at timen is
supervisedequalization algorithms, requiring an initializa- expressed as
tion phase in which a number of pilot symbol slots are sent. x[n] = H{n]d[n] + v[n] (1)

An approach forblind equalization in communication . .
problems can be based on clustering techniques, which hayd'eré H[n is the N > N, channel matrix whose elements

mainly been applied in time-invariant SISO systems, usinéepresﬁm independelnt fIat—fIading SIbS(I) chanrts, gob”' h
for instance radial basis function networks [5] or a cluster 1&ins theN (in general, complex) symbols transmitted by the

based MLSE equalizer [6]. Some of these algorithms mainl% antennas at time, andv[n] represents both spatially and
temporally white complex zero-mean Gaussian noise.

This work was supported by MEC (Ministerio de Educacion gria) In MIMO systems withblock fa_dingchannels, variations
under grant TEC2004-06451-C05-02 and FPU grant AP2006:536 of the channel during the transmission of one block of sym-
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Fig. 1. (a) and (b): Scatter plots of the data received by therig. 2. (a) Two sets of intertwined data points, difficult or im-
two antennas of a 2 2 BPSK MIMO system with fast time- possible to cluster with conventional clustering algarith
varying channels. The points corresponding to the symbolgy) Spectral clustering easily divides the points in twoasep
[+1,+1]" and[-1,-1]" are represented by circles and therate groups, based on the principle that two points should be
points correspondmg tp+1,—1]T and[-1,+1]" by black in the same group if they are close to each other.

dots, emphasizing the symmetry of the used constellation.

Note that no such information is available at receiver side.

sured through a kernel functior(.) such as

d?(x[i]. x[])

0'2

bols are so small that they can be ignored. Hence the channel

matrix H[n] = H is considered constant during transmission )

of one block of symbols. This is not the case for MIMO

systems withfast time-varyingchannels, where the channel

matrix changes from symbol to symbol due to the Dopplewhered(x[i],x[j]) is some distance measure between points

spread caused by the movement of the transmitter and/or rgli] andx[j] ando is the kernel size. This kernel function is

ceiver. In time-varying MIMO systems, depending on thealmost 1 for points that are close to each other, and lowers as

Doppler spread, the channel matridéfn] are temporally the distance rises.

correlated. The variations can be modeled for instancedy th ~ Given a set oN points{x[1],x[2],...,X[N]}, a similarity

Clarke-Gans model [10] which states that if a vertigdd ~ matrix (also called “affinity” okernelmatrix) can be defined

antenna with uniform power distribution is used to transmitasAij = kK (X[i],X[j]). Clustering is performed by analyzing

a single tone, the received spectrum is the spectrum of that matrix. One of the most successful spec-
tral clustering algorithms is the Ng-Jordan-Weiss (NJW) al

k(i x[J]) = eXp(— @)

S, () = 15 @) gorithm, introduced in [9]. It can be summarized as follows:
‘ fte 2’ 1. Calculate the affinity matrix A using (3), and #gt=0
Mfm 1_( fm) fori=1,...,N.

2. ObtainL = D~Y2AD~1/2, whereD is a diagonal matrix

wheref. and f,, are the carrier frequency and the maximum
Doppler shift, respectively.

The proposed method aims to estimate the symibols
given the received data poink$n]. This problem is illus-
trated in Fig. 1, which shows typical scatter plots of the
complex data; [n] andx;[n] received by the two antennas in
a time-varying 2< 2 MIMO system with binary phase-shift
keying (BPSK) modulation, for which the basic constellatio
points ared € {+1,—1}. Classical clustering algorithms that
operate directly on the data of these scatter plots willdaé
to overlapping of the clusters.

In the next section we pro-

with Dj = z’j\‘:lA”—. This normalization will assure that

all clusters have more or less equal size.

Form the matriyy = [vi, vy, ...,V wherevy, v, ... Vg

are thek largest eigenvectors afandk is the number of

subsets to retrieve.

4. Treat the rows o as points inR¥, and normalize them
to unit length. These points correspond to the original
pointsx[i] but form compact clusters now. Cluster them
with an algorithm such as k-means.

5. Assign the original poink]i] to clusterj if and only if

rowi of the matrixV was assigned to clustér

3.

pose a solution to these problems that combines a spectral
clustering approach with the incorporation of the temporal
dimension into the clustering process. 3.2 Fine-tuning Spectral Clustering

The choice of the kernel size in (3) has a high impact on
3. CLUSTERING FOR TIME-VARYING CHANNELS the clustering quality. It is a measure of when two points are
31 Spectral dustering considered similar, and should be of the same order of the
' distance between similar points. Some rules of thumb have
Spectral clustering [9] is a recently proposed successfuleen proposed to set a value @y whereas in other cases
method rooted in graph theory [11], capable of clusteringhis value is set manually.
data based on point-to-point similarities. For most proide When the data contains clusters with different local sta-
“similarity” is measured as the distance between data ppinttistics, there may not be a single valueamthat works well
defining clusters as connected zones of points and makingfibr all the data. In [12] a “local” scaling parametgris pro-
possible to easily cluster non-convex data sets, as #testr posed instead of this global parameter. It allows selfrtgni
by Fig. 2. of the point-to-point distances by studying the local stats
The similarity between two points[i] andx]j] is mea- of the neightboring points of every poixt This leads to the
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next section, both difficulties can be reduced by using infor
mation derived from the geometric properties of the constel
lation.

4. EXPLOITING THE CONSTELLATION
GEOMETRY

Re(x[m) 272 imx n]) Re(xinl) 273 Im(x dn]) In this sectjon we show that the geometrical symmetries of
the transmitted constellation can be used to reduce the num-
@ (b) ber of clusters.

Fig. 3. Scatter plots of the data of Fig. 1 to which the tem-4.1 Example: 2 x 2 BPSK MIMO

S?Srt?ri g&ﬁgﬁgﬁg}g\' SS&? ?igﬁ?é;—hreads of data points are "% the noiseless case[(] = 0), Eq. (1) can be written as

X[n] = H[njd[n] (6)

following extension of (3): For a 2x 2 BPSK MIMO system, there will be 4 sym-
d2(x[i], x[j]) bol clusters to detect in the datén|, corresponding to the
K(X[i],x[j]) = exp<7’) (4) transmitted symbol vectofs-1,+1], [+1,—1], [-1,—1] and
0i0j [-1,—1]. In Fig. 1 and Fig. 3 we can observe that for any
If g is chosen as cluster following a certain trajectory, there is always theo
0 = d(xi,XL) (5) cluster following a trajectory symmetric with respect te th
’ origin. This observation is confirmed by (6): since a BPSK
wherex is the L'th nearest neighbor of poirt, then spec- system can emit bott[n] and —d[n], the data poink[n] as
tral clustering will group together all points with theioslest ~ well as its opposite-x[n] can be received. These data points
neighbors that have similar. The selection of only de- lie in clusters that follow symmetric trajectories. Thi®pr
pends on the data dimension of the embedding space. erty can be exploited to improve the spectral clusteringesta
by first grouping together the data points that follow symmet

3.3 Incorporating the temporal dimension into theclus-  ric trajectories, as will be shown in Section 4.2. Although
tering problem this work is limited to BPSK systems, the extension of the
The received data[n] in a fast time-varying MIMO sys- Qescr_lbed property and procedure to otllePSK constella-
tem can be preprocessed for spectral clustering by simpijons is straightforward.
adding the temporal dimension. If the temporal indei{n .
the cgmbined \eector of data points and Fiemporaﬂﬁ?ﬂices,'2 Clustering procedurefor Ne x Ny BPSK MIMO sys-
x*[n] = [x[n]T,t[n]T]T, is an (N +1) x 1 complex vector.
When this extra dimension is added to the scatter plots dfhe geometrical property indicated in the previous section
Fig. 1, threads appear due to the temporal correlation bés not limited to 2x 2 systems. In a generbk x N, BPSK
tween consecutive channel matrices (see Fig. 3). Given thdIMO system with fast time-varying channels, for any clus-
non-convex clustering capabilities of spectral clusgrt  ter following a certain trajectory in time, there is always a
gorithms, they should be capable of retrieving the differenother cluster following the symmetric trajectory. Combigi
threads fronx™ [n]. the data of two such clusters might provide a more robust

The performance of a suitable spectral clustering algoelustering problem. This observation leads to the follayvin
rithm depends mainly on two factors. In the first place, thewo-phase algorithm: In the first phase, groups of symmet-
number of data pointdl in one block must be larger than ric clusters are detected. One clustering problem needs to b
the number of clusters (a rule of thumb is to have at least 18olved here to find"2~1 clusters. In the second phase, each
samples per cluster). Since spectral clustering is a compgroup of symmetric clusters is separated into two different
tationally costly procedure, the number of clusters to cete clusters, representirg independent problems.
should be limited. For constellations with alphabet dize
(thecardinality) this number of clusters BI™, which is ex- 4.2.1 Phase 1: Grouping of symmetric clusters.
ponential inN;. Taking into account that most commercial
MIMO systems use up tdk = 4 transmit antennas, we will
only treat BPSK systems$W\ = 2) in this work. Extensions
to more complex modulations will be considered for future
investigation. o . . 2 . 112

In the second place, clusters should be well connected,d(x[']’xm) = m|n(|x+[|] —x+[1]| ’|X+['] —X [JH )’ (7)
i.e., the distance between neighboring points of the same
thread should not be larger than the distance between pointghere x—[j] = [—x[j]",t[j]T]" is the point symmetric to
of different threads. This requires a rescaling of the terapo x*[j]. As can be seen, this measure is small in two cases:
dimension to match the scale of the spatial dimensions, fdfirstly for points that are very close to each other, and sec-
instancet[n] =n/256,n=0,...,255 for blocks of 256 sym- ondly for points that are very close to opposite of each other
bols. Moreover, this means that if a symbol is not sent duringf the the modified Gaussian kernel (4) is used with this dis-
a considerable time, a thread might be incorrectly idewtifie tance measure for spectral clustering, neighboring paisits
as two separate threads. However, as will be shown in theell as opposite points will be grouped together, leading to

Spectral clustering is extended to find clusters consisiing
two symmetric clusters at a time. Consider the distance mea-
sure

©2007 EURASIP 481 EUSIPCO, Poznan 2007



15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

10}

BER

—e— SPC, 2 pilots, fdT = 5.16
-®-SPC, 2 pilots, fdT = 1-16
—6— GDFE, 2 pilots, fdT = 5.1
E| =X GDFE, 2 pilots, fdT = 1.10
—B— GDFE, 32 pilots, fdT = 5.10
=¥ GDFE, 8 pilots, fdT = 110

—e— SPC, 4 pilots, fdT = 5.16
- SPC, 4 pilots, fdT = 1-16
—O— GDFE, 4 pilots, fdT = 5.1
-X-' GDFE, 4 pilots, fdT = 1.10
—B— GDFE, 32 pilots, fdT = 5.16
=¥ GDFE, 8 pilots, fdT = 110

| | 4 0 2 4 14 16 18 2C

0 5

8 10 12
15 Eb/NO (dB)
Eb/NO (dB)

Fig. 4. BER curves for a % 2 BPSK MIMO system. Fig. 5. BER curves for a 4 4 BPSK MIMO system.

2M-1 clusters. This first phase avoids the incorrect clusteringMe-varying MIMO systems, based on the V-BLAST archi-
that might occur when some of the threads have a low nu ecture. For each time instant, the symbols are succegsivel
ber of data points, by combining the information of symmet-détected and canceled from the received data vector via de-
ric threads. cision feedback filtering. The filter tap weights and symbol
detection order are updated using an RLS-based time- and
order-update algorithm. Its complexity &NZ) but it pro-

L o 1 , vides some savings compared to V-BLAST. During its train-
After having identified the 3~ groups of symmetric clus- ing period, it needs to send a number of pilot symbols to
ters, the two individual threads for each group need to bg iialize the algorithm.

retrieved. Since only two clusters have to be retrieved in
each group in this phase, the inter-cluster distances will bg 2 comparison

much larger than the distances between neighboring points ) ) i i

of the same cluster and therefore performing spectraletust A humber of simulations were carried out to illustrate the

ing using conventional Euclidian distances on each group igérformance of the proposed algorithm. The following para-
sufficient to obtain the? final symbol clusters. meters were assumed: a BPSK signal was used, the channels

were independent Rayleigh flat-fading and the temporal vari
5 SYMBOL DECODING ation of each channel between a transmit and receive antenna
~ pair was based on the Clarke-Gans model [10]. The symbols
Once the symbol clusters have been successfully retrievedin] were grouped into frames consistingf= 256 slots.
the original time-varying problem has been reduced to a simn the first setup a MIMO system withy = N; = 2 anten-
pler decoding problem, which is the only supervised part ohas was used, in the second seNip= N: = 4, and in the
the proposed algorithm. Symbols need to be assigned to eap{st setup\y = 2 andN; = 4. In all cases the normalized
cluster, and to this end a small number of pilot symbol slotDoppler frequenciedyT = 5-10* and fgT = 103 were
d[i] is transmitted at the_start of the symbol block, specifi-considered, wher& = fo-v/c with receiver velocity andc
cally Ne. Not that these pilot symbol slots are not needed fois the speed of light. For a GSM symbol peribe- 3.7- 106
the clustering process. , seconds and a carrier frequerfgy= 900 MHz, these normal-
Defining the matrix of pilot symbols Dp = jzed Doppler frequencies correspond to receivers moving at
[d[1],d[2],...,d[N;]] and the matrix of corresponding 162 km/hand 324 km/h, respectively. For a carrier frequency
received dataXp = [x[1],x[2],...,x[N]], an approximation f. _ 1800 MHz, the normalized Doppler frequencies corre-
of the initial channel matrid can be obtained as spond to 81 km/h and 162 km/h, respectively.
N -1 The bit error rate (BER) curves of two algorithms were
H=X,D," (8) ; .
compared. In the first place the proposed spectral clusterin
The algorithm concludes by assigning the symbol dlot method (referred to as SPC) was tested, in which fine-tuning
to the cluster whose first data point in time is closest to thepectral clustering was applied with=5. The number of
vectorHd. pilot symbol slots used was fixed & for this method. In
the second place, the GDFE algorithm from [2] was applied,
6. TEST RESULTS AND COMPARISON with forgetting factorA = 0.95.
. . The BER againsEb/Np for the 2x 2, a 4x 4 and a
In this section the performance of the proposed spectratclu, | 4 setup are shown in Fig. 4, Fig. 5 and Fig. 6, respec-
tering is compared to that of the GDFE algorithm. tively. Because the GDFE algorithm is essentially a super-
. . vised method, it requires transmitting more pilot symbols.
6.1 Anoverview of the GDFE algorithm Therefore, apart from its BER curves fiy pilots (both of
The generalized decision feedback equalizer (GDFE) algowhich coincide, in all figures), a second set of BER curves
rithm from [2] is an adaptive algorithm for decoding fast was also displayed for a higher number of pilots, to achieve

4.2.2 Phase 2: Retrieving the individual clusters.

©2007 EURASIP 482 EUSIPCO, Poznan 2007



15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

characteristics could be exploited, apart from the colastel
tion geometry, such as space-time coding and in particular
orthogonal block coding, for instance the popular Alamouti
coding.
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