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ABSTRACT
New modified mutual information criteria have been pro-

posed for the deconvolution problem in the presence of noise
and with non invertible convolution filter. Closed form for-
mula for the derivative of the criteria are obtained. Simula-
tions results are provided showing the good performance of
the method.

1. INTRODUCTION

This work is motivated by seismic applications, in which a
recorded seismic trace is often modelled as a convolution of
a waveletw(t) with the reflectivity seriesr(t) plus a super-
posed noisen(t):

x(t) =
∞

∑
u=−∞

w(u)r(t −u)+n(t) = (w⋆ r)(t)+n(t) (1)

where⋆ denotes the convolution. It is generally assumed
that the reflectivity is a white super-Gaussian process, the
noise is a white Gaussian process, and the wavelet is a band-
limited filter. Seismic deconvolution consists in recovering
the reflectivity from a given seismic trace. This is often done
through a deconvolution filterg:

y(t) =
∞

∑
u=−∞

g(u)x(t −u) = (g⋆ x)(t) (2)

As the wavelet and the reflectivity distribution are un-
known, we have the classicalblind deconvolution problem,
but with the added difficulty that the observation is contami-
nated with noise and the convolution filter (i.e. the wavelet)
is band-limited, hence not invertible.

Works on blind deconvolution has assumed (implicitly)
that the convolution filterw is invertible, that is there exists
a filter g such that(g⋆ w)(u) = 1 if u = 0 and 0 otherwise.
Then, neglecting the noise, the reflectivityr(t) can be recov-
ered from the observation by convolving it with the filterg
as in (2). In the blind contextw is unknown sog must be
estimated, usually by maximizing a contrast function, based
on the two basic properties of the source: its temporal inde-
pendence and its non Gaussianity.

In seismic applications however, the noise level can
be high and more importantly the wavelet is often quite
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band-limited: its Fourier seriesW(ω) = ∑∞
u=−∞ w(u)e−iuω

is (nearly) zero forω outside a small (low) frequency band.
Thus this filter is not invertible since the inverse filterg
should have Fourier seriesG(ω) = ∑∞

u=−∞ g(u)e−iuω equal
to 1/W(ω). To our knowledge, there has not been work deal-
ing specifically with this situation, apart from works on the
Bayesian approach [1,2], which require a parametric model
with prior on the parameters and hence are not reallyblind.
The usual practice is to continue using deconvolution meth-
ods designed for the noiseless and invertible convolution fil-
ter case, hoping that the noise effect can be neglected or con-
tained. In [3], some theoretical and experimental studies on
the noise effect on some deconvolution criteria have been
presented. It turns out that the mutual information contrast,
which has been shown to yield optimal performance in the
noiseless and invertible convolution filter case [4], is much
more sensitive to noise than the (non optimal) kurtosis

The purpose of this work is to propose a modification of
the mutual information criterion, so that it can handle effec-
tively the case of noisy data and band-limited filter.

Section 2 analyzes the effect of noise and the band-
limited property of the wavelet on the mutual information
criterion. Such analysis has appeared in [3], but as it pro-
vides the rational for our modified criterion, it is summarized
here. The new criterion is developed in section 3. The empir-
ical counterparts and its gradient are derived in next section.
Finally section 5 provides some simulation results in a real-
istic setting, showing the good performance of the method.

2. NOISE INFLUENCE ON THE MUTUAL
INFORMATION CRITERION

In the presence of noise, it is not possible to recover exactly
the reflectivity through any deconvolution filter: the output
of (2) always contains some noise. Further, if one tries to
match g ⋆ (w ⋆ r) to r, g must have its the Fourier trans-
form very large at the frequencies outside the pass-band of
w, which would blow up the noise. Thus a compromise be-
tween signal recovery and noise reduction must be made. In
thenon-blindcontext, where the wavelet and the noise and
reflectivity variances are known, the Wiener filter realizesthe
best compromise at it minimizes the mean square error be-
tweeny(t) andr(t). It is given in the frequency domain by

GWiener(ω) = σ2W∗(ω)/[σ2|W(ω)|2 +σ2
n ] (3)

whereσ2 is the variance of the reflectivity series,σ2
n that

of the noise and∗ denotes complex conjugate. This formula
shows thatGWiener is nearly the inverse ofW inside the pass-
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band ofw (whereWσ2/σ2
n is large) and nearly zero outside

this band (whereWσ2/σ2
n is nearly zero).

The mutual information approach to blind deconvolution
consists in adjusting the deconvolution filterg such that the
output{y(t)} defined in (2) is the least temporally dependent.
Here this dependence is measured by the mutual information
rate, which can be expressed as [4]

H(y)−
∫ 2π

0
log|G(ω|

dω
2π

+constant

where H(y) is the Shannon entropy ofy(t), which does
not depend ont by stationarity. Denoting byH−(y) =
1
2 log[2πevar(y)]−H(y), the negentropy ofy, the mutual in-
formation criterion can be written as

−H−(y)+
1
2

∫ 2π

0
log

var(y)
fy(ω)

dω
2π

+constant (4)

where fy is the spectral density of they(t) process, which is
related to that of thex(t) process byfy(ω) = |G(ω)|2 fx(ω).

The negentropy is a non-Gaussianity measure. It has
been argued in [3] that such measure would have good be-
havior under noise contamination. The noise sensitivity of
the criterion comes from the second term in (4). Indeed, this
term is a measure of flatness offy, since from the equality
var(y) =

∫ 2π
0 fy(ω)dω/(2π) it can be written as

1
2

[
log

∫ 2π

0
fy(ω)

dω
2π

−

∫ 2π

0
log fy(ω)

dω
2π

]
, (5)

which, by Jensen’s inequality, is non-negative and can be
zero if and only iffy is constant. This term will be referred to
as the second order whiteness term since it tends to force the
output of the deconvolution filter to be second order white.
If we minimize only this term, we would get a deconvolution
filter with gain:

|G(ω)| =
Constant

f 1/2
x (ω)

=
Constant

[σ2|W(ω)|2 +σ2
n ]1/2

.

The constant factor comes from the scale ambiguity of the
deconvolution filter. If we normalize this filter so that its
output has unit variance then this constant becomes 1. Thus
the above gain nearly equal 1/σn outside the pass-band of the
wavelet (where|W| ≈ 0) while the gain of the optimal filter is
nearly zero there. Therefore the second order whiteness term
in (4) is strongly affected by noise. Due to this term, the
noise attenuation would be inadequate outside the pass-band
of the wavelet. This finding has been supported by simulation
experiments reported in [3].

3. THE MODIFIED MUTUAL INFORMATION
CRITERIA

In the noiseless and invertible convolution filter case the mu-
tual information criterion is known to yield the best perfor-
mance [4]. The above analysis shows that its bad behavior
in the noisy and band-limited case is due to the second term
in (4). In fact, using only the first term or some other non
Gaussianity measure such as the kurtosis, can yield better
performance in this case [3]. But the use of a non Gaussian-
ity criterion ignores information provided by second order

statistics, which can be helpful especially for estimatingthe
gain of the deconvolution filter, as can be seen in [4]. There-
fore, our idea is to only modify the second term in (4) to
correct its bad behavior in the presence of noise.

3.1 The modified criterion

We have seen that the second term in (4) is a measure of
flatness offy. But the deconvolution output in the noisy non
invertible case,should not be flat, as can be seen from that of
the Wiener filter. Since the theoretical spectral density ofthe
observed process{x(t)} is σ2|W(ω)|2 +σ2

n , it is the ratio

fx
|Wσ/σn|2 +1

=
fx

|W′|2+1
(6)

whereW′ = Wσ/σn, which should be flat (as it is theoret-
ically equal to the constantσ2

n ). Thus, we shall replace the
second term in (4) by (5) withfy(ω) replaced by (6). Further,
the deconvolution filter which produces the{y(t)} process
involved in the negentropy termH−(y) in (4) is now taken
as the Wiener filter associated withw. SinceH− is scale in-
variant,H−(y) = H−(y′) wherey′(t) = y(t)σn/σ , which can
be determined from{x(t)} through the rescaled Wiener filter
with frequency response

G′(ω) = W′∗(ω)/[|W′(ω)|2 +1] (7)

Therefore, we are led to the new deconvolution criterion

C(W′) = −H−(y′)+
1
2

[
log

∫ 2π

0

fx(ω)

|W′(ω)|2 +1
dω
2π

−

∫ 2π

0
log

fx(ω)

|W′(ω)|2 +1
dω
2π

]
(8)

wherey′ = g′ ⋆ x with g′ having Fourier transformG′ given
by (7). Minimizing this criterion would yield the Fourier
transformW′ of the rescaled waveletw′ = wσ/σn. Note
that |W′(ω)|2 represents the signal-to-noise ratio (SNR) at
the (angular) frequencyω andy′ is the recovered reflectivity
rescaled to have the same variance as the noise.

OnceW′ has been obtained, the noise varianceσ2
n can be

obtained by noting that (6) is theoretically equal toσ2
n . Thus

we take

σ2
n =

∫ 2π

0

fx(ω)

|W′(ω)|2 +1
dω
2π

. (9)

Note that the above criterion does not allow to determine
W andσ separately but only the productWσ = W′σn. This
is easy to understand: a multiplication of the reflectivity by
a constant factor can always be offset by a division of the
wavelet by the same factor so that the output of the convolu-
tion remains the same.

3.2 Exploiting the band-limited property

The second term of (8) does not actually provide enough in-
formation to estimate even|W′|. Indeed, minimizing this
term alone would yields|W′|2 = c fx −1 for arbitrary con-
stantc > 0 andσ2

n = 1/c. Of course, some information on
|W′| may be extracted from the first term of (8), but this term
contains mainly information on the phase of the wavelet, not
its amplitude. Thus criterion (8) may not provide good esti-
mate ofσ2

n .
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To overcome the above problem, our idea is to exploit the
fact that the wavelet energy is mainly concentrated on a small
low frequency band. We propose two approaches.

3.2.1 Special parameterization

By forcingW′ to vanish at (angular) frequencyπ, one avoids
the above ambiguity problem since the above constantc
should then (theoretically) satisfyc fx(π) = 1. A possible
such parameterization is

W′(ω) = (eiω +2+e−iω)W̃θ (ω) = 2[1+cos(ω)]W̃θ (ω)

whereW̃θ (ω) is some smooth function depending on a vector
parameterθ . It can be for example be the Fourier transform
of a finite impulse response filter with coefficients being the
components ofθ . ThenW′ vanishes atπ and due to its con-
tinuity, it would be nearly zero in the vicinity ofπ. To make
W′ vanish on a wider range of frequencies, one may consider
the parameterization

W′(ω) = (eiω +2+e−iω)[eiω −2cos(ω0)+e−iω ]W̃θ(ω)

for some givenω0, W̃θ (ω) being as before. The factoreiω −
2cos(ω0)+ e−iω vanishes forω = ±ω0. HenceW′ would
be nearly zero on some interval containing[ω0,π] if ω0 is
chosen not too far fromπ.

3.2.2 Pre-estimation of the noise variance: another crite-
rion

If the pass-band of the wavelet is more or less known, one
can estimateσ2

n by taking the average offx outside this band.
Then one may considerσ2

n as known and equal to this esti-
mate. To force the ratio (6) to be close to the “known”σ2

n ,
we add the term

1
2

∫ 2π

0

[
fx(ω)/σ2

n

|W′(ω)|2 +1
−1− log

fx(ω)/σ2
n

|W′(ω)|2 +1

]
dω
2π

to the criterion (8). The above term is non negative and can
be zero if and only if( fx/σ2

n)/(|W′|2+1) = 1, since fora>
0,a−1− loga≥ 0 with equality if and only ifa= 1. Further,
asa−1− loga ≈ (a− 1)2/2 for a near 1, this term would
have the similar effect as the 1/4 the L2 squared distance
between the function( fx/σ2

n )/(|W′|2 + 1) and the constant
1. Thus, noting thatσnW′ = σW andH−(y′) = H−(σny′) =
H−(y/σ), we are led to the criterion

−H−
( y

σ

)
+

1
2

[∫ 2π

0

fx(ω)

|σW(ω)|2 +σ2
n

dω
2π

−1−

∫ 2π

0
log

fx(ω)

|σW(ω)|2 +σ2
n

dω
2π

]

As we have noted, only the productσW can be estimated and
there is a scale ambiguity in the estimated reflectivity. Thus
we may assume thatσ = 1, and rewrite the above criterion
as, dropping the constant−1/2,

C†(W) = −H−(y)+
1
2

[∫ 2π

0

fx(ω)

|W(ω)|2 +σ2
n

dω
2π

−

∫ 2π

0
log

fx(ω)

|W(ω)|2 +σ2
n

dω
2π

]
. (10)

4. THE EMPIRICAL CRITERIA AND THEIR
GRADIENT

4.1 The empirical criteria

In practice, the criteria (8) and (10) must be replaced
by their empirical versions, in which the termsH−(y) (or
H−(y′)) and fx are replaced by their estimates. For the
spectral densityfx, a natural estimate is the periodogram
f̂x(ω) = n−1|∑n−1

t=0 x(t)e−iωt |2, x0, . . .,xn−1 being the obser-
vations. This is a raw unsmoothed estimate, but the integra-
tions involved in (8) and (10) provide an implicit smoothing,
and it has a low bias (of the order 1/n). For numerical cal-
culation, these integrations are replaced by Riemann sums
based on the points 0,2π/n, . . .,2π(n−1)/n. Thus, letĤ−

be a negentropy estimator, the empirical version of (8) is, up
to a constant,

Ĉ(W′) = −Ĥ−(y′)+
1
2

{
log

1
n

n−1

∑
k=0

f̂x(2πk/n)

|W′(2πk/n)|2+1
+

1
n

n−1

∑
k=0

log
[∣∣∣W′

(2πk
n

)∣∣∣
2
+1

]}
(11)

and that of (10) is, up to a constant,

Ĉ†(W) = −Ĥ−(y)+
1
2

{
1
n

n−1

∑
k=0

f̂x(2πk/n)

|W(2πk/n)|2 +σ2
n

+

1
n

n−1

∑
k=0

log
[∣∣∣W

(2πk
n

)∣∣∣
2
+σ2

n

]}
. (12)

For the criterion (8), the noise variance will be estimated by
vn(Ŵ′), given by

vn(W
′) =

1
n

n−1

∑
k=0

f̂x(2πk/n)

|W′(2πk/n)|2+1
. (13)

whereŴ′ is the estimator ofW′ which minimizes this crite-
rion. Compare with equation (9).

To estimateH−(y) one needs to be able to computey′,
but the formula (2) involved all values ofx(t) and those
of index outside{0,n− 1} are not observed. To over-
come this difficulty, a simple approach is to extend the data
{x(0, . . .,x(n−1)} periodically and thus computey(t) as

y(t) =
∞

∑
u=−∞

g(u)x(t −u modn) (14)

This amounts to replacing ordinary convolution by circu-
lar convolution. SinceG is smooth, its Fourier coefficients
should decay rapidly at infinity, thereforey(t) computed as
above should be not much different from the one computed
by (2), fort ∈ {0, . . .,n−1} and far from 0 andn.

The entropy estimator̂H(y) of y can now be constructed
from y(0), . . .,y(n−1), using the method in [4] (for ex.). Fi-
nally, the negentropy estimator ofy is estimated by

Ĥ−(y) =
1
2

log[2πev̂ar(y)]− Ĥ(y)

where

v̂ar(y) =
1
n

n−1

∑
t=0

y2(t) =
1
n

n−1

∑
k=0

∣∣∣G
(2πk

n

)∣∣∣
2
f̂x

(2πk
n

)
.
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The same method applies to the estimation ofH−(y′), replac-
ing y, G by y′, G′.

4.2 Minimization of the criteria

We assume thatW′ has been parameterized by a vector pa-
rameterθ . We choose to use the BFGS (Broyden-Fletcher-
Goldfard-Shano) method [5] to minimize the criteria. This is
a quasi Newton type algorithm, but it needs only the gradient
of the criterion (and the criterion itself) since it computes an
approximation to the Hessian during the iteration, using gra-
dient and criterion values collected from previous steps. The
advantage of BFGS over simple gradient descent is that the
former has quadratic convergence near the solution.

In the sequel, we provide analytic formulas for the gra-
dient of each of the criteria. Following [4], we introduce the
score estimator ofy, defined as the partial derivative of the
entropy estimator:

ψ̂y[y(t)] = n
∂ Ĥ(y)
∂ y(t)

, t = 0, . . .,n−1.

Then
∂ H(y)
∂ θµ

=
1
n

n−1

∑
t=0

∂ y(t)
∂ θµ

ψ̂y[y(t)],

hence by (14):

∂ H(y)
∂ θµ

=
∞

∑
u=−∞

∂ g(u)

∂ θµ

{
1
n

n−1

∑
t=0

x(t −u modn)ψ̂y[y(t)]

}
.

The expression inside the above curly bracket{} is the sam-
ple circular cross covariance, at lag−u, between the process
{x(t)} and{ψ̂y[y(t)]}, which we denote by ˆcxψy(−u). Define
the cross periodogram between these processes as

f̂xψy

(2πk
n

)
=

n−1

∑
u=0

ĉxψy(u)e−i2πku/n

=
1
n

[n−1

∑
t=0

x(t)e−i2πkt/n
][n−1

∑
t=0

ψ̂y[y(t)]e
i2πkt/n

]
.

Then it can be shown that

∂ H(y)
∂ θµ

=
1
n

n−1

∑
k=0

∂ G(2πk/n)

∂ θµ
f̂xψy

(2πk
n

)
.

One can then deduce the following result:

∂ Ĥ−(y)
∂ θµ

= −
1
n

n−1

∑
k=0

∂ G(2πk/n)

∂ θµ
f̂xϕy

(2πk
n

)

where

f̂xϕy

(2πk
n

)
= f̂xψy

(2πk
n

)
−

fx(2πk/n)G′∗(2πk/n)

v̂ar(y)

is the cross-periodogram between the processes{x(t)} and
{ϕ̂y[y(t)] = ψ̂y[y(t)]− y(t)/v̂ar(y)}. For G = W∗/(|W|2 +

σ2
n ), one can show

∂ Ĥ−(y)
∂ θµ

= −
1
n

n−1

∑
k=0

∂W∗(2πk/n)

∂ θµ

{
f̂xϕy(y)(2πk/n)

|W(2πk/n)|2+σ2
n
−

2G∗
(2πk

n

)
ℜ

[
G

(2πk
n

)
f̂xϕy

(2πk
n

)]}

whereℜ denotes the real part.
By the same calculation, one gets a similar formula for

∂ Ĥ(y′)/∂ θmu, with y, G, replaced byi ′, G′, σ2
n replaced by

1 andψy replaced byψy′ defined similarly asψy but with y′

in place ofy.
Finally, it can be shown that the gradient of the crite-

rion (12) is

∂Ĉ†(W)

∂ θµ
=

1
n

n−1

∑
k=0

∂W∗(2πk/n)

∂ θµ

{
fxϕy(y)(2πk/n)

|W(2πk/n)|2+σ2
n

−2G∗
(2πk

n

)
ℜ

[
G

(2πk
n

)
fxϕy(y)

(2πk
n

)]

+G∗
(2πk

n

)[
1−

fx(2πk/n)

|W(2πk/n)|2 +σ2
n

]}

and that of the criterion (11) is

∂Ĉ(W′)

∂ θµ
=

1
n

n−1

∑
k=0

∂W′∗(2πk/n)

∂ θµ

{ fxϕy′
(2πk/n)

|W′(2πk/n)|2+1

−2G′∗
(2πk

n

)
ℜ

[
G′

(2πk
n

)
fxϕy′

(2πk
n

)]

+G′∗
(2πk

n

)[
1−

fx(2πk/n)/vn(W′)

|W′(2πk/n)|2+1

]}
.

5. SIMULATION

We have simulated a seismic trace of length 1024. The
wavelet is taken as a mixture of two Ricker waves, the first
one has a phase 58.31◦ and a central frequency 60Hz and the
second one has zero phase and a central frequency 120Hz.
The reflectivity is generated as sign(z)|z(t)|3/4 wherez(t)
are independent standard normal random variables, and the
noise is generated as independent normal random variables
of zero mean and variance 0.42 = 0.16. This yields a signal-
to-noise ratio of 17.5db.
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Figure 1: Simulation results with special parameterization

In a first experiment we consider the special parameteri-
zation:W′(ω) = (eiω +2+e−iω )W̃θ (ω) with W̃θ having 19
consecutive nonzero Fourier coefficients (which are the com-
ponents ofθ ), so that the estimated wavelet is a 21-taps filter.
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The results are plotted in Figure 1. The wavelet is well es-
timated, as can be seen from the top two graphs, and also
from the correlation between the estimated and true wavelets
(after alignment) which is 0.9789. However, the estimated
wavelet has more power in the high frequency range. As a
result, the gain of the estimated deconvolution filter is much
higher than the optimal Wiener gain in this range, since the
gain is proportional to|W′(ω)|/[|W′(ω)|2+1] with |W′(ω)|2

the signal-to-noise ratio (SNR) atω. An over-estimation of
|W′|2, hence of this gain would lead to an insufficient noise
reduction. The lower right part of Figure 1 shows that the
SNR+1 =|W′|2 + 1 can be over-estimated up to 50%. This
prevents the filter from effectively reducing the noise.

The over-estimation of|W′|2 can be explained. One can
write its estimator|Ŵ′|2 as|W′|2+(Ŵ−W′)W′∗ +W′(Ŵ′−
W′)∗ + |Ŵ′ −W′|2, hence if the estimator̂W is unbiased,
|Ŵ|2 would be biased upward by E(|Ŵ′−W′|2). This prob-
lem is most serious outside the pass-band of the wavelet
as the true value of|W′|2 is nearly zero there. Note that
the power spectral density (PSD) of the observation equals
(noise variance)∗(|W′|2 + 1). In this experiment, the noise
variance is corrected estimated, 0.1631 versus the true value
0.16, hence the PSD is also over-estimated (as can be seen
on the lower right part of figure 1).

The correlation after alignment between the recovered
and true reflectivities is found to be 0.6868 (Figure 3). This
is rather low, but one should note that even with the optimal
Wiener filter, the correlation is only 0.7304. This low value
can be explained by the presence of noise and the fact that
the wavelet is band-limited so that the high frequency com-
ponents of the reflectivity can never be recovered.
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Figure 2: Simulation results with pre-estimation of noise
variance

In a second experiment we pre-estimate the noise vari-
ance. By taking the average PSD of the observation over
the upper half frequency range, we get an estimate of 0.1817
which is higher than the true value. This over-estimation may
be explained by the fact that there are still some signal power
in this range. But it could be a good thing. Indeed, as the
PSD of the seismogram equals (noise variance)*(SNR+1),
an over-estimation of the noise variance would at least reduce
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Figure 3: From top to bottom: true reflectivity, synthetic seis-
mogram (reflectivity convolved with the wavelet + noise),
Wiener deconvolution result, and results from test 1 and 2.

the over-estimation of SNR+1, in order that the PSD is not
overly over-estimated. In this experiment we set the noise
variance to 0.1817 and minimize the criterion (12) to esti-
mate the wavelet, which is parameterized simply as a 21-taps
filter. It can be seen in Figure 2 that the PSD of the wavelet
is under-estimated at low frequency but is better estimated
at high frequency. Overall there is a correlation of 0.9790
between the estimated and the true wavelet, which is almost
the same as in previous experiment (Figure 1). Since the
noise variance is over-estimated, the SNR+1 is only slightly
over-estimated in the high frequency range (but it is under-
estimated in the medium frequency range). As a result, the
deconvolution filter is somewhat more effective in reducing
the noise. The correlation between the recovered and true
reflectivities is 0.6892, which is slightly better than in the
previous experiment.

Figure 3 compares the three deconvolution outputs: the
(non blind) Wiener filtering and the two test experiments.
One can see that the peaky nature of the reflectivity are well
recovered.
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