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ABSTRACT band-limited: its Fourier seried/(w) = &, w(u)e U
New modified mutual information criteria have been pro-iS (nearly) zero forw outside a small (low) frequency band.
posed for the deconvolution problem in the presence of nois&Nus this filter is not invertible since the inverse filtgr
and with non invertible convolution filter. Closed form for- Should have Fourier seriéS(w) = 37 . g(u)e™“ equal
mula for the derivative of the criteria are obtained. Simula {0 1/W(w). To our knowledge, there has not been work deal-

tions results are provided showing the good performance df9 specifically with this situation, apart from works on the
the method. Bayesian approach [1, 2], which require a parametric model

with prior on the parameters and hence are not redihd.
1. INTRODUCTION The usual practice is to continue using deconvolution meth-
ods designed for the noiseless and invertible convolutien fi
This work is motivated by seismic applications, in which ater case, hoping that the noise effect can be neglected er con
recorded seismic trace is often modelled as a convolution ahined. In [3], some theoretical and experimental studies o
a waveletw(t) with the reflectivity series(t) plus a super- the noise effect on some deconvolution criteria have been
posed noisa(t): presented. It turns out that the mutual information comtras
which has been shown to yield optimal performance in the
noiseless and invertible convolution filter case [4], is muc
more sensitive to noise than the (non optimal) kurtosis
The purpose of this work is to propose a modification of
where « denotes the convolution. It is generally assumedhe mutual information criterion, so that it can handle effe
that the reflectivity is a white super-Gaussian process, thévely the case of noisy data and band-limited filter.
noise is a white Gaussian process, and the wavelet is a band- Section 2 analyzes the effect of noise and the band-
limited filter. Seismic deconvolution consists in recomgri limited property of the wavelet on the mutual information
the reflectivity from a given seismic trace. This is often don criterion. Such analysis has appeared in [3], but as it pro-
through a deconvolution filtey: vides the rational for our modified criterion, itis summadz
here. The new criterion is developed in section 3. The empir-
hid ical counterparts and its gradient are derived in nextsecti
yt) = 3 gluxt—u)=(gxx)(t) (2)  Finally section 5 provides some simulation results in a-real
= istic setting, showing the good performance of the method.

[

xt)= 3 WU)rt—u)+n(t) = (wer)®)+n(t) (1)

U=—oc0

As the wavelet and the reflectivity distribution are un-
known, we have the classichlind deconvolution problem, 2. NOISE INFLUENCE ON THE MUTUAL
but with the added difficulty that the observation is contami INFORMATION CRITERION
nated with noise and the convolution filter (i.e. the wayelet
is band-limited, hence not invertible

Works on blind deconvolution has assumed (implicitly)
that the convolution filtew is invertible, that is there exists
a filter g such that(gxw)(u) = 1 if u= 0 and 0 otherwise.
Then, neglecting the noise, the reflectivity) can be recov-
ered from the observation by convolving it with the filgpr
as in (2). In the blind contextv is unknown sog must be
estimated, usually by maximizing a contrast function, dase

on the two basic properties of the source: its temporal indeﬁest compromise at it minimizes the mean square error be-

pendence and its non Gaussianity. o X .
In seismic applications however, the noise level Cantweeny(t) andr(t). Itis given in the frequency domain by

be high and more importantly the wavelet is often quite

In the presence of noise, it is not possible to recover exactl
the reflectivity through any deconvolution filter: the outpu
of (2) always contains some noise. Further, if one tries to
matchgx (wWxr) to r, g must have its the Fourier trans-
form very large at the frequencies outside the pass-band of
w, which would blow up the noise. Thus a compromise be-
tween signal recovery and noise reduction must be made. In
the non-blindcontext, where the wavelet and the noise and
reflectivity variances are known, the Wiener filter realites

Gwiene( @) = 0°W* (w) /[02|W(w)|? 4 07] (3)

Thank to British Gas, BP, Chevron, the Department of Trad®lan

dustry and Shell for financial support of the project Blin@mdification of 2 ; i ing 2
Seismic Signals (BLISS), and to members of this project (Qhtten, A. whereo” is the variance of the reflectivity seriesy that

Larue, J. Mars, M. Van der Bann) for stimulating discussieasiing to this ~ Of the noise and denotes complex conjugate. This formula
work. shows thaGieneris nearly the inverse oV inside the pass-
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band ofw (WhereWa?/a? is large) and nearly zero outside statistics, which can be helpful especially for estimating

this band (wher®/a? /7 is nearly zero). gain of the deconvolution filter, as can be seen in [4]. There-
The mutual information approach to blind deconvolutionfore, our idea is to only modify the second term in (4) to

consists in adjusting the deconvolution filgesuch that the ~ correct its bad behavior in the presence of noise.

output{y(t)} defined in (2) is the least temporally dependent. N o

Here this dependence is measured by the mutual informatichl The modified criterion

rate, which can be expressed as [4] We have seen that the second term in (4) is a measure of
on flatness offy. But the deconvolution output in the noisy non
H(y) _/ log|G(w| dw + constant invertible caseshould not be flatas can be seen from that of
2

the Wiener filter. Since the theoretical sgectral densitihef
observed proces(t)} is 02|W(w)|? + d?, it is the ratio

n?

where H(y) is the Shannon entropy of(t), which does
not depend ort by stationarity. Denoting byH ™ (y) = fy fy

%Iog[Zyre\/ar(_y)].— H(y), the negentropy of, the mutual in- Wo /o2 +1 = W2+ 1 (6)
formation criterion can be written as

var(y) do whereW’ = Wao/ay, which should be flat (as it is theoret-

—— +constant (4) ically equal to the constart?). Thus, we shall replace the

fy(w) 2m second termin (4) by (5) with, (w) replaced by (6). Further,
wheref, s the spectral density of thet) process, which 1S fvolvecin the negentropy () in (4) 1 now taken
related to that of the(t) process byfy(w) = |G(w)[*fx(w).  as the Wiener filter associated with SinceH - is scale in-
The negentropy is a non-Gaussianity measure. It hagariant,H~ (y) = H™ (y') wherey (t) = y(t)on/ 0, which can

been argued in [3] that such measure would have good bere determined fronfix(t)} through the rescaled Wiener filter
havior under noise contamination. The noise sensitivity ofyith frequency response

the criterion comes from the second term in (4). Indeed, this
term is a measure of flatness §f since from the equality G'(w) =W"(w)/[|W'(w)|? +1] (7)

var(y) = ij" fy(w)dw/(2m) it can be written as

1 2
—H™(y) + 5/ log
0

Therefore, we are led to the new deconvolution criterion

1 [ 2n dw 2n dow
= |log / ()22~ [T log fy(w)—] ) , 1 o f(w)  dw

2 =— = ST T B
2 0 2t Jo T c(w) H ()/) + 2 |Og/0 W (w)2+1 21
which, by Jensen’s inequality, is non-negative and can be 2n fx(w) dw
zero if and only iffy is constant. This term will be referred to / 9 W (w)2+1 2m
as the second order whiteness term since it tends to force the

output of the deconvolution filter to be second order Whitewherey = g +x with g having Fourier transforn®’ given
If we minimize only this term, we would get a deconvolution by (7). Minimizing this criterion would yield the Fourier

(8)

filter with gain: transformW’ of the rescaled wavela’ = wo/0,. Note
Constant Constant that W’ (w)|? represents the signal-to-noise ratio (SNR) at
|G(w)| = = the (angular) frequenag andy is the recovered reflectivity

1/2 2 2 211/2° . .
x/ (w) [02W(w)[? + ag]¥ rescaled to have the same variance as the noise.
OnceW’ has been obtained, the noise variaogecan be

The constant factor comes from the scale ambiguity of th ; ; ; .
. . . e . in noting th is theoreticall bﬁ) Thus
deconvolution filter. If we normalize this filter so that its ?vt()at?akid by noting that (6) is theoretically equal

output has unit variance then this constant becomes 1. Thus 5 2t f(w) dw
the above gain nearly equal &, outside the pass-band of the o, = / W2l 2r 9
wavelet (wheréW| ~ 0) while the gain of the optimalfilter is o |W(w)+
nearly zero there. Therefore the second order whiteness ter  Note that the above criterion does not allow to determine
in (4) is strongly affected by noise. Due to this term, thewW ando separately but only the produsto =W’ g,,. This
noise attenuation would be inadequate outside the pasb-bais easy to understand: a multiplication of the reflectiviyy b
of the wavelet. Thisfinding has been supported by simulatioa constant factor can always be offset by a division of the
experiments reported in [3]. wavelet by the same factor so that the output of the convolu-
tion remains the same.
3. THE MODIFIED MUTUAL INFORMATION
CRITERIA 3.2 Exploiting the band-limited property

In the noiseless and invertible convolution filter case the m The second term of (8) does not actually provide enough in-
tual information criterion is known to yield the best perfor formation to estimate evefW'|. Indeed, minimizing this
mance [4]. The above analysis shows that its bad behaviéerm alone would yield$\'|? = cf, — 1 for arbitrary con-

in the noisy and band-limited case is due to the second terstantc > 0 andg? = 1/c. Of course, some information on
in (4). In fact, using only the first term or some other non|W’| may be extracted from the first term of (8), but this term
Gaussianity measure such as the kurtosis, can yield betteontains mainly information on the phase of the wavelet, not
performance in this case [3]. But the use of a non Gaussiarits amplitude. Thus criterion (8) may not provide good esti-
ity criterion ignores information provided by second ordermate ofo?.
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To overcome the above problem, our idea is to exploitthe 4. THE EMPIRICAL CRITERIA AND THEIR
fact that the wavelet energy is mainly concentrated on alsmal GRADIENT
low frequency band. We propose two approaches. 4.1 The empirical criteria
3.2.1 Special parameterization In practice, the criteria (8) and (10) must be replaced

By forcingW' to vanish at (angular) frequenay one avoids Py their empirical versions, in which the termis™(y) (or

th{a abovge ambiguity pro(ble?n sir)me ?he :gove constant H™(¥)) and fx are replaced by their estimates. For the

should then (theoretically) satisfyf () = 1. A possible spectral delnsnyfx, a naﬂrgl estimate is the periodogram

such parameterization is f(@) = "2 57g X(1)e 2, xo,..., X1 being the obser-
vations. This is a raw unsmoothed estimate, but the integra-

W (w) = (€% 42+ e "Wy (w) = 2[1 + cog w)|Ws(w) tions involved in (8) and (10) provide an implicit smoothjng

and it has a low bias (of the ordeyr). For numerical cal-

Where\f\lg( w) is some smooth function depending on a vectorculation, these integrations are replaced by Riemann sums

paramete®. It can be for example be the Fourier transformbased on the points rt/n, ..., 2m(n— 1) /n. Thus, letH~

of a finite impulse response filter with coefficients being thebe a negentropy estimator, the empirical version of (8)ps, u

components 0f. ThenW’ vanishes atrand due to its con- to a constant,

tinuity, it would be nearly zero in the vicinity af. To make 1

W’ vanish on a wider range of frequencies, one may consides W) = o 17C fu(2rk/n)

the parameterization 95 Z o W/ (2rk/n)[2+1

W/ () = (€€ + 24 &719)[d% — 2cog ) + & Wy (w) - Z log[w (T) \2 +1] } (11)

for some giveruy, Wy (w) being as before. The factef® —
2coguy) + e ' vanishes forw = +apn. HenceW’ would  and that of (10) is, up to a constant,
be nearly zero on some interval containifag, 1 if wy is 1
chosen not too far from. Ehw) = — { 1 fy(2mk/n)
Z) |W(2mk/n)|2 + o2

3.2.2 Pre-estimation of the noise variance: another crite- ,
rion - Z log HW(—)‘ —l—G,ﬂ } (12)
If the pass-band of the wavelet is more or less known, one =) n

can estimate? by taking the average df; outside this band.
Then one may consider? as known and equal to this esti-
mate. To force the ratio (6) to be close to the “knovay,
we add the term 1t f(2mk/n)

2n w) /a2 fy(w)/02 ]dw (W) = kz0|W’(2nk/n 2+1
o Wi

_|097 -

2 ! 2 A

)| 1 WH@)*+1] 21 whereW' is the estimator ofV' which minimizes this crite-

to the criterion (8). The above term is non negative and cafion. Compare with equation (9).

be zero if and only if f,/02) /(]W'|2+ 1) = 1, since fora > To estimateH ~(y) one needs to be able to compyte
0,a—1—loga> 0 with eqz ality if and only =1 Further, but the formula (2) involved all values of(t) and those
asa—1—loga~ (a— 1)2/2 for a near 1, this term would ©f index outside{O,n—1} are not observed. To over-
have the similar effect as the/4 the L2 squared distance come this difficulty, a simple approach is to extend the data

between the functiofy/c?)/(|W'|? + 1) and the constant {X(0,....x(n—1)} periodically and thus compuggt) as
1. Thus, noting thao,W' = oW andH ™ (Y) = H (ony) =

For the criterion (8), the noise variance will be estimatgd b
vn(W'), given by

(13)

H~(y/0o), we are led to the criterion z g(u)x(t —umodn) (14)
U=—o00
_H,(X) + 1 [/Zn&d_w 11— This amounts to replacing ordinary convolution by circu-
o/ 2|Jo |oW(w)]?>+0g2m lar convolution. SinceS is smooth, its Fourier coefficients
an () dw should decay rapidly at infinity, therefoyét) computed as
og— xw 0w :
/ g oW (w) 2+ a2 21 above should be not much different from the one computed

by (2), fort € {0,...,n—1} and far from 0 anah.

As we have noted, only the produs#V can be estimated and ~ The entropy estimatdt (y) of y can now be constructed
there is a scale ambiguity in the estimated reflectivity. Shu fromy(0),...,y(n— 1), using the method in [4] (for ex.). Fi-
we may assume that = 1, and rewrite the above criterion nally, the negentropy esﬂmatory;fs estimated by

as, dropping the constaml/z

_ 1[ /77 fy(w) dw
TwW) = — L7 ke dw
C'w) = —H (y)+2[/0 WP a? 2n here

I I U U Co [C]

Ay =5 L log[2rmevar(y)] - Fi(y)
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The same method applies to the estimatioHofy ), replac-  where[J denotes the real part.

ingy, Gbyy,G. o By the same calculation, one gets a similar formula for
o o OH(y)/06mu, with y, G, replaced by’, G, o? replaced by
4.2 Minimization of the criteria 1 andyy replaced by, defined similarly agfy but withy

We assume thal/’ has been parameterized by a vector pain place ofy.

rameterf. We choose to use the BFGS (Broyden-Fletcher-  Finally, it can be shown that the gradient of the crite-
Goldfard-Shano) method [5] to minimize the criteria. Thisi 10N (12) is

a quasi Newton type algorithm, but it needs only the gradient At . .

of the criterion (and the criterion itself) since it compaIten oCT(w) _ 17 ' ow (2nk/n){ fX¢y (27k/n)

approximation to the Hessian during the iteration, usirg gr 96, n & a6, |W(2mk/n)|2 + o2
dient and criterion values collected from previous stefie T
advantage of BFGS over simple gradient descent is that the - 2G* (an) O [G(Zik) fx¢y( )(zik)}
former has quadratic convergence near the solution. n n n
In the sequel, we provide analytic formulas for the gra- e (Zik) 1_ fx(2mk/n)
dient of each of the criteria. Following [4], we introduceth n |W(2mk/n)|2+ 02
score estimator of, defined as the partial derivative of the o ,
entropy estimator: and that of the criterion (11) IS
By y)] = GOy o oCw) 1 ”Zl oW (2rik/n) [ o, (27/N)
ay(t)’ T ' 06, n& 06, W/ (2rtk/n) |2+ 1
Then 1 [ 2TIK , [ 2TK 2nk
oHY) 10OV 5 26" ()0 [e (5 e (7))
6, n/4& 96y ’ G’*(an) [1— fx(2rk/n) /v (W) ]}
hence by (14): n W/(2mtk/n) |2+ 1

11 5. SIMULATION

09;1 Z 09;1 {ntZ) X(t-u mOdn)%[y(t)]}' We have simulated a seismic trace of length 1024. The
o . wavelet is taken as a mixture of two Ricker waves, the first
The expression inside the above curly bracKets the sam-  one has a phase 5834nd a central frequency 60Hz and the
pIe circular CTOSS covanance at lagl, between the process second one has zero phase and a central frequency 120Hz.
(t)} and{gy[y(t)]}, which we denote byyg, (—u). Define  The reflectivity is generated as sighz(t)|3/4 wherez(t)
the cross perlodogram between these processes as are independent standard normal random variables, and the

omkn -1 noise is generated as independent normal random variables
fuu (_) = By, (U)e 2R of zero mean and variance48 = 0.16. This yields a signal-
n uZo to-noise ratio of 17.5db.
1 nt PSD of wavelet Wavelet
_ - % ( gi2nkt/n %ll’y eerrkt/n
n h - = —true 15 a - — —true
t= / ~ i e
. 10° ///\ 1 " =
Then it can be shown that y RN A
A 05 Jlon
-2 N YA \t
OH(y) _ 1M 9G(2mk/n) » 27k il W .
deﬂ I(ZO deﬂ wa( ) 10 \\\ r\\ -05 1‘/ \“\ / |
One can then deduce the following resuilt: 10— 5:;0 e r— - A /5/
q- 1
dH — _} g dG 2T[k/n (27Tk) Gain of decon. filter Relative error
09 v\ 12 oo o8 —
where osll \‘ : i - :
2rky  » s2mky  f(2mk/n)G™ (2mk/n) osl! ] J
fx¢ ( ) = fxwy( ) \\‘A /» \‘\\ \
Y var(y) 04\‘ \\// A\‘ \ 05/ | /\\
\ p w“/,/\\ | .
is the cross-periodogram between the proce$sés} and O'z N\ ol \ NS N
{¢y[y(t)] — ll’y[y(t)] _ y(t)/\Tér(y)} For G = W*/(lWlZ + 0 100 200 300 400 500 100 200 300 400 500

2
9y ), one can show Figure 1: Simulation results with special parameterizatio

0H 1w (2rk/n) [ gy (27k/n) : : . : .

Q35 Z 90 { W(2rk/n)[2+ 02 In a first experiment we consider the special parameteri-
H zation:W'(w) = (€® + 2+ e '“)Wp () with Wp having 19

oG 27K ole 2k : 2k consecutive nonzero Fourier coefficients (which are the.com

( ) ( ) X¢y( ) ponents 0B), so that the estimated wavelet is a 21-taps filter.
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The results are plotted in Figure 1. The wavelet is well es- st
timated, as can be seen from the top two graphs, and al¢ °© WW
from the correlation between the estimated and true wavele —C ! ‘

(after alignment) which is 0.9789. However, the estimatec

wavelet has more power in the high frequency range. As. 127 MWMW\/\M
result, the gain of the estimated deconvolution filter is muc _,,| ‘

higher than the optimal Wiener gain in this range, since tht 500 1000
gain is proportional tw' (w)| /[|[W' (w)|?+ 1] with W/ (w) |2 ar
the signal-to-noise ratio (SNR) at. An over-estimation of OWWWWWWNMMMWMMWWWM
IW'|2, hence of this gain would lead to an insufficient noise Z;_ ‘ ‘
reduction. The lower right part of Figure 1 shows that the °00 1000
SNR+1 =|W|?+ 1 can be over-estimated up to 50%. This ;WWWWMWMMWWW
prevents the filter from effectively reducing the noise. Al

The over-estimation ofV’|? can be explained. One can 500 1000

write its estimatofW’|? as|W’ |2+ (W — W/ )W + W' (W' — of

W')* + W' —W'|?, hence if the estimatol is unbiased,  Jf %WWMM

IW|2 would be biased upward by(EV' —W’[2). This prob- : :

lem is most serious outside the pass-band of the wavelet

as the true value oW’|? is nearly zero there. Note that Figure 3: From top to bottom: true reflectivity, synthetiisse

the power spectral density (PSD) of the observation equaksiogram (reflectivity convolved with the wavelet + noise),

(noise variance)|W’'|?>+ 1). In this experiment, the noise Wiener deconvolution result, and results from test 1 and 2.

variance is corrected estimated, 0.1631 versus the true val

0.16, hence the PSD is also over-estimated (as can be seen o ] )

on the lower right part of figure 1). the over-estimation of SNR+1, in order that the PSD is not
The correlation after alignment between the recovere@Verly over-estimated. In this experiment we set the noise

and true reflectivities is found to be 0.6868 (Figure 3). Thisvariance to 0.1817 and minimize the criterion (12) to esti-

is rather low, but one should note that even with the optimajnate the wavelet, which is parameterized simply as a 21-taps

Wiener filter, the correlation is only 0.7304. This low value filter. It can be seen in Figure 2 that the PSD of the wavelet

can be explained by the presence of noise and the fact thig Under-estimated at low frequency but is better estimated

the wavelet is band-limited so that the high frequency comat high frequency. Overall there is a correlation of 0.9790

ponents of the reflectivity can never be recovered. between the estimated and the true wavelet, which is almost

the same as in previous experiment (Figure 1). Since the

noise variance is over-estimated, the SNR+1 is only skghtl

over-estimated in the high frequency range (but it is under-

estimated in the medium frequency range). As a result, the

deconvolution filter is somewhat more effective in reducing

the noise. The correlation between the recovered and true

PSD of wavelet Wavelet

/’\\\ - — —true 15

!y >4 esti.
10° |/ ~ i

107} A}

v \ o \ reflectivities is 0.6892, which is slightly better than ireth
10 : \\\‘,,@ ~ =7 L / previous experiment.
N s ‘\1 / Figure 3 compares the three deconvolution outputs: the
10 : -1 L (non blind) Wiener filtering and the two test experiments.
0 100 200 300 400 500 -10 -5 0 5 L
One can see that the peaky nature of the reflectivity are well
Gain of decon. filter Relative error recovered .
1.2 / \
Il — — —opt. N [ - — —PSD
1 \ est. // | 2‘1 REFERENCES
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