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ABSTRACT 
This work presents the mean square error analysis of the 
Robust Variable Step Size (RVSS), which has been recently 
proposed. An analytical model is derived for the excess 
mean square error for white Gaussian input signals and 
slow adaptation. As a side benefit of the analysis, a new 
theoretical model is also obtained for the classical VSS al-
gorithm. Monte Carlo simulations verify the accuracy of the 
analytical model. A practical example with real nonstation-
ary biomedical signals illustrates the applicability of the 
algorithm. 

1. INTRODUCTION 

Adaptive filtering has been extensively employed in 
many practical applications. Important results have been 
obtained, for instance, in noise and interference canceling 
for biomedical applications [1]. The Least Mean Square 
(LMS) adaptive filter family is very attractive for implemen-
tation of low-cost real-time systems due to its low computa-
tional complexity and robustness [2]. Thus, LMS is still the 
golden standard for performance evaluation of existing and 
new adaptive processing strategies. 

It is well known that LMS-based algorithms’ performance 
is highly dependent on the choice of the step size parameter. 
Larger step sizes tend to speed up convergence at the ex-
pense of a larger steady-state misadjustment. Smaller step 
sizes tend to improve steady-state performance at the cost of 
a slower adaptation. Ideally, the step size should be large 
during the early adaptation, and have its value progressively 
reduced as the algorithm approaches steady-state. Thus, 
variable step size strategies are common solutions for ob-
taining both fast tracking and good steady-state perform-
ance. 

Several variable step size LMS-type algorithms have been 
proposed. Two particularly interesting strategies were intro-
duced in [3] and in [4]. The performances of these algo-
rithms are largely insensitive to the power and to the statis-
tics of the measurement noise. The price for such robustness 
is an increase in LMS complexity that is proportional to the 
number of adaptive filter coefficients. 

To remain attractive for some demanding real-time appli-
cations such as anesthesiology monitoring [5], variable step 
size strategies should impose a minimal computational pen-
alty to the basic LMS adaptive filter. The most promising 
low cost step size adjustment criteria are based on the in-
stantaneous squared error [6], [7], on the frequency of gradi-

ent estimation signal changes [8], and on the correlation 
between input and error signals [9]. However, experimental 
results show that the steady-state performances provided by 
these techniques can be highly dependent on the measure-
ment noise power level. This sensitivity can be explained by 
a mean steady-state step size bias which is dependent on the 
noise power. As a result, the performances of these algo-
rithms tend to reduce with the signal-to-noise ratio (SNR). 
To overcome this problem, some algorithms incorporate 
measurement noise variance estimators to lessen the per-
formance losses [10]. 

The variable step size (VSS) algorithm [6] provided a 
very effective strategy for LMS step size adjustment. Later 
on, authors of alternative variable step size algorithms have 
claimed better performances than VSS [7], [11]. More re-
cently, the work in [12] demonstrated that VSS provides the 
closest to the optimum step size sequence when properly 
designed. This result revived the interest on VSS. So far, 
VSS appears to lead to the best tradeoff between conver-
gence speed and steady-state misadjustment, even consider-
ing its intrinsic large sensitivity to the noise power. 

Recently, a modified version of the VSS algorithm has 
been introduced [13]. The Robust Variable Step Size (RVSS) 
presents a smaller sensitivity to the measurement noise than 
VSS, at the price of a small computational cost increase. It 
can be applied whenever the input signal is not a noiseless 
constant modulus signal, and has been successfully applied 
to interference cancellation in biomedical applications [14]. 

This work presents a mean-square error (MSE) analysis 
of the RVSS algorithm. A recursive analytical model is de-
rived for white Gaussian signals and slow adaptation. Monte 
Carlo simulations show excellent agreement with the theo-
retical model during transient. In steady-state, the model’s 
accuracy reduces with the SNR. An example compares VSS 
and RVSS performances using real biomedical signals. 

2. VSS-RVSS UPDATE EQUATIONS 

The weight-error vector update equation of the variable 
step size LMS algorithm is given by 
 ( )( 1) ( ) ( ) ( )n n n e n nµ+ = +v v x  (1) 
where n is the discrete time and v(n)=w(n)-wo is the weight-
error vector, where w(n)=[w0(n) w1(n) … wN-1(n)]T is the 
adaptive weight vector and wo=[wo

0 wo
1 … wo

N-1]T is the 
minimum MSE weight vector. µ(n) is the variable step size 
and x(n)=[x(n) x(n-1) … x(n-N+1)]T is the input signal vec-
tor. The error signal is defined as 
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 ( ) ( ) ( ) ( )Te n z n n n= − v x  (2) 
where z(n) is the measurement noise, which is assumed 
i.i.d., with power rz  and independent of x(n). In the follow-
ing, x(n) is considered to be a zero-mean, white Gaussian 
signal with power r0. 

RVSS [13] is a modification of VSS [6]. Its update equa-
tion is given by (1) with 
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with 
 ( ) ( ) ( ) ( ) ( )21  1Tn n k n n e nβ αβ γ  + = + − x x  (4) 

where k, α and γ are the control parameters and xT(n)x(n) is 
evaluated recursively. The original VSS update equation is 
obtained for k=0, α=αVSS and γ =-γVSS. The bounding of 
µ(n) in (3) prevents unstable behavior and maintains the 
algorithm’s tracking capability. 

It has been shown in [13] that the measurement noise in-
fluence on the RVSS performance is minimized for 
 ( )01k r N=  (5) 
Thus, a properly designed RVSS is less sensitive to the 
measurement noise than VSS, at the price of a small in-
crease in the computational cost. In nonstationary applica-
tions, r0 can be estimated recursively (r(n)=r(n-1)-x2(n-K-
1)+x2(n) – see Section 5).  

3. LMS EXCESS MEAN SQUARE ERROR 

The Excess Mean-Square Error (EMSE) of the algorithm 
(1) with white inputs can be approximated by [2] 
 ( ){ } ( )2

0z KEMSE E e r r Tn n= − =  (6) 

where E{⋅} means statistical expectation and TK(n)=E{vT(n) 
v(n)} is the mean-square deviation. It is shown in [6] that 
TK(n) can be approximated by 
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Eq. (7) was derived assuming statistical independence 
between µ(n) and x(n). This assumption is valid for slow 
adaptation (α close to 1 and small γ). 

4. VSS-RVSS MEAN SQUARE STEP SIZE 

To obtain analytical models for  (6) and (7) it is necessary 
to evaluate E{µ(n)}=E{|β(n)|} and E{µ2(n)}= E{β2(n)}. The 
former can be approximated by E{µ(n)}≅ E{β2(n)}1/2. The 
evaluation of E{β2(n)}, however, is a very difficult task. To 
make this problem mathematically tractable, we follow [6] 
and assume mutual statistical independence of µ(n), x(n) and 
w(n). Squaring (4) and taking its expected value we obtain 
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where 
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were already evaluated in [13]. 
The last term in (8) is evaluated by rising (2) to the fourth 

power, taking initially the expectation conditioned on the 
coefficients, using the properties of Gaussian variables [15] 
and, finally, averaging over the coefficients. This procedure 
results in 
 ( ){ } ( ) ( )4 2 2 2

0 03 6 3z z K KE e n r r r T r Tn n= + +  (10) 

Using the Gaussian Moment Factoring Theorem [2], the 
two remaining expected values in (8) can be simplified to: 

 
( ) ( ) ( ){ } ( )

( ) ( ) ( )( ) ( ) ( ){ }
4 2 2

0 0

42
0

3 12

     6

T
z z K

TT
z K

E e n n Nr r r r Tn n

Nr r T E n nn nn

= +

+ +

x x

x xv x
 (11) 

and 
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The three remaining expectations in (11) and (12) are 
evaluated in Appendices A, B and C, and are given by: 
 ( ) ( )( ) ( ) ( )( ){ } ( ) ( )

2 2 32
06 8T T

KE r T nN Nn n n n = + +v x x x , (13) 
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( ) ( )( ) ( ) ( )( ){ } ( ) ( )
4 2 4 22

03 30 72T T
KE r T nN Nn n n n = + +v x x x  (15) 

Substituting (10) to (15) in (8) leads to 
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Making k=0, α=αVSS, γ= -γVSS and β=βVSS in (16) yields 
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which is a new recursive model for the evolution of the mean 
squared step-size of the VSS algorithm. 

Using (5) in (16) yields 
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Eq. (18) is the desired model for the behavior of the mean-
square step size value for the optimized RVSS algorithm. 

Eqs. (6), (7) and (17) constitutes a new model for the con-
ventional VSS algorithm, while Eqs. (6), (7) and (18) can be 
used to predict the behavior of the RVSS. 

5. SIMULATIONS 

In this section we present analytical and simulation results 
to verify the accuracy of the VSS and RVSS theoretical mod-
els, and to compare the performances of the two algorithms. 

Three examples are presented. The aim of the first two is 
to demonstrate the validity and limitation of the used theo-
retical assumptions in the analysis and the resulting accuracy 
of the models. The last example demonstrates the good quali-
ties of the RVSS when compared to the VSS when applied to 
real nonstationary biomedical signals. 

The first example considers a SNR of 60 dB and the sec-
ond example a SNR of 20 dB. The second example permits 
to visualize the impact of the measurement noise influence 
on the steady-state of the VSS algorithm. Both examples 
have the following common characteristics: the input signal 
is white Gaussian with unity power (r0=1). The additive 
measurement noise is white, Gaussian and uncorrelated with 
the input signal. The plant is a ten-tap (N=10) Hanning win-
dow with unity norm (woTwo=1). α=0.9997; γ=10-4; w(0)=[0 
0 0 … 0]T and β(0)=0.01. The simulation results were aver-
aged over 500 runs. The following parameters are used for 
the VSS algorithm for a fair comparison of convergence 
speeds: αVSS=α and γVSS =2γ/N [13]. 

 

 
Figure 1 – Excess mean square error (EMSE) for Examples 1 and 
2. (a) Analytical models and Monte Carlo simulations for VSS and 
RVSS are overlapped for Example 1 (SNR=60 dB). (b) Analytical 
model and simulation for VSS in Example 2 (SNR=20dB). (c) 
Simulations for the RVSS in Example 2. (d) Analytical model for 
the RVSS in Example 2. 
 

 
Figure 2 – Excess mean square error (EMSE) for Examples 1 and 
2. First 2000 iterations of Fig. 1. (a) RVSS and VSS simulations 
and analytical models for Example 2 (SNR=20dB). (b) RVSS and 
VSS simulations and analytical models for Example 1 
(SNR=60dB). 
 

 
Figure 3 – Mean squared step size (E{β2(n)}) evolution for Exam-
ples 1 (SNR=60dB) and 2 (SNR=20dB). (a) VSS model and simu-
lations for Example 2. (b) RVSS simulation for Example 2. (c) 
RVSS model for Example 2. (d) VSS model and simulations for 
Example 1. (e) RVSS simulations for Example 1. (f) RVSS model 
for Example 1. 
 

 
Figure 4 – Instantaneous step size for Example 3. (a) VSS algo-
rithm. (b) RVSS algorithm. 
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Figs. 1 and 2 show the EMSE behavior for the VSS and 
RVSS algorithms for Examples 1 and 2. Both algorithms 
present similar behaviors for a 60 dB SNR (Example 1). Ex-
cellent matching can be verified between theoretical and 
simulated EMSE in both the transient and steady-state 
phases. For SNR=20dB, VSS and RVSS present basically the 
same transient but very distinct steady-state behaviors. The 
VSS theoretical model is able to accurately predict the algo-
rithm’s behavior while the RVSS model is conservative. This 
steady-state model deviation could be attributed to the ne-
glected fourth order moments in (14) and (15). Comparison 
of Figs. 1b and 1c shows the smaller sensitivity of RVSS to 
the measurement noise influence.  

Fig. 3 shows the evolution of the mean squared step size 
for Examples 1 and 2. The RVSS analytical model accurately 
predicts the transient behavior, but underestimates the steady-
state behavior. Fig. 3 clearly demonstrates that RVSS can 
lead to lower steady-state step-size values than VSS. Several 
tests demonstrated that the prediction errors on the actual 
steady-state EMSE and on the mean squared step-size are 
bounded to less than -6 dB. Note that the use of the EMSE 
instead of the MSE clarifies the differences between theoreti-
cal and simulations curves. Thus, the assumptions and sim-
plifications used in the analysis do not compromise the 
model’s usefulness for most practical applications. 

In the third example a real electroencephalographic (EEG) 
signal is artificially contaminated with a real electro-
oculographic (EOG) interference [16] through a one tap fixed 
filter with value 0.6 and a delay of five samples. The adap-
tive filter has ten taps and the reference signal power is esti-
mated at each sample by a 200 tap moving average filter im-
plemented recursively. γVSS=5⋅10-7; β(0)=0.0833; [βMIN, 
βMAX]=[0, 0.17]. Fig. 4 shows that both algorithms present 
approximately the same behavior during the transient period. 
After iteration 15,000 (steady-sate condition) the RVSS in-
stantaneous step size achieves lower values.  

6. CONCLUSION 

This work presented a theoretical analysis of the mean-
square error behavior of the LMS-RVSS algorithm. The 
analysis considered white Gaussian input signals and slow 
adaptation. As a side benefit, a new analytical model has 
also been obtained for the behavior of the well-known VSS 
algorithm. Comparisons between theoretical predictions 
and Monte Carlo simulations have shown excellent agree-
ment during transient for both VSS and RVSS. In steady-
state, the RVSS model’s accuracy degrades for low SNR, 
but should still be useful for practical applications. The 
RVSS was shown to be an interesting choice for biomedical 
applications. 
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APPENDIX A: E{(vT(n)x(n))2(xT(n)x(n))2} 

Assuming statistical independence between x(n) and v(n) 
the following approximation can be obtained 

( ) ( )( ) ( ) ( )( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ){ }{ }

2 2

 

T T

T T T T

E n n n n

tr E En n n n n n n n=

v x x x

x x x x x x v v
 (A1) 

For white Gaussian input signals, the off-diagonal ele-
ments of the resulting matrix from the first expectation in the 
right hand side of (A1) are zero. The diagonal elements can 
be evaluated by the following expression 

 ( ) ( ) ( )
1 1

2 2 2
,

0 0

N N

i i
k l

q E x x xn i n k n l
− −

= =

 = − − − 
 

∑∑  (A2) 

where i and j index the lines and columns, respectively (qi,j=0 
for i≠j). As a result 
 ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) 32

06 8T T TE rn n n n n n N N= + +x x x x x x I  (A3) 

Substituting (A3) in (A1) leads to (13) 

APPENDIX B: E{(vT(n)x(n))4xT(n)x(n)} 

Assuming two Gaussian random variables y1 and y2 they 
can be expanded as an orthonormal series [17] given by 

 1 0 1

2 0 1 2 2

y k w
y a w a w

=
 = +

 (B1) 

where E{wkwl}=0 for k≠l and E{wkwl}=1 for k=l. For slow 
adaptation conditions, it can be assumed that v(n) is slowly 
varying with relation to x(n), resulting in 
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where y1=vT(n)x(n) and y2p=x(n-p). Substituting (B1) in (B2) 
yields, after some manipulations, 
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The expansion parameters can be evaluated through the 
following relations 
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Using (B4) in (B3), removing the conditioning and ap-
proximating E{vT(n)v(n)vT(n)v(n)} by E{vT(n)v(n)}⋅ 
E{vT(n)v(n)} results in (14). 

APPENDIX C: E{(vT(n)x(n))4(xT(n)x(n))2} 

Assuming three Gaussian random variables y1, y2 and y3, 
they can be expanded as an orthonormal series [17] as 

 
1 0 1

2 1 1 2 2

3 1 1 2 2 3 3

y k w
y a w a w
y b w b w b w

=
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 (C1) 

where E{wkwl}=0 for k≠l and E{wkwl}=1 for k=l, as a result 

©2007 EURASIP 211

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



 
{ } { } ( ) { }

( ) { }

2 2 4 24 2 2 2 21 1 2 2 2 2
1 2 3 1 12 2 2 34

0

322 2 2 2 2 2
11 2 1 3 2 1 1 2 1 22

0

105 3 3

15   4

a bE y y y E y E ya b a b
k

E ya b a b a b a a b b
k

= + +

+ + + +

(C2) 

The expansion parameter’s can be evaluated through the 
following relations 
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Substituting (C3) in (C2) yields 
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where 
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and 
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Let y1=vT(n)x(n), y2=x(n-i) and y3=x(n-j). Assuming in-
dependence between v(n) and x(n), the conditional expecta-
tion E{(vT(n)x(n))4xT(n)x(n)|v(n)} can be evaluated through 
(C4). Removing the conditioning and approximating 
E{vT(n)v(n)vT(n)v(n)} by E{vT(n)v(n)}⋅E{vT(n)v(n)} leads 
to (15). Eq. (15) assumes a zero-mean weight error vector. 
This approximation is more valid as the algorithm ap-
proaches convergence. 
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